Skip to main content
Erschienen in: BMC Neurology 1/2017

Open Access 01.12.2017 | Debate

Can brain impermeable BACE1 inhibitors serve as anti-CAA medicine?

verfasst von: Jian-Ming Li, Li-Ling Huang, Fei Liu, Bei-Sha Tang, Xiao-Xin Yan

Erschienen in: BMC Neurology | Ausgabe 1/2017

Abstract

Background

Cerebral amyloid angiopathy (CAA) is characterized by the deposition of ß-amyloid peptides (Aß) in and surrounding the wall of microvasculature in the central nervous system, together with parenchymal amyloid plaques collectively referred to as cerebral amyloidosis, which occurs in the brain commonly among the elderly and more frequently in patients with Alzheimer’s disease (AD). CAA is associated with vascular injury and may cause devastating neurological outcomes. No therapeutic approach is available for this lesion to date.

Main body

ß-Secretase 1 (BACE1) is the enzyme initiating Aß production. Brain permeable BACE1 inhibitors targeting primarily at the parenchymal plaque pathology are currently evaluated in clinical trials. This article presents findings in support of a role of BACE1 elevation in the development of CAA, in addition to plaque pathogenesis. The rationale, feasibility, benefit and strategic issues for developing BACE1 inhibitors against CAA are discussed. Brain impermeable compounds are considered preferable as they might exhibit sufficient anti-CAA efficacy without causing significant neuronal/synaptic side effects.

Conclusion

Early pharmacological intervention to the pathogenesis of CAA is expected to provide significant protection for cerebral vascular health and hence brain health. Brain impermeable BACE1 inhibitors should be optimized and tested as potential anti-CAA therapeutics.
Abkürzungen
AD
Alzheimer’s disease
APP
ß-Amyloid precursor protein
ß-amyloid peptides
BACE1
ß-secretase-1
BBB
Blood brain barrier
CAA
Cerebral amyloid angiopathy
eNOS
Endothelial nitric oxide synthase
PS
Presenilin
β-CTFs
ß-C-terminal fragments

Background

Cerebral amyloid angiopathy (CAA) refers to ß-amyloid (Aß) deposition in and surrounding the wall of cerebral vasculature, often involving small to mid-sized arteries, and less commonly capillaries and veins. Aß deposition along the leptomeninge is also considered a part of CAA [15]. Aging and Alzheimer Disease (AD) appear to be the major risk factors for CAA. Epidemiological studies suggest that 10% to 40% of the elderly have CAA, with the frequency raised up to 80% among patients with AD [6]. The incidence of moderate to severe CAA ranks approximately 2.3%, 8% and 12.1% among individuals at 65–74, 75–84 and over 85 years of age, respectively [1, 7]. Compared to non-demented individuals, the morbidity and severity of CAA both appear to be increased in demented or AD subjects. Thus, although CAA may be considered as a sign of brain aging, it could be related to the development and progression of dementia of the AD and vascular types [814].
While CAA is considered as a pathological change than disease entity, its clinical implication has gained growing attention in the medical field. CAA appears to be one of the most common reasons for primary, non-traumatic and non-hypertensive cerebral haemorrhage [4, 5, 10, 15]. Elderly with mild CAA in their brains might exhibit no neurological symptoms. With the progress of CAA, more damage and breakdown of the blood-brain barrier (BBB) and vascular wall can occur, raising the risk of suffering from overt clinical symptoms possibly as a result of silent but substantial intracranial haemorrhage and ischemic neuronal stress and injury [10, 13, 1618]. Unfortunately, there are no preventive or therapeutical approaches available for CAA to date [19].
Brain imaging technologies are advancing quickly and can nowadays detect signs of CAA at preclinical stages [2022], providing potential screening guide for early pharmacological intervention to the lesion among at-risk individuals. Progress in basic and pathological research has been also made in understanding of the pathogenesis of CAA. Specifically, recent studies have extended evidence in support of an involvement of BACE1 elevation in CAA pathogenesis [2325], in addition to amyloid plaque formation. This raises an opportunity of using BACE1 inhibition as a therapeutic, perhaps even preventive, option to delay or slow-down the development of CAA and thus mitigate its destructive neurological consequences. While BACE1 inhibition is being vigorously explored in clinical trials as an anti-Aß therapy primarily targeting at the parenchymal plaque lesions, there is less discussion about its potential for the treatment of CAA. In this review, we first briefly introduce the biochemical aspects of Aß genesis and clearance, and the cellular expression of Aß-producing proteins in the brain including vasculature, with a preference given to update BACE1-related data. We then address the pathological and pathogenic aspects of CAA, focusing on recent findings about the role of BACE1-mediated Aß overproduction. Finally we discuss the benefit, feasibility and some strategic issues for developing BACE1 inhibitors primarily targeting at CAA, in addition the compounds designated to reduce amyloid plaque lesions explored currently in clinical trials. Given the interconnecting nature of CAA with parenchymal amyloidosis, issues related to the amyloid plaque pathology and its intervention are also covered briefly while addressing the above topics.

Main text

Biochemical perspectives of Aß production and clearance

ß-Amyloid peptides are derived from the ß-amyloid precursor protein (APP), which is an integral membrane protein ubiquitously expressed in cells of the body including neurons [2628]. APP can interact with many adaptor proteins and bind to some extracellular matrix components including heparin and collagen, as such serving a crucial role in cell-cell communication and intracellular signalling. APP may be involved in broad biological functions in the body, including hormonal regulation [29] and iron export [30], and in the nervous system, participates in neuronal development, signal transduction, axonal transport, synaptic formation and repair [3137].
Biochemically, APP is cleaved by the so-called secretases, and by some other proteolytic enzymes as well, yielding many forms of fragment products [3842]. The secretase-mediated cleavages include the non-amyloidogenic and amyloidogenic pathways. The former is executed by α-secretase and γ-secretase complex, likely as the predominant form of APP processing under physiological condition. The amyloidogenic pathway is initiated with ß-site cleavage of APP by BACE1, releasing ß-site cleaved C-terminal fragments (β-CTFs), which are further cut by γ-secretase to produce Aß [4347]. Depending on the sites of γ-cutting, Aß may contain amino acid (a.a.) residues of varying lengths [48]. The Aß mono-peptides could bind together to form soluble oligomers, and insoluble aggregates that deposit as microscopically evident extracellular lesions in the brain. A new η-secretase APP processing pathway initiated by some membrane-bound matrix metalloproteinases has been identified lately, which may lead to the formation of long and short Aη peptides as end products following α- and ß-secretase proteolyses [49].
Besides regulation at the level of production, several clearance mechanisms help maintain the concentration of Aß in the brain homeostatically. Thus, it is suggested that Aß products are removed from the brain through (1) being endocytosed by astrocytes and microglia; (2) being degraded by some enzymes including neprilysin and the insulin-degrading enzyme; (3) being cleared from brain parenchyma into blood after passing through BBB; (4) being drained out of the brain through the periarterial spaces via some specific routes, for instance, along intracortical microvascular walls to leptomeningeal arterial walls, and finally to cranial and cervical lymph nodes [5053].

Cellular localization of Aß-producing proteins in the brain including vasculature

Many original studies and reviews have described the cellular expression pattern of the Aß-producing machinery, i.e., APP, BACE1 and subunit proteins of the γ-secretase complex, in mammalian brains e.g., [54, 55], therefore we only shortly note this issue here. Overall, neurons appear to be the major cell type in the brain with enriched expression of APP and BACE1, as well as presenilins (PS1 and PS2) that serve as the catalytic core of γ-secretase complex. Previous studies have shown distinct immunolabeling of APP and PS1/PS2 in the somata and dendrites of neurons in mammalian brains [5658]. Immunolabeling of BACE1 has been detected in neurons and glial cells [59], while some antibodies label a pattern with predominant reactivity in the neuropil, particularly distinct at some brain areas rich of synaptic terminals, i.e., the olfactory bulb glomeruli and hippocampal mossy fibres [6064]. The notion that presynaptic terminals as an important site of Aß production is supported by increasing cell biology, biochemical and anatomical data [6571]. Specifically regarding synaptic function and plasticity, BACE1 is shown to be dynamically transported in axons via antegrade and retrograde trafficking [65, 66]. Moreover, APP cleavages can occur directly in synaptic vesicles, with Aß produced at and released by presynaptic axon terminals [6771].
Apart from neurons, many studies have demonstrated that the cellular components of blood vessels possess the biochemical machinery for Aß production. At the messenger level, vascular endothelial cells express three alternatively spiced APP mRNA isoforms, APP695, APP751 and APP770, in comparison with neurons that appear to only or predominantly express APP695 [72]. In cell culture studies, brain microvascular endothelial cells and human umbilical vein endothelial cells are found to express APP, BACE1 and PS1 by immunoblot and immunocytochemical analyses, and can secret Aß into culture medium detectable by ELISA [7377]. Similar results are obtained from experiments using primary cell cultures prepared from surgically removed human blood vessels [25]. Some studies have also shown that cultured vascular smooth muscle cells express APP, BACE1 and PS1 [23, 78, 79]. Notably, in histological preparations of animal or human brains without amyloid pathology, the cerebral blood vessels or their cellular components (i.e., endothelial and smooth muscle cells) generally do not exhibit impressive immunolabeling of APP, BACE1 or PS1, relative to the immunoreactivity seen in neuronal elements [56, 57, 6062, 80]. Thus, the overall levels of expression of the Aß producing proteins in vascular cells are apparently lower relative to neurons in normal animal or human brain.

Pathological characteristics of CAA

As with the amyloid plaque lesions, CAA can occur broadly in the central nervous system including the spinal cord [17, 81]. In comparison, little information indicates the existence of parenchymal and angiopathic types of Aß deposition in the periphery [82]. Such an organ/tissue preference of ß-amyloidosis appears to suggest some root link of the lesions to specific cellular components of the nervous system. Overall, cortical and leptomeningeal arteries appear to be mostly susceptible to CAA, while Aß deposition could occur at veins and venules. The neocortical vessels appear to be firstly and most frequently affected, followed by that in the paleocortex and midbrain. Less involved areas include the basal nuclei, dorsal thalamus and brainstem [18, 8385].
The onset and progression of CAA at a given vascular site are still not well understood to date. Pathological observations suggest that at arterioles Aß products may first deposit in the basement membrane of the tunica intima, then accumulate in the smooth muscle layer or the tunica media. The smooth muscle cell layer may be eventually destroyed and replaced by Aß fibrils, which could mount progressively to become very heavy to a point until no cellular components in this layer left [86]. Notably, perivascular Aß deposition can occur along with the lesion inside the vascular wall. The profiles with concurrent vascular and perivascular Aß deposition have been defined as “dysphoric” or “dyshoric” CAA [8689]. We observed fairly frequent perivascular Aß deposition at cerebral vasculature with either mild or severe amyloidosis inside the wall or the smooth muscle cell layer in postmortem human brains [25] (Fig. 1a-c). Some perivascular Aß deposition exhibited the morphological configuration of diffuse or compact plaques (Fig. 1d-g). When comparing cortical arterioles with varying extent of Aß deposition, a pattern of pathological evolution appeared to exist. Thus, Aß immunolabeling appeared to occur initially at the tunica intima, followed by the tunica media and perivascular zone. In some arterioles and capillaries, the tunica intima or endothelial cells exhibited extremely heavy Aß immunolabeling (Fig. 2a-f).

Role of Aß overproduction in parenchymal plaque amyloidosis

The pathogenic mechanism underlying cerebral amyloidosis as either parenchymal plaques or CAA is still not consensually defined, with the lesions collectively regarded as resulted from an imbalance between the production and clearance of the Aß peptides. It is suggested that a global rise of Aß levels in the interstitial fluid of the brain triggers self-propelling aggregation of the peptides to form insoluble products. According to the original amyloid hypothesis [90], reduced Aß clearance from the brain is the principal or primary causal factor for cerebral amyloidosis in sporadic AD. Among the Aß clearance mechanisms as noted above, the blocking of perivascular drainage is considered a crucial one. It is also suggested that Aß42 tends to precipitate in brain interstitial space to form senile plaques, whereas Aß40 has a better solubility, therefore more likely to be drained away through the perivascular space and thus deposit preferentially at cerebral vessels as CAA [16]. Increased peripheral Aß transit across the blood brain barrier (BBB) and “back-flushing” into the brain is also hypothesized [9197]. Of note, recent studies have shown that reducing periphery Aß does not apparently alter brain amyloidosis or Aß levels in the cerebrospinal fluid [98100]. Increased Aß42/Aß40 ratio [16, 100103] and prion-like propagation [104107] are also suggested to promote cerebral amyloidosis. Overall, an unifying hypothesis remains to be established to coherently explain as to why Aß deposition manifests in different patterns, occurs at selected locations and develops site-specifically in the human brain.
Data are also collected pointing to a role of localized Aß overproduction in cerebral plaque formation. Increased BACE1 expression and activity are reported in the brains from individuals with sporadic AD [108116]. To address the issue as to whether BACE1 elevation may occur in spatial relevance with parenchymal Aß deposition, several groups used well-characterized BACE1 antibodies for comparative analysis of BACE1 and Aß immunolabeling in the brains of transgenic AD mouse models, aged humans and clinically diagnosed AD subjects, and aged nonhuman primates [62, 80, 113116]. These studies have consistently demonstrated increased BACE1 expression in swollen/sprouting axonal terminals, commonly referred to as the dystrophic neurites, in neuritic plaques.
Whether chronic/persistent BACE1 elevation in association with an ongoing neuritic pathogenesis plays a principal role in plaque formation in the human brain remains to be established. The amounts of BACE1 labelled dystrophic neurites do not always match to the extent of amyloidosis anatomically and densitometrically in postmortem human brains, with Aß deposition appeared much denser relative to neuritic profiles especially among the cases with advanced AD pathologies [80]. However, one can argue that the two measurements should not match to each other for several reasons. First, Aß immunolabeling seen in the sections would most likely represent the amount of insoluble deposits accumulated over time, while BACE1 immunolabeling would more likely reflect the amount of the enzyme present at the cross-sectional time point when the brain is processed. Second, insoluble Aß deposits are known to resistant to postmortem tissue/protein degradation. In fact, amyloid pathology can been detected in human brains collected months even years after death [117119]. On the other hand, histological integrity and biological molecules including normal neural proteins are decomposed rapidly if brain samples are not preserved by tissue fixation on time [117]. Moreover, dystrophic neurites of the amyloid plaques show high structural plasticity over time [120], and Aß production as a biochemical process is depended on the viability of the dystrophic neurites [121]. With the build up of Aß deposits, viable cellular elements including dystrophic neurites may be dying out because of the so-called “burn-out” effect [122, 123].
For the other type of parenchymal plaques, the diffuse plaques, it has been difficult to determine if BACE1 elevation in local cellular elements is involved. When examining human brain samples, no distinct profiles with enhanced BACE1 immunolabeling are detectable over the areas with diffuse amyloid deposition (own experience). This is also the case for the fairly distinct Aß labeling along the low portion of cortical layer I as seen in some human brains (as shown in Fig. 1a for example). Layer I is innervated richly by axonal terminals from some subcortical structures, including the monoaminergic projections from the brainstem [124, 125]. These fine axonal terminals also distribute along the wall of pial arteries invading into the cortex, serving a key role in coupling neuronal activity and blood supply. Notably, in examination of perfusion-fixed brains from some transgenic mouse models of AD, e.g., the 3×Tg-AD mice, increased BACE1 immunolabeling at fine axonal profiles are clearly present over the areas with diffuse Aß deposition in the forebrain [126].
In the human or transgenic AD mouse brains wherein the neuropathology is well established, it is difficult to determine the causal relationship between axonal dystrophy and Aß deposition as one attempts to address the issue of onset and development of the neuritic plaques. A dynamic interplay between the two would likely exist, resulting in a feed-forward vicious cycle in the course of plaque pathogenesis [55, 66, 117]. Notably, in wild-type animals wherein no elevated Aß levels are pre-existed in the brain, many experimental insults, such as traumatic brain injury [127130], microvascular embolism [131], pilocarpine-induced temporal lobe epilepsy [132] and endotoxin-induced neuroinflammation [133], can clearly induce a dystrophic axonal pathology inherent with APP/BACE1 upregulation in the affected brain regions, although extracellular Aß deposition may not be detectable. When such experimental insults are applied to transgenic AD models, they could accelerate the age-related development of neuritic plaque pathogenesis in the brain [134136].

Role of Aß overproduction in cerebral angiopathic amyloidosis

Many groups of investigators have carried out in vitro and in vivo experiments to explore a potential involvement of Aß overproduction in the development of CAA [2325, 7378]. Specifically, an active role for BACE1-mediated Aß overproduction in vascular endothelial cells has been proposed for angiopathic amyloidosis [2325]. We examined the spatial relationship between BACE1 expression and CAA in postmortem human brains, with particular attention paid to understand the cellular components potentially exhibiting increased BACE1 immunolabeling around amyloid vasculature [25]. There appeared to exist a comparable pattern between Aß and BACE1 immunolabeling in and surrounding the wall of cortical arterioles (Fig. 2a-j). Enhanced BACE1 immunolabeling around the tunica intima appeared to occur in the endothelial cells (Fig. 2g, h). BACE1 immunoreactive profiles were also found in the tunica media and the perivascular regions, identified as neuronal processes rather than smooth muscle cells, neurons or glial cells (Fig. 2h-j). These BACE1 labelled profiles represented sprouting axonal profiles given their colocalization with synaptophysin, and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) that is expressed in the processes of nitric oxide (NO) producing interneurons [137]. Based on these observations, we proposed a dual-origin model for angiopathic Aß deposition in the human brain [25] (Fig. 2k). Thus, vascular endothelial cells begin to over-express BACE1 (likely APP as well) and increase Aß production in response to certain circulatory stress factors. The Aß products are released into blood (hence cleared away) as well as inside the vascular wall, with the latter retained and deposited locally causing some initial damage of the tight junction between endothelial cells. The accumulation of Aß together with infiltration of blood (potentially containing inflammatory factors) resulted from BBB leakage into the vascular wall causes stress/damage and degeneration of the smooth muscle cells. Cellular toxicities from Aß and other inflammatory molecules as well as a space-emptying effect in the smooth muscle cell layer may trigger a regenerative response of the perivascular axonal terminals, manifested by aberrant sprouting into and surrounding the vascular wall. Because the axonal pathology is inherent with BACE1/APP overexpression, a second wave of increased local Aß production occurs and mounts Aß products on-site. This neuronal contribution of Aß could continue until some point whereby all viable cellular components (vascular cells and dystrophic neurites) become degenerated (“burn-out”), leaving the original vascular site as an end-pathology locus heavily filled with Aß fibrils. This dual-origin hypothesis could explain as to why CAA can occur in and surrounding the wall of cerebral arterioles, capillaries and venules, although the latter two have no or only a thin small muscle cell layer. It can also help understand as to why amyloid angiopathy is observed in the central nervous system yet rarely (if any) in the peripheral organs. It should be noted that the leptomeningeal amyloidosis might also develop via a dual or triple origin mechanism, such that vascular endothelia, perivascular axonal processes and the meningeal cells participate in Aß overproduction resulting in spreading amyloidosis along the cortical surface [25] (Fig. 1a).
Considering endothelia as an early CAA contributors, it would be important to explore if some circulatory factors may promote the amyloidogenic response of these cells. Epidemiological studies suggest that many cardiovascular and metabolic conditions are risk factors for dementia of the vascular and AD types, including hypertension, hypotension, hypercholesterolemia, atherosclerosis and diabetes [138143]. In vitro studies have demonstrated that oxygen and glucose deprivation [75], proinflammatory cytokines [77] and high cholesterol [144] may serve as stress factors to stimulate endothelial Aß production possibly via BACE1 upregulation. The endothelial nitric oxide synthase (eNOS) could participate in modulating the amyloidogenic processing pathway in vascular endothelia [74].

Brief update on BACE1 inhibitors targeting against the amyloid plaque pathology

The anti-Aß approach for the treatment of AD has been vigorously pursued in the past two decades. Overall, most drug candidates based on active and passive Aβ immunization, anti- Aß aggregation and γ-secretase inhibition have failed in clinical trials. BACE1 inhibition has been left as a highly expected anti-Aß option, although the final outcome of ongoing drug trials remains uncertain. In-depth reviews on the anti-Aß therapies for AD treatment/prevention are available, with some works focused on the BACE1 inhibition strategy specifically [54, 55, 145152]. To avoid redundancy, we will only denote on a few issues here as the following.
Sufficient target engagement to neuronal BACE1 has been much concerned in the development of BACE1 inhibitors to minimize plaque pathology. As the catalytic core of the enzyme is relatively wide, early generations of BACE1 inhibitory compounds are too large to have sufficient brain penetration [149, 151]. With chemical modification of lead compounds, brain permeable BACE1 inhibitors have been successfully developed, with several front-running candidates in the pipeline entered clinical trials. LY2886721 is the first reached Phase II trail, which was discontinued due to potential liver toxicity (https://​investor.​lilly.​com/​releaseDetail.​cfm?​ReleaseID=​771353). Verubecestat represents the latest BACE1 inhibitor with initial clinical trial data reported. This compound has excellent safety and target engagement profiles according to phases I and II trials, but has been also terminated in phase III trials among patients with mild to moderate AD at the time of subject registration, due to a lack of efficacy in slowing down cognitive decline (http://​www.​businessinsider.​com/​r-acceras-alzheimers-trial-fails-in-yet-another-setback-for-disease-2017-2). Currently, stage III trials on Verubecestat are continued in patients with early or prodromal stage AD, which might soon provide crucial assessment for the therapeutic efficacy of BACE1 inhibition (or anti-Aβ therapy in general) for AD.
However, potential side-effects of long-term BACE1 inhibition are a concern for the currently explored brain penetrant compounds. While initial data from BACE1 knockout mice suggest that BACE inhibition may not cause serious neurological side effects [54], it is now known that BACE1 plays critical biological roles in the central and peripheral nervous systems, including for axon growth and myelination, neuronal and glial genesis, ion channel activity and neuronal excitability [146, 148, 150154]. Thus, BACE1 deficiency might cause impairment of physiological neuronal and synaptic functions. In fact, BACE1 null mice exhibit some neurological and cognitive deficits [60]. They also show malformation of the olfactory bulb glomeruli and axonal mis-targeting in the hippocampal mossy fiber pathway [60, 61, 63, 64]. More recent studies indicate that pharmacological inhibition of BACE1 with brain penetrant compounds can cause neuronal and synaptic deficits. For instance, prolonged treatment with the inhibitor SCH1682496 or LY2811376 can lead to reduced spine formation of layer V pyramidal neurons in adult mice. The rate of spontaneous and miniature excitatory postsynaptic currents in pyramidal neurons and hippocampal long-term potentiation are also reduced in the drug-treated animals. Moreover, cognitive deficits are observed in behavioural tests in these animals [155]. Overall, a relatively long period of evaluation would be needed to assure the safety of the brain penetrating BACE1 inhibitors.

Benefit, feasibility and strategy for developing anti-CAA BACE1 inhibitors

As denoted in the preceding sections, CAA is associated with structural damage of the BBB and the entire vascular wall that can impair the regulated blood supply to brain parenchyma. Vascular leakage and micro-bleeding may also directly cause stress and damage to neuronal structures around the lesion [115]. Importantly, microvascular damage has been suggested to potentiate some neurodegenerative changes in AD, including the development of neuritic plaques because they are distributed in close proximity to capillaries [80, 88, 89, 131, 156160]. Given the direct and indirect contribution of CAA to neuronal dysfunction and cognitive impairments during aging and in dementia of the vascular or AD type, therapeutic approaches to prevent or halt this pathology should be considered and pursued. Because CAA involves essentially the microvasculature, pharmacological intervention is likely the only solution. Although the development of CAA may have many upstream etiological factors, Aß accumulation and deposition are the core event or a final crossroad of the condition. Interrupting at this crucial step of CAA development appears to be well justified theoretically.
The experimental data suggesting a key role of BACE1 upregulation in the pathogenesis of CAA by mediating Aß overproduction in local cellular components, as assembled in our dual-origin hypothesis (Fig. 2k), highlight the feasibility for using BACE1 inhibitors as putative anti-CAA therapeutics. Vascular endothelia participate in the initial step of Aß overproduction, therefore confronting this alteration by BACE1 inhibition could provide early protection. Inhibiting endothelial BACE1 activity can be expected to reduce the release of Aß into the smooth muscle layer of arterioles and venules, therefore protect the integrity of vascular wall, and stop/delay vascular leakage and microhemorrhages. This would minimize the stress to perivascular neuronal processes and their reactive sprouting into and surrounding the vascular wall in association with neuronal Aß overproduction. In capillaries, BACE1 inhibition in endothelial cells may prevent these cells from becoming amyloid, and also prevent the pericapillary neuronal processes from undergoing amyloidogenic axonal pathology. In the case that a certain degree of CAA and vascular damage have already taken place, BACE1 inhibitors might get access into the smooth muscle cell layer and the perivascular zone, and target on neuronal BACE1 overexpression in the sprouting axonal processes. Thus, BACE1 inhibitors may be expected to target-engage with the cellular elements involved in the early as well as ongoing phases of Aß overproduction during the development of CAA.
In the pharmaceutical industry, there are examples that opportunity and success of drug discovery arise from initially unspeculated therapeutic target or effect of the candidate drugs (as was the case of Viagra). As mentioned earlier, during the development of BACE1 inhibitors many lead compounds are discarded from further translational evaluation because they are not brain penetrant to target neuronal BACE1 [149]. The discussions elaborated above would imply that brain impermeable inhibitors could otherwise serve as desired anti-CAA drug candidates. Without passing through the BBB, they may inhibit BACE1 activity in vascular endothelia therefore provide the first line protection against amyloid damage to blood vessels [24]. They may also diffuse into the vascular wall or to some extent the perivascular area in the case that some BBB breakdown has already occurred, which could still reduce the Aß genesis in the smooth muscle cell layer, brought in by the invading perivascular neuronal processes. In this regard, it is of interest to note that typical neuritic plaques are anatomically vasocentric since they occurs preferentially next to capillaries [80, 130, 156158]. In addition, cellular and molecular components of blood are detected in neuritic plaques, suggestive of the existence of vascular leakage [159165]. Thus, while brain impermeable BACE1 inhibitors are expected to primarily act against CAA, theoretically they can also diffuse across the damaged capillary wall and inhibit amyloidogenesis in the dystrophic neurites of neuritic plaques therefore mitigate this parenchymal amyloid pathology.
As aforementioned, BACE1 plays critical physiological roles in normal neuronal/synaptic structures [60, 61, 6371, 150152]. Thus, perhaps the most significant advantage of brain impermeable BACE1 inhibitors over permeable ones is that the former may not elicit much unwanted effect to neurons and synapses in healthy brain regions and structures. Thus, this type of inhibitors might be used chronically as preventive as well as therapeutic regiments. Taken together, brain impermeable BACE1 inhibitors can be expected to have a better target engagement, relative to permeable ones, to act more selectively on the cellular elements exhibiting pathologically enhanced BACE1 activity (i.e., vascular cells and perivascular dystrophic neurites around CAA as well as neuritic plaques). Re-evaluation of some brain impermeable BACE1 inhibitory lead compounds and further development of this class as anti-Aß reagents primarily targeting at CAA but potentially at parenchymal plaques as well, are worth pursuing.
Strategic issues for the development of anti-CAA BACE1 inhibitors also include a more thorough understanding of the biological role of the enzyme in vascular endothelia. So far, no data have shown significant malformation or dysfunction of the cardiovascular system in BACE1 knockout mice (to the best of our knowledge). However, comprehensive in vitro and in vivo investigations would still be needed to firmly confirm that pharmacological inhibition of endothelial BACE1 does not impair vascular health in the central and peripheral systems. Since clinical trials on existing brain permeable BACE1 inhibitors are ongoing and the outcomes could be available in the near future, brain imaging and pathological information about CAA is worth collecting from the subjects participated in the trials. These inhibitors might also have some effect on the vascular cellular components, thus, in addition to the measurements of parenchymal amyloidosis and cognitive performance, clues of improvement on CAA pathology are worth searching from available postmortem brains of the enrolled subjects, even in the case that the cognitive outcomes obtained during the period of clinical trial are not excellent.

Conclusions

Cerebral vascular health is crucial for brain health in humans. As one of most common brain angiopathic lesions, CAA is associated with vascular deficits but may cause direct and indirect neuronal injury leading to devastating neurological outcomes, therefore playing an unneglectable role for cognitive decline during “normal” brain aging and in AD. CAA has been long regarded as to occur following some primary vascular deficit causing a passive retention of Aß at the brain-blood interface. The findings assembled in this review from original studies point to an active role of increased Aß production by local cellular elements, primarily the endothelial cells and perivascular neuronal terminals, in the pathogenesis of CAA. Such findings encourage the development of active pharmacological approaches to confront the development of CAA. BACE1 is the key enzyme for Aß production. Brain penetrant BACE1 inhibitors are being tested in clinical trials to mitigate plaque development for AD therapy. We propose here brain impermeable BACE1 inhibitors as putative therapeutics to mitigate CAA, which may offer desirable efficacy to prevent vascular amyloidosis yet avoid unwanted side effects duo to inhibition of neuronal and synaptic BACE1 activity in normal brain regions and structures. Attenuating CAA pathogenesis could stabilize vascular integrity and functionality, and improve overall brain health among the elderly at risk of suffering from dementia of the vascular as well as AD types.

Acknowledgements

None.

Funding

The original studies helped the assembly of this work were supported by the National Natural Science Foundation of China (NNSFC) (#31371095 and #91632116 to X.X. Yan). J.M. Li is supported by China Postdoctoral Research Foundation (#2016 M590757) and Hunan Family Planning & Health Commission (#B2017041). The funding bodies are not involved in the design of the study and collection, analysis, and interpretation of data.

Availability of data and materials

This review work does not contain original data to be shared.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Thal DR, Griffin WS, de Vos RA, Ghebremedhin E. Cerebral amyloid angiopathy and its relationship to Alzheimer's disease. Acta Neuropathol. 2008;115:599–609.PubMedCrossRef Thal DR, Griffin WS, de Vos RA, Ghebremedhin E. Cerebral amyloid angiopathy and its relationship to Alzheimer's disease. Acta Neuropathol. 2008;115:599–609.PubMedCrossRef
2.
Zurück zum Zitat Brenowitz WD, Nelson PT, Besser LM, Heller KB, Kukull WA. Cerebral amyloid angiopathy and its co-occurrence with Alzheimer's disease and other cerebrovascular neuropathologic changes. Neurobiol Aging. 2015;36:2702–8.PubMedPubMedCentralCrossRef Brenowitz WD, Nelson PT, Besser LM, Heller KB, Kukull WA. Cerebral amyloid angiopathy and its co-occurrence with Alzheimer's disease and other cerebrovascular neuropathologic changes. Neurobiol Aging. 2015;36:2702–8.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Kövari E, Herrmann FR, Gold G, Hof PR, Charidimou A. Association of cortical microinfarcts and cerebral small vessel pathology in the ageing brain. Neuropathol Appl Neurobiol. 2016; doi:10.1111/nan.12366. Kövari E, Herrmann FR, Gold G, Hof PR, Charidimou A. Association of cortical microinfarcts and cerebral small vessel pathology in the ageing brain. Neuropathol Appl Neurobiol. 2016; doi:10.​1111/​nan.​12366.
5.
Zurück zum Zitat Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ, Frosch MP, Viswanathan A, Greenberg SM. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain. 2017;140:1829–50.PubMedCrossRef Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ, Frosch MP, Viswanathan A, Greenberg SM. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain. 2017;140:1829–50.PubMedCrossRef
6.
Zurück zum Zitat Castellani RJ, Smith MA, Perry G, Friedland RP. Cerebral amyloid angiopathy: major contributor or decorative response to Alzheimer’s disease pathogenesis. Neurobiol Aging. 2004;25:599–602.PubMedCrossRef Castellani RJ, Smith MA, Perry G, Friedland RP. Cerebral amyloid angiopathy: major contributor or decorative response to Alzheimer’s disease pathogenesis. Neurobiol Aging. 2004;25:599–602.PubMedCrossRef
7.
Zurück zum Zitat Greenberg SM, Vonsattel JPG. Diagnosis of cerebral amyloid angiopathy. Sensitivity and specificity of cortical biopsy. Stroke. 1997;28:1418–22.PubMedCrossRef Greenberg SM, Vonsattel JPG. Diagnosis of cerebral amyloid angiopathy. Sensitivity and specificity of cortical biopsy. Stroke. 1997;28:1418–22.PubMedCrossRef
8.
Zurück zum Zitat Love S, Miners JS. Cerebrovascular disease in ageing and Alzheimer's disease. Acta Neuropathol. 2016;131:645–58.PubMedCrossRef Love S, Miners JS. Cerebrovascular disease in ageing and Alzheimer's disease. Acta Neuropathol. 2016;131:645–58.PubMedCrossRef
9.
Zurück zum Zitat Love S, Miners JS. Cerebral hypoperfusion and the energy deficit in Alzheimer's disease. Brain Pathol. 2016;26:607–17.PubMedCrossRef Love S, Miners JS. Cerebral hypoperfusion and the energy deficit in Alzheimer's disease. Brain Pathol. 2016;26:607–17.PubMedCrossRef
10.
Zurück zum Zitat Pezzini A, Del Zotto E, Volonghi I, Giossi A, Costa P, Padovani A. Cerebral amyloid angiopathy: a common cause of cerebral hemorrhage. Cur Med Chem. 2009;16:2498–513.CrossRef Pezzini A, Del Zotto E, Volonghi I, Giossi A, Costa P, Padovani A. Cerebral amyloid angiopathy: a common cause of cerebral hemorrhage. Cur Med Chem. 2009;16:2498–513.CrossRef
11.
Zurück zum Zitat Xiong L, Boulouis G, Charidimou A, Roongpiboonsopit D, Jessel MJ, Pasi M, Reijmer YD, Fotiadis P, Ayres A, Merrill E, Schwab K, Blacker D, Gurol ME, Greenberg SM, Viswanathan A. Dementia incidence and predictors in cerebral amyloid angiopathy patients without intracerebral hemorrhage. J Cereb Blood Flow Metab. 2017; doi:10.1177/0271678X17700435. Xiong L, Boulouis G, Charidimou A, Roongpiboonsopit D, Jessel MJ, Pasi M, Reijmer YD, Fotiadis P, Ayres A, Merrill E, Schwab K, Blacker D, Gurol ME, Greenberg SM, Viswanathan A. Dementia incidence and predictors in cerebral amyloid angiopathy patients without intracerebral hemorrhage. J Cereb Blood Flow Metab. 2017; doi:10.​1177/​0271678X17700435​.
12.
Zurück zum Zitat Vidoni ED, Yeh HW, Morris JK, Newell KL, Alqahtani A, Burns NC, Burns JM, Billinger SA. Cerebral β-amyloid angiopathy is associated with earlier dementia onset in Alzheimer's disease. Neurodegener Dis. 2016;16:218–24.PubMedPubMedCentralCrossRef Vidoni ED, Yeh HW, Morris JK, Newell KL, Alqahtani A, Burns NC, Burns JM, Billinger SA. Cerebral β-amyloid angiopathy is associated with earlier dementia onset in Alzheimer's disease. Neurodegener Dis. 2016;16:218–24.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Thal DR, Capetillo-Zarate E, Larionov S, Staufenbiel M, Zurbruegg S, Beckmann N. Capillary cerebral amyloid angiopathy is associated with vessel occlusion and cerebral blood flow disturbances. Neurobiol Aging. 2009;30:1936–48.PubMedCrossRef Thal DR, Capetillo-Zarate E, Larionov S, Staufenbiel M, Zurbruegg S, Beckmann N. Capillary cerebral amyloid angiopathy is associated with vessel occlusion and cerebral blood flow disturbances. Neurobiol Aging. 2009;30:1936–48.PubMedCrossRef
14.
Zurück zum Zitat Schrag M, Kirshner H. Neuropsychological effects of cerebral amyloid angiopathy. Curr Neurol Neurosci Rep. 2016;16:76.PubMedCrossRef Schrag M, Kirshner H. Neuropsychological effects of cerebral amyloid angiopathy. Curr Neurol Neurosci Rep. 2016;16:76.PubMedCrossRef
15.
Zurück zum Zitat Thanvi B, Robinson T. Sporadic cerebral amyloid angiopathy—an important cause of cerebral haemorrhage in older people. Age Ageing. 2006;35:565–71.PubMedCrossRef Thanvi B, Robinson T. Sporadic cerebral amyloid angiopathy—an important cause of cerebral haemorrhage in older people. Age Ageing. 2006;35:565–71.PubMedCrossRef
16.
Zurück zum Zitat Herzig MC, Nostrand WE, Jucker M. Mechanism of cerebral β-amyloid angiopathy: Murine and cellular models. Brain Pathol. 2006;16:40–54.PubMedCrossRef Herzig MC, Nostrand WE, Jucker M. Mechanism of cerebral β-amyloid angiopathy: Murine and cellular models. Brain Pathol. 2006;16:40–54.PubMedCrossRef
17.
Zurück zum Zitat Reijmer YD, Fotiadis P, Martinez-Ramirez S, Salat DH, Schultz A, Shoamanesh A, Ayres AM, Vashkevich A, Rosas D, Schwab K, Leemans A, Biessels GJ, Rosand J, Johnson KA, Viswanathan A, Gurol ME, Greenberg SM. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy. Brain. 2015;138:179–88.PubMedCrossRef Reijmer YD, Fotiadis P, Martinez-Ramirez S, Salat DH, Schultz A, Shoamanesh A, Ayres AM, Vashkevich A, Rosas D, Schwab K, Leemans A, Biessels GJ, Rosand J, Johnson KA, Viswanathan A, Gurol ME, Greenberg SM. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy. Brain. 2015;138:179–88.PubMedCrossRef
18.
Zurück zum Zitat Reijmer YD, van Veluw SJ, Greenberg SM. Ischemic brain injury in cerebral amyloid angiopathy. J Cerebral Blood Flow Metab. 2016;36:40–54.CrossRef Reijmer YD, van Veluw SJ, Greenberg SM. Ischemic brain injury in cerebral amyloid angiopathy. J Cerebral Blood Flow Metab. 2016;36:40–54.CrossRef
19.
Zurück zum Zitat Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9:7689–701.CrossRef Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9:7689–701.CrossRef
20.
Zurück zum Zitat Auriel E, Charidimou A, Gurol ME, Ni J, Van Etten ES, Martinez-Ramirez S, Boulouis G, Piazza F, DiFrancesco JC, Frosch MP, Pontes-Neto OV, Shoamanesh A, Reijmer Y, Vashkevich A, Ayres AM, Schwab KM, Viswanathan A, Greenberg SM. Validation of clinicoradiological criteria for the diagnosis of cerebral amyloid angiopathy–related inflammation. JAMA Neurol. 2016;73:197–202.PubMed Auriel E, Charidimou A, Gurol ME, Ni J, Van Etten ES, Martinez-Ramirez S, Boulouis G, Piazza F, DiFrancesco JC, Frosch MP, Pontes-Neto OV, Shoamanesh A, Reijmer Y, Vashkevich A, Ayres AM, Schwab KM, Viswanathan A, Greenberg SM. Validation of clinicoradiological criteria for the diagnosis of cerebral amyloid angiopathy–related inflammation. JAMA Neurol. 2016;73:197–202.PubMed
21.
Zurück zum Zitat Charidimou A, Pantoni L, Love S. The concept of sporadic cerebral small vessel disease: a road map on key definitions and current concepts. Intl J Stroke. 2016;11:6–18.CrossRef Charidimou A, Pantoni L, Love S. The concept of sporadic cerebral small vessel disease: a road map on key definitions and current concepts. Intl J Stroke. 2016;11:6–18.CrossRef
22.
Zurück zum Zitat Iikuni S, Ono M, Watanabe H, Matsumura K, Yoshimura M, Kimura H, Ishibashi-Ueda H, Okamoto Y, Ihara M, Saji H. Imaging of cerebral amyloid angiopathy with bivalent 99mTc-hydroxamamide complexes. Sci Rep. 2016;6:25990.PubMedPubMedCentralCrossRef Iikuni S, Ono M, Watanabe H, Matsumura K, Yoshimura M, Kimura H, Ishibashi-Ueda H, Okamoto Y, Ihara M, Saji H. Imaging of cerebral amyloid angiopathy with bivalent 99mTc-hydroxamamide complexes. Sci Rep. 2016;6:25990.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Cheng X, He P, Yao H, Dong Q, Li R, Shen Y. Occludin deficiency with BACE1 elevation in cerebral amyloid angiopathy. Neurology. 2014;82:1707–15.PubMedPubMedCentralCrossRef Cheng X, He P, Yao H, Dong Q, Li R, Shen Y. Occludin deficiency with BACE1 elevation in cerebral amyloid angiopathy. Neurology. 2014;82:1707–15.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Devraj K, Poznanovic S, Spahn C, Schwall G, Harter PN, Mittelbronn M, Antoniello K, Paganetti P, Muhs A, Heilemann M, Hawkins RA, Schrattenholz A, Liebner S. BACE-1 is expressed in the blood–brain barrier endothelium and is upregulated in a murine model of Alzheimer’s disease. J Cereb Blood Flow Metab. 2016;36:1281–94.PubMedCrossRef Devraj K, Poznanovic S, Spahn C, Schwall G, Harter PN, Mittelbronn M, Antoniello K, Paganetti P, Muhs A, Heilemann M, Hawkins RA, Schrattenholz A, Liebner S. BACE-1 is expressed in the blood–brain barrier endothelium and is upregulated in a murine model of Alzheimer’s disease. J Cereb Blood Flow Metab. 2016;36:1281–94.PubMedCrossRef
25.
Zurück zum Zitat Xue ZQ, He ZW, Yu JJ, Cai Y, Qiu WY, Pan A, Gai WP, Cai H, Luo XG, Ma C, Yan XX. Non-neuronal and neuronal BACE1 elevation in association with angiopathic and leptomeningeal β-amyloid deposition in the human brain. BMC Neurol. 2015;15:71.PubMedPubMedCentralCrossRef Xue ZQ, He ZW, Yu JJ, Cai Y, Qiu WY, Pan A, Gai WP, Cai H, Luo XG, Ma C, Yan XX. Non-neuronal and neuronal BACE1 elevation in association with angiopathic and leptomeningeal β-amyloid deposition in the human brain. BMC Neurol. 2015;15:71.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Beyreuther K, Dyrks T, Hilbich C, Mönning U, König G, Multhaup G, Pollwein P, Masters CL. Amyloid precursor protein (APP) and beta A4 amyloid in Alzheimer's disease and down syndrome. Prog Clin Biol Res. 1992;379:159–82.PubMed Beyreuther K, Dyrks T, Hilbich C, Mönning U, König G, Multhaup G, Pollwein P, Masters CL. Amyloid precursor protein (APP) and beta A4 amyloid in Alzheimer's disease and down syndrome. Prog Clin Biol Res. 1992;379:159–82.PubMed
27.
Zurück zum Zitat Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature. 1999;402:537–40.PubMedCrossRef Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature. 1999;402:537–40.PubMedCrossRef
28.
Zurück zum Zitat Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Müller-Hill B. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987;325:733–6.PubMedCrossRef Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Müller-Hill B. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987;325:733–6.PubMedCrossRef
29.
Zurück zum Zitat Bowen RL, Verdile G, Liu T, Parlow AF, Perry G, Smith MA, Martins RN, Atwood CS. Luteinizing hormone, a reproductive regulator that modulates the processing of amyloid-β precursor protein and amyloid-β deposition. J Biol Chem. 2004;279:20539–45.PubMedCrossRef Bowen RL, Verdile G, Liu T, Parlow AF, Perry G, Smith MA, Martins RN, Atwood CS. Luteinizing hormone, a reproductive regulator that modulates the processing of amyloid-β precursor protein and amyloid-β deposition. J Biol Chem. 2004;279:20539–45.PubMedCrossRef
30.
Zurück zum Zitat McCarthy RC, Park YH, Kosman DJ. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO Rep. 2014;15:809–15.PubMedPubMedCentralCrossRef McCarthy RC, Park YH, Kosman DJ. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO Rep. 2014;15:809–15.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Turner PR, O'Connor K, Tate WP, Abraham WC. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol. 2003;70:1–32.PubMedCrossRef Turner PR, O'Connor K, Tate WP, Abraham WC. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol. 2003;70:1–32.PubMedCrossRef
32.
Zurück zum Zitat Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R. APP processing and synaptic function. Neuron. 2003;37:925–37.PubMedCrossRef Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R. APP processing and synaptic function. Neuron. 2003;37:925–37.PubMedCrossRef
33.
Zurück zum Zitat Priller C, Bauer T, Mitteregger G, et al. Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci. 2006;26:7212–21.PubMedCrossRef Priller C, Bauer T, Mitteregger G, et al. Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci. 2006;26:7212–21.PubMedCrossRef
34.
Zurück zum Zitat Brunholz S, Sisodia S, Lorenzo A, Deyts C, Kins S, Morfini G. Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Exp Brain Res. 2012;217:353–64.PubMedCrossRef Brunholz S, Sisodia S, Lorenzo A, Deyts C, Kins S, Morfini G. Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Exp Brain Res. 2012;217:353–64.PubMedCrossRef
35.
Zurück zum Zitat Pardossi-Piquard R, Checler F. The physiology of the β-amyloid precursor protein intracellular domain AICD. J Neurochem. 2012;120:109–24.PubMedCrossRef Pardossi-Piquard R, Checler F. The physiology of the β-amyloid precursor protein intracellular domain AICD. J Neurochem. 2012;120:109–24.PubMedCrossRef
36.
Zurück zum Zitat Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin SG, Hsiao KK. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neurosci. 1999;2:271–6.PubMedCrossRef Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin SG, Hsiao KK. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neurosci. 1999;2:271–6.PubMedCrossRef
37.
Zurück zum Zitat Milward EA, Papadopoulos R, Fuller SJ, Moir RD, Small D, Beyreuther K, Masters CL. The amyloid protein precursor of Alzheimer's disease is a mediator of the effects of nerve growth factor on neurite outgrowth. Neuron. 1992;9:129–37.PubMedCrossRef Milward EA, Papadopoulos R, Fuller SJ, Moir RD, Small D, Beyreuther K, Masters CL. The amyloid protein precursor of Alzheimer's disease is a mediator of the effects of nerve growth factor on neurite outgrowth. Neuron. 1992;9:129–37.PubMedCrossRef
39.
Zurück zum Zitat Soriano S, Lu DC, Chandra S, Pietrzik CU, Koo EH. The amyloidogenic pathway of amyloid precursor protein (APP) is independent of its cleavage by caspases. J Biol Chem. 2001;276:29045–50.PubMedCrossRef Soriano S, Lu DC, Chandra S, Pietrzik CU, Koo EH. The amyloidogenic pathway of amyloid precursor protein (APP) is independent of its cleavage by caspases. J Biol Chem. 2001;276:29045–50.PubMedCrossRef
41.
Zurück zum Zitat Siklos M, BenAissa M, Thatcher GRJ. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B. 2015;5:506–19.PubMedPubMedCentralCrossRef Siklos M, BenAissa M, Thatcher GRJ. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B. 2015;5:506–19.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Kumar S, Cieplak P. CaspNeuroD: a knowledgebase of predicted caspase cleavage sites in human proteins related to neurodegenerative diseases. Database (Oxford). 2016;2016(pii):baw142.CrossRef Kumar S, Cieplak P. CaspNeuroD: a knowledgebase of predicted caspase cleavage sites in human proteins related to neurodegenerative diseases. Database (Oxford). 2016;2016(pii):baw142.CrossRef
43.
Zurück zum Zitat Schroeter EH, Ilagan MX, Brunkan AL, Hecimovic S, Li YM, Xu M, Lewis HD, Saxena MT, De Strooper B, Coonrod A, Tomita T, Iwatsubo T, Moore CL, Goate A, Wolfe MS, Shearman M, Kopan R. A presenilin dimer at the core of the γ-secretase enzyme: insights from parallel analysis of notch 1 and APP proteolysis. Proc Natl Acad Sci. 2003;100:13075–80.PubMedPubMedCentralCrossRef Schroeter EH, Ilagan MX, Brunkan AL, Hecimovic S, Li YM, Xu M, Lewis HD, Saxena MT, De Strooper B, Coonrod A, Tomita T, Iwatsubo T, Moore CL, Goate A, Wolfe MS, Shearman M, Kopan R. A presenilin dimer at the core of the γ-secretase enzyme: insights from parallel analysis of notch 1 and APP proteolysis. Proc Natl Acad Sci. 2003;100:13075–80.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Kaether C, Haass C, Steiner H. Assembly, trafficking and function of γ-secretase. Neurodegener Dis. 2006;3:275–83.PubMedCrossRef Kaether C, Haass C, Steiner H. Assembly, trafficking and function of γ-secretase. Neurodegener Dis. 2006;3:275–83.PubMedCrossRef
45.
Zurück zum Zitat Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ. γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2. Proc Natl Acad Sci U S A. 2003;100:6382–7.PubMedPubMedCentralCrossRef Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ. γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2. Proc Natl Acad Sci U S A. 2003;100:6382–7.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Zhang Z, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A, Yankner BA. Presenilins are required for γ-secretase cleavage of β-APP and transmembrane cleavage of notch-1. Nature Cell biol. 2000;2:463–5.PubMedCrossRef Zhang Z, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A, Yankner BA. Presenilins are required for γ-secretase cleavage of β-APP and transmembrane cleavage of notch-1. Nature Cell biol. 2000;2:463–5.PubMedCrossRef
47.
Zurück zum Zitat Li YM, Xu M, Lai MT, Huang Q, Castro JL, DiMuzio-Mower J, Harrison T, Lellis C, Nadin A, Neduvelil JG, Register RB, Sardana MK, Shearman MS, Smith AL, Shi XP, Yin KC, Shafer JA, Gardell SJ. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature. 2000;405:689–94.PubMedCrossRef Li YM, Xu M, Lai MT, Huang Q, Castro JL, DiMuzio-Mower J, Harrison T, Lellis C, Nadin A, Neduvelil JG, Register RB, Sardana MK, Shearman MS, Smith AL, Shi XP, Yin KC, Shafer JA, Gardell SJ. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature. 2000;405:689–94.PubMedCrossRef
48.
Zurück zum Zitat Hartmann T, Bieger SC, Brühl B, Tienari PJ, Ida N, Allsop D, Roberts GW, Masters CL, Dotti CG, Unsicker K, Beyreuther K. Distinct sites of intracellular production for Alzheimer's disease Aβ40/42 amyloid peptides. Nature Med. 1997;3:1016–20.PubMedCrossRef Hartmann T, Bieger SC, Brühl B, Tienari PJ, Ida N, Allsop D, Roberts GW, Masters CL, Dotti CG, Unsicker K, Beyreuther K. Distinct sites of intracellular production for Alzheimer's disease Aβ40/42 amyloid peptides. Nature Med. 1997;3:1016–20.PubMedCrossRef
49.
Zurück zum Zitat Willem M, Tahirovic S, Busche MA, Ovsepian SV, Chafai M, Kootar S, Hornburg D, Evans LD, Moore S, Daria A, Hampel H, Müller V, Giudici C, Nuscher B, Wenninger-Weinzierl A, Kremmer E, Heneka MT, Thal DR, Giedraitis V, Lannfelt L, Müller U, Livesey FJ, Meissner F, Herms J, Konnerth A, Marie H, Haass C. η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature. 2015;526:443–7.PubMedCrossRef Willem M, Tahirovic S, Busche MA, Ovsepian SV, Chafai M, Kootar S, Hornburg D, Evans LD, Moore S, Daria A, Hampel H, Müller V, Giudici C, Nuscher B, Wenninger-Weinzierl A, Kremmer E, Heneka MT, Thal DR, Giedraitis V, Lannfelt L, Müller U, Livesey FJ, Meissner F, Herms J, Konnerth A, Marie H, Haass C. η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature. 2015;526:443–7.PubMedCrossRef
50.
Zurück zum Zitat Deane R, Bell RD, Sagare A, Zlokovic BV. Clearance of amyloid-β peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS Neurol Disord Drug Targets. 2009;8:16–30.PubMedPubMedCentralCrossRef Deane R, Bell RD, Sagare A, Zlokovic BV. Clearance of amyloid-β peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS Neurol Disord Drug Targets. 2009;8:16–30.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Lee CYD, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transmission. 2010;117:949–60.CrossRef Lee CYD, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transmission. 2010;117:949–60.CrossRef
52.
Zurück zum Zitat Wildsmith KR, Holley M, Savage JC, Skerrett R, Landreth GE. Evidence for impaired amyloid β clearance in Alzheimer's disease. Alzheimers Res Ther. 2013;5:33.PubMedPubMedCentralCrossRef Wildsmith KR, Holley M, Savage JC, Skerrett R, Landreth GE. Evidence for impaired amyloid β clearance in Alzheimer's disease. Alzheimers Res Ther. 2013;5:33.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Bakker EN, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AW, Weller RO, Carare RO. Lymphatic clearance of the brain: Perivascular, Paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36:181–94.PubMedPubMedCentralCrossRef Bakker EN, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AW, Weller RO, Carare RO. Lymphatic clearance of the brain: Perivascular, Paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36:181–94.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Vassar R, Kovacs DM, Yan R, Wong PC. The β-secretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential. J Neurosci. 2009;29:12787–94.PubMedPubMedCentralCrossRef Vassar R, Kovacs DM, Yan R, Wong PC. The β-secretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential. J Neurosci. 2009;29:12787–94.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Yan XX, Ma C, Gai WP, Cai H, Luo XG. Can BACE1 inhibition mitigate early axonal pathology in neurological diseases? J Alzheimers Dis. 2014;38:705–18.PubMedPubMedCentral Yan XX, Ma C, Gai WP, Cai H, Luo XG. Can BACE1 inhibition mitigate early axonal pathology in neurological diseases? J Alzheimers Dis. 2014;38:705–18.PubMedPubMedCentral
56.
Zurück zum Zitat Card JP, Meade RP, Davis LG. Immunocytochemical localization of the precursor protein for β-amyloid in the rat central nervous system. Neuron. 1988;1:835–46.PubMedCrossRef Card JP, Meade RP, Davis LG. Immunocytochemical localization of the precursor protein for β-amyloid in the rat central nervous system. Neuron. 1988;1:835–46.PubMedCrossRef
57.
Zurück zum Zitat Kim KS, Wegiel J, Sapienza V, Chen J, Hong H, Wisniewski HM. Immunoreactivity of presenilin-1 in human, rat and mouse brain. Brain Res. 1997;757:159–63.PubMedCrossRef Kim KS, Wegiel J, Sapienza V, Chen J, Hong H, Wisniewski HM. Immunoreactivity of presenilin-1 in human, rat and mouse brain. Brain Res. 1997;757:159–63.PubMedCrossRef
58.
Zurück zum Zitat Yan XX, Li T, Rominger CM, Prakash SR, Wong PC, Olson RE, Zaczek R, Li YW. Binding sites of γ-secretase inhibitors in rodent brain: distribution, postnatal development, and effect of deafferentation. J Neurosci. 2004;24:2942–52.PubMedCrossRef Yan XX, Li T, Rominger CM, Prakash SR, Wong PC, Olson RE, Zaczek R, Li YW. Binding sites of γ-secretase inhibitors in rodent brain: distribution, postnatal development, and effect of deafferentation. J Neurosci. 2004;24:2942–52.PubMedCrossRef
59.
Zurück zum Zitat Leuba G, Wernli G, Vernay A, Kraftsik R, Mohajeri MH, Saini KD. Neuronal and nonneuronal quantitative BACE immunocytochemical expression in the entorhinohippocampal and frontal regions in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2005;19:171–83.PubMedCrossRef Leuba G, Wernli G, Vernay A, Kraftsik R, Mohajeri MH, Saini KD. Neuronal and nonneuronal quantitative BACE immunocytochemical expression in the entorhinohippocampal and frontal regions in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2005;19:171–83.PubMedCrossRef
60.
Zurück zum Zitat Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang HC, Xu G, Koliatsos VE, Borchelt DR, Price DL, Lee HK, Wong PC. BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci. 2005;25:11693–709.PubMedPubMedCentralCrossRef Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang HC, Xu G, Koliatsos VE, Borchelt DR, Price DL, Lee HK, Wong PC. BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci. 2005;25:11693–709.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Yan XX, Xiong K, Luo XG, Struble RG, Clough RW. Beta-Secretase expression in normal and functionally deprived rat olfactory bulbs: inverse correlation with oxidative metabolic activity. J Comp Neurol. 2007;501:52–69.PubMedCrossRef Yan XX, Xiong K, Luo XG, Struble RG, Clough RW. Beta-Secretase expression in normal and functionally deprived rat olfactory bulbs: inverse correlation with oxidative metabolic activity. J Comp Neurol. 2007;501:52–69.PubMedCrossRef
62.
Zurück zum Zitat Zhang XM, Cai Y, Xiong K, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Yan XX. Beta-Secretase-1 elevation in transgenic mouse models of Alzheimer’s disease is associated with synaptic/axonal pathology and amyloidogenesis: implications for neuritic plaque development. Eur J Neurosci. 2009;30:2271–83.PubMedPubMedCentralCrossRef Zhang XM, Cai Y, Xiong K, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Yan XX. Beta-Secretase-1 elevation in transgenic mouse models of Alzheimer’s disease is associated with synaptic/axonal pathology and amyloidogenesis: implications for neuritic plaque development. Eur J Neurosci. 2009;30:2271–83.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Rajapaksha TW, Eimer WA, Bozza TC, Vassar R. The Alzheimer's β-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb. Mol Neurodegener. 2011;6:88.PubMedPubMedCentralCrossRef Rajapaksha TW, Eimer WA, Bozza TC, Vassar R. The Alzheimer's β-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb. Mol Neurodegener. 2011;6:88.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Cao L, Rickenbacher GT, Rodriguez S, Moulia TW, Albers MW. The precision of axon targeting of mouse olfactory sensory neurons requires the BACE1 protease. Sci Rep. 2012;2:231.PubMedPubMedCentralCrossRef Cao L, Rickenbacher GT, Rodriguez S, Moulia TW, Albers MW. The precision of axon targeting of mouse olfactory sensory neurons requires the BACE1 protease. Sci Rep. 2012;2:231.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Sheng JG, Price DL, Koliatsos VE. The β-amyloid-related proteins presenilin 1 and BACE1 are axonally transported to nerve terminals in the brain. Exp Neurol. 2003;184:1053–7.PubMedCrossRef Sheng JG, Price DL, Koliatsos VE. The β-amyloid-related proteins presenilin 1 and BACE1 are axonally transported to nerve terminals in the brain. Exp Neurol. 2003;184:1053–7.PubMedCrossRef
66.
Zurück zum Zitat Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R. The Alzheimer’s β-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol. 2013;126:329–52.PubMedPubMedCentralCrossRef Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R. The Alzheimer’s β-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol. 2013;126:329–52.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Buggia-Prévot V, Fernandez CG, Riordan S, Vetrivel KS, Roseman J, Waters J, Bindokas VP, Vassar R, Thinakaran G. Axonal BACE1 dynamics and targeting in hippocampal neurons: a role for Rab11 GTPase. Mol Neurodegener. 2014;9:1.PubMedPubMedCentralCrossRef Buggia-Prévot V, Fernandez CG, Riordan S, Vetrivel KS, Roseman J, Waters J, Bindokas VP, Vassar R, Thinakaran G. Axonal BACE1 dynamics and targeting in hippocampal neurons: a role for Rab11 GTPase. Mol Neurodegener. 2014;9:1.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Del Prete D, Lombino F, Liu X, D'Adamio L. APP is cleaved by Bace1 in pre-synaptic vesicles and establishes a pre-synaptic interactome, via its intracellular domain, with molecular complexes that regulate pre-synaptic vesicles functions. PLoS One. 2014;9:e108576.PubMedPubMedCentralCrossRef Del Prete D, Lombino F, Liu X, D'Adamio L. APP is cleaved by Bace1 in pre-synaptic vesicles and establishes a pre-synaptic interactome, via its intracellular domain, with molecular complexes that regulate pre-synaptic vesicles functions. PLoS One. 2014;9:e108576.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Lundgren JL, Ahmed S, Schedin-Weiss S, Gouras GK, Winblad B, Tjernberg LO, Frykman S. ADAM10 and BACE1 are localized to synaptic vesicles. J Neurochem. 2015;135:606–15.PubMedCrossRef Lundgren JL, Ahmed S, Schedin-Weiss S, Gouras GK, Winblad B, Tjernberg LO, Frykman S. ADAM10 and BACE1 are localized to synaptic vesicles. J Neurochem. 2015;135:606–15.PubMedCrossRef
70.
Zurück zum Zitat Pliássova A, Lopes JP, Lemos C, Oliveira CR, Cunha RA, Agostinho P. The association of amyloid-β protein precursor with α-and β-secretases in mouse cerebral cortex synapses is altered in early Alzheimer’s disease. Mol Neurobiol. 2016;53:5710–21.PubMedCrossRef Pliássova A, Lopes JP, Lemos C, Oliveira CR, Cunha RA, Agostinho P. The association of amyloid-β protein precursor with α-and β-secretases in mouse cerebral cortex synapses is altered in early Alzheimer’s disease. Mol Neurobiol. 2016;53:5710–21.PubMedCrossRef
71.
Zurück zum Zitat Ye X, Feng T, Tammineni P, Chang Q, Jeong YY, Margolis DJ, Cai H, Kusnecov A, Cai Q. Regulation of synaptic amyloid-β generation through BACE1 retrograde transport in a mouse model of Alzheimer's disease. J Neurosci. 2017;37:2639–55.PubMedCrossRef Ye X, Feng T, Tammineni P, Chang Q, Jeong YY, Margolis DJ, Cai H, Kusnecov A, Cai Q. Regulation of synaptic amyloid-β generation through BACE1 retrograde transport in a mouse model of Alzheimer's disease. J Neurosci. 2017;37:2639–55.PubMedCrossRef
72.
Zurück zum Zitat Kitazume S, Tachida Y, Kato M, Yamaguchi Y, Honda T, Hashimoto Y, Wada Y, Saito T, Iwata N, Saido T, Taniguchi N. Brain endothelial cells produce amyloid β from amyloid precursor protein 770 and preferentially secrete the O-glycosylated form. J Biol Chem. 2010;285:40097–400103.PubMedPubMedCentralCrossRef Kitazume S, Tachida Y, Kato M, Yamaguchi Y, Honda T, Hashimoto Y, Wada Y, Saito T, Iwata N, Saido T, Taniguchi N. Brain endothelial cells produce amyloid β from amyloid precursor protein 770 and preferentially secrete the O-glycosylated form. J Biol Chem. 2010;285:40097–400103.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Simons ER, Marshall DC, Long HJ, Otto K, Billingslea A, Tibbles H, Wells J, Eisenhauer P, Fine RE, Cribbs DH, Davies TA, Abraham CR. Blood brain barrier endothelial cells express candidate amyloid precursor protein-cleaving secretases. Amyloid. 1998;5:153–62.PubMedCrossRef Simons ER, Marshall DC, Long HJ, Otto K, Billingslea A, Tibbles H, Wells J, Eisenhauer P, Fine RE, Cribbs DH, Davies TA, Abraham CR. Blood brain barrier endothelial cells express candidate amyloid precursor protein-cleaving secretases. Amyloid. 1998;5:153–62.PubMedCrossRef
74.
Zurück zum Zitat Austin SA, Santhanam AV, Katusic ZS. Endothelial nitric oxide modulates expression and processing of amyloid precursor protein. Circ Res. 2010;107:1498–502.PubMedPubMedCentralCrossRef Austin SA, Santhanam AV, Katusic ZS. Endothelial nitric oxide modulates expression and processing of amyloid precursor protein. Circ Res. 2010;107:1498–502.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Ma JF, Wang HM, Li QY, Zhang Y, Pan J, Qiang Q, Xin XY, Tang HD, Ding JQ, Chen SD. Starvation triggers Aß42 generation from human umbilical vascular endothelial cells. FEBS Lett. 2010;584:3101–6.PubMedCrossRef Ma JF, Wang HM, Li QY, Zhang Y, Pan J, Qiang Q, Xin XY, Tang HD, Ding JQ, Chen SD. Starvation triggers Aß42 generation from human umbilical vascular endothelial cells. FEBS Lett. 2010;584:3101–6.PubMedCrossRef
76.
Zurück zum Zitat Bulbarelli A, Lonati E, Brambilla A, Orlando A, Cazzaniga E, Piazza F, Ferrarese C, Masserini M, Sancini G. Aβ42 production in brain capillary endothelial cells after oxygen and glucose deprivation. Mol Cell Neurosci. 2012;49:415–22.PubMedCrossRef Bulbarelli A, Lonati E, Brambilla A, Orlando A, Cazzaniga E, Piazza F, Ferrarese C, Masserini M, Sancini G. Aβ42 production in brain capillary endothelial cells after oxygen and glucose deprivation. Mol Cell Neurosci. 2012;49:415–22.PubMedCrossRef
77.
Zurück zum Zitat Deng X, Zhang J, Liu Y, Chen L, Yu C. TNF-α regulates the proteolytic degradation of ST6Gal-1 and endothelial cell-cell junctions through upregulating expression of BACE1. Sci Rep. 2017;7:40256.PubMedPubMedCentralCrossRef Deng X, Zhang J, Liu Y, Chen L, Yu C. TNF-α regulates the proteolytic degradation of ST6Gal-1 and endothelial cell-cell junctions through upregulating expression of BACE1. Sci Rep. 2017;7:40256.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Coma M, Guix FX, Ill-Raga G, Uribesalgo I, Alameda F, Valverde MA, Muñoz FJ. Oxidative stress triggers the amyloidogenic pathway in human vascular smooth muscle cells. Neurobiol Aging. 2008;29:969–80.PubMedCrossRef Coma M, Guix FX, Ill-Raga G, Uribesalgo I, Alameda F, Valverde MA, Muñoz FJ. Oxidative stress triggers the amyloidogenic pathway in human vascular smooth muscle cells. Neurobiol Aging. 2008;29:969–80.PubMedCrossRef
79.
Zurück zum Zitat Frackowiak J, Potempska A, Mazur-Kolecka B. Formation of amyloid-β oligomers in brain vascular smooth muscle cells transiently exposed to iron-induced oxidative stress. Acta Neuropathol. 2009;117:557–67.PubMedCrossRef Frackowiak J, Potempska A, Mazur-Kolecka B. Formation of amyloid-β oligomers in brain vascular smooth muscle cells transiently exposed to iron-induced oxidative stress. Acta Neuropathol. 2009;117:557–67.PubMedCrossRef
80.
Zurück zum Zitat Cai Y, Xiong K, Zhang XM, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Chu Y, Kordower JH, Yan XX. β-Secretase-1 elevation in aged monkey and Alzheimer’s disease human cerebral cortex occurs around the vasculature in partnership with multisystem axon terminal pathogenesis and β-amyloid accumulation. Eur J Neurosci. 2010;32:1223–38.PubMedPubMedCentralCrossRef Cai Y, Xiong K, Zhang XM, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Chu Y, Kordower JH, Yan XX. β-Secretase-1 elevation in aged monkey and Alzheimer’s disease human cerebral cortex occurs around the vasculature in partnership with multisystem axon terminal pathogenesis and β-amyloid accumulation. Eur J Neurosci. 2010;32:1223–38.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Tokuda T, Ikeda S, Maruyama K, Yanagisawa N, Ito N. Spinal cord vascular and leptomeningeal amyloid β-protein deposition in a case with cerebral amyloid angiopathy. Acta Neuropathol. 1992;84:207–10.PubMedCrossRef Tokuda T, Ikeda S, Maruyama K, Yanagisawa N, Ito N. Spinal cord vascular and leptomeningeal amyloid β-protein deposition in a case with cerebral amyloid angiopathy. Acta Neuropathol. 1992;84:207–10.PubMedCrossRef
82.
Zurück zum Zitat Galasko D. Searching for Neurodegeneration in the blood of patients with Alzheimer disease. JAMA Neurol. 2017;74:510–1.PubMedCrossRef Galasko D. Searching for Neurodegeneration in the blood of patients with Alzheimer disease. JAMA Neurol. 2017;74:510–1.PubMedCrossRef
83.
Zurück zum Zitat Mendel T, Wierzba-Bobrowicz T, Stępień T, Szpak GM. β-amyloid deposits in veins in patients with cerebral amyloid angiopathy and intracerebral haemorrhage. Folia Neuropathol. 2013;51:120–6.PubMedCrossRef Mendel T, Wierzba-Bobrowicz T, Stępień T, Szpak GM. β-amyloid deposits in veins in patients with cerebral amyloid angiopathy and intracerebral haemorrhage. Folia Neuropathol. 2013;51:120–6.PubMedCrossRef
84.
Zurück zum Zitat Thal DR, Ghebremedhin E, Rüb U, Yamaguchi H, Del Tredici K, Braak H. Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol. 2002;61:282–93.PubMedCrossRef Thal DR, Ghebremedhin E, Rüb U, Yamaguchi H, Del Tredici K, Braak H. Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol. 2002;61:282–93.PubMedCrossRef
85.
Zurück zum Zitat Thal DR, Rüb U, Orantes M, Braak H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–800.PubMedCrossRef Thal DR, Rüb U, Orantes M, Braak H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–800.PubMedCrossRef
86.
Zurück zum Zitat Mendel TA, Wierzba-Bobrowicz T, Lewandowska E, Stępień T, Szpak GM. The development of cerebral amyloid angiopathy in cerebral vessels. A review with illustrations based upon own investigated post mortem cases. Pol J Pathol. 2013;64:260–7.PubMedCrossRef Mendel TA, Wierzba-Bobrowicz T, Lewandowska E, Stępień T, Szpak GM. The development of cerebral amyloid angiopathy in cerebral vessels. A review with illustrations based upon own investigated post mortem cases. Pol J Pathol. 2013;64:260–7.PubMedCrossRef
87.
Zurück zum Zitat Attems J. Sporadic cerebral amyloid angiopathy: pathology, clinical implications, and possible pathomechanisms. Acta Neuropathol. 2005;110:345–59.PubMedCrossRef Attems J. Sporadic cerebral amyloid angiopathy: pathology, clinical implications, and possible pathomechanisms. Acta Neuropathol. 2005;110:345–59.PubMedCrossRef
88.
Zurück zum Zitat Oshima K, Uchikado H, Dickson DW. Perivascular neuritic dystrophy associated with cerebral amyloid angiopathy in Alzheimer’s disease. Int J Clin Exp Pathol. 2008;1:403–8.PubMedPubMedCentral Oshima K, Uchikado H, Dickson DW. Perivascular neuritic dystrophy associated with cerebral amyloid angiopathy in Alzheimer’s disease. Int J Clin Exp Pathol. 2008;1:403–8.PubMedPubMedCentral
89.
Zurück zum Zitat Richard E, Carrano A, Hoozemans JJ, van Horssen J, van Haastert ES, Eurelings LS, de Vries HE, Thal DR, Eikelenboom P, van Gool WA, Rozemuller AJ. Characteristics of dyshoric capillary cerebral amyloid angiopathy. J Neuropathol Exp Neurol. 2010;69:1158–67.PubMedCrossRef Richard E, Carrano A, Hoozemans JJ, van Horssen J, van Haastert ES, Eurelings LS, de Vries HE, Thal DR, Eikelenboom P, van Gool WA, Rozemuller AJ. Characteristics of dyshoric capillary cerebral amyloid angiopathy. J Neuropathol Exp Neurol. 2010;69:1158–67.PubMedCrossRef
90.
Zurück zum Zitat Hardy JA, Gerald HA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992;256:5054.CrossRef Hardy JA, Gerald HA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992;256:5054.CrossRef
91.
Zurück zum Zitat Pflanzner TR, Kuhlmann CU, Pietrzik C. Blood-brain-barrier models for the investigation of transporter-and receptor-mediated amyloid-β clearance in Alzheimer's disease. Curr Alzheimer Res. 2010;7:578–90.PubMedCrossRef Pflanzner TR, Kuhlmann CU, Pietrzik C. Blood-brain-barrier models for the investigation of transporter-and receptor-mediated amyloid-β clearance in Alzheimer's disease. Curr Alzheimer Res. 2010;7:578–90.PubMedCrossRef
92.
Zurück zum Zitat Silverberg GD, Messier AA, Miller MC, Machan JT, Majmudar SS, Stopa EG, Donahue JE, Johanson CE. Amyloid efflux transporter expression at the blood-brain barrier declines in normal aging. J Neuropathol Exp Neurol. 2010;69:1034–43.PubMedCrossRef Silverberg GD, Messier AA, Miller MC, Machan JT, Majmudar SS, Stopa EG, Donahue JE, Johanson CE. Amyloid efflux transporter expression at the blood-brain barrier declines in normal aging. J Neuropathol Exp Neurol. 2010;69:1034–43.PubMedCrossRef
93.
Zurück zum Zitat Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, Johanson CE, Silverberg GD. Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent. Fluids Barriers CNS. 2011;8:21.PubMedPubMedCentralCrossRef Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, Johanson CE, Silverberg GD. Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent. Fluids Barriers CNS. 2011;8:21.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Zhang Y, Lee DHS. Sink hypothesis and therapeutic strategies for attenuating Aβ levels. Neuroscientist. 2011;17:163–73.PubMedCrossRef Zhang Y, Lee DHS. Sink hypothesis and therapeutic strategies for attenuating Aβ levels. Neuroscientist. 2011;17:163–73.PubMedCrossRef
95.
Zurück zum Zitat Padovani A, Pastorino L, Borroni B, Colciaghi F, Rozzini L, Monastero R, Perez J, Pettenati C, Mussi M, Parrinello G, Cottini E, Lenzi GL, Trabucchi M, Cattabeni F, Di Luca M. Amyloid precursor protein in platelets: a peripheral marker for the diagnosis of sporadic AD. Neurology. 2001;57:2243–8.PubMedCrossRef Padovani A, Pastorino L, Borroni B, Colciaghi F, Rozzini L, Monastero R, Perez J, Pettenati C, Mussi M, Parrinello G, Cottini E, Lenzi GL, Trabucchi M, Cattabeni F, Di Luca M. Amyloid precursor protein in platelets: a peripheral marker for the diagnosis of sporadic AD. Neurology. 2001;57:2243–8.PubMedCrossRef
96.
Zurück zum Zitat Casoli T, Di Stefano G, Giorgetti B, Grossi Y, Balietti M, Fattoretti P, Bertoni-Freddari C. Release of beta-amyloid from high-density platelets: implications for Alzheimer's disease pathology. Ann N Y Acad Sci. 2007;1096:170–8.PubMedCrossRef Casoli T, Di Stefano G, Giorgetti B, Grossi Y, Balietti M, Fattoretti P, Bertoni-Freddari C. Release of beta-amyloid from high-density platelets: implications for Alzheimer's disease pathology. Ann N Y Acad Sci. 2007;1096:170–8.PubMedCrossRef
97.
Zurück zum Zitat Jelic V, Hagman G, Yamamoto NG, Teranishi Y, Nishimura T, Winblad B, Pavlov PF. Abnormal platelet amyloid-β protein precursor (AβPP) metabolism in Alzheimer's disease: identification and characterization of a new AβPP isoform as potential biomarker. J Alzheimers Dis. 2013;35:285–95.PubMed Jelic V, Hagman G, Yamamoto NG, Teranishi Y, Nishimura T, Winblad B, Pavlov PF. Abnormal platelet amyloid-β protein precursor (AβPP) metabolism in Alzheimer's disease: identification and characterization of a new AβPP isoform as potential biomarker. J Alzheimers Dis. 2013;35:285–95.PubMed
98.
Zurück zum Zitat Henderson SJ, Andersson C, Narwal R, Janson J, Goldschmidt TJ, Appelkvist P, Bogstedt A, Steffen AC, Haupts U, Tebbe J, Freskgård PO, Jermutus L, Burrell M, Fowler SB, Webster CI. Sustained peripheral depletion of amyloid-β with a novel form of neprilysin does not affect central levels of amyloid-β. Brain. 2014;137:553–64.PubMedCrossRef Henderson SJ, Andersson C, Narwal R, Janson J, Goldschmidt TJ, Appelkvist P, Bogstedt A, Steffen AC, Haupts U, Tebbe J, Freskgård PO, Jermutus L, Burrell M, Fowler SB, Webster CI. Sustained peripheral depletion of amyloid-β with a novel form of neprilysin does not affect central levels of amyloid-β. Brain. 2014;137:553–64.PubMedCrossRef
99.
Zurück zum Zitat Georgievska B, Gustavsson S, Lundkvist J, Neelissen J, Eketjäll S, Ramberg V, Bueters T, Agerman K, Juréus A, Svensson S, Berg S, Fälting J, Lendahl U. Revisiting the peripheral sink hypothesis: inhibiting BACE1 activity in the periphery does not alter β-amyloid levels in the CNS. J Neurochem. 2015;132:477–86.PubMedCrossRef Georgievska B, Gustavsson S, Lundkvist J, Neelissen J, Eketjäll S, Ramberg V, Bueters T, Agerman K, Juréus A, Svensson S, Berg S, Fälting J, Lendahl U. Revisiting the peripheral sink hypothesis: inhibiting BACE1 activity in the periphery does not alter β-amyloid levels in the CNS. J Neurochem. 2015;132:477–86.PubMedCrossRef
100.
Zurück zum Zitat Stone JA, Parker E. Is the peripheral sink hypothesis physiologically feasible? Evidence from model-based assessment of the amyloid pathway. Alzheimer’s Dis Dem. 2016;12:443.CrossRef Stone JA, Parker E. Is the peripheral sink hypothesis physiologically feasible? Evidence from model-based assessment of the amyloid pathway. Alzheimer’s Dis Dem. 2016;12:443.CrossRef
101.
Zurück zum Zitat Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, Vandersteen A, Segers-Nolten I, Van Der Werf K, Subramaniam V, Braeken D, Callewaert G, Bartic C, D'Hooge R, Martins IC, Rousseau F, Schymkowitz J, De Strooper B. Neurotoxicity of Alzheimer's disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J. 2010;29:3408–20.PubMedPubMedCentralCrossRef Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, Vandersteen A, Segers-Nolten I, Van Der Werf K, Subramaniam V, Braeken D, Callewaert G, Bartic C, D'Hooge R, Martins IC, Rousseau F, Schymkowitz J, De Strooper B. Neurotoxicity of Alzheimer's disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J. 2010;29:3408–20.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Schoonenboom NS, Mulder C, Van Kamp GJ, Mehta SP, Scheltens P, Blankenstein MA, Mehta PD. Amyloid beta 38, 40, and 42 species in cerebrospinal fluid: more of the same? Ann Neurol. 2005;58:139–42.PubMedCrossRef Schoonenboom NS, Mulder C, Van Kamp GJ, Mehta SP, Scheltens P, Blankenstein MA, Mehta PD. Amyloid beta 38, 40, and 42 species in cerebrospinal fluid: more of the same? Ann Neurol. 2005;58:139–42.PubMedCrossRef
103.
Zurück zum Zitat Beaufils E, Dufour-Rainfray D, Hommet C, Brault F, Cottier JP, Ribeiro MJ, Mondon K, Guilloteau D. Confirmation of the amyloidogenic process in posterior cortical atrophy: value of the Aβ42/Aβ40 ratio. J Alzheimers Dis. 2013;33:775–80.PubMed Beaufils E, Dufour-Rainfray D, Hommet C, Brault F, Cottier JP, Ribeiro MJ, Mondon K, Guilloteau D. Confirmation of the amyloidogenic process in posterior cortical atrophy: value of the Aβ42/Aβ40 ratio. J Alzheimers Dis. 2013;33:775–80.PubMed
104.
Zurück zum Zitat Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis. 2013;33:S67–78.PubMedCrossRef Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis. 2013;33:S67–78.PubMedCrossRef
105.
Zurück zum Zitat Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci. 2010;11:155–9.PubMed Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci. 2010;11:155–9.PubMed
107.
Zurück zum Zitat Stopschinski BE, Diamond MI. The prion model for progression and diversity of neurodegenerative diseases. Lancet Neurol. 2017;16:323–32.PubMedCrossRef Stopschinski BE, Diamond MI. The prion model for progression and diversity of neurodegenerative diseases. Lancet Neurol. 2017;16:323–32.PubMedCrossRef
108.
Zurück zum Zitat Fukumoto H, Cheung BS, Hyman BT, Irizarry MC. Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol. 2002;59:1381–9.PubMedCrossRef Fukumoto H, Cheung BS, Hyman BT, Irizarry MC. Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol. 2002;59:1381–9.PubMedCrossRef
109.
Zurück zum Zitat Holsinger RM, McLean CA, Beyreuther K, Masters CL, Evin G. Increased expression of the amyloid precursor beta-secretase in Alzheimer's disease. Ann Neurol. 2002;51:783–6.PubMedCrossRef Holsinger RM, McLean CA, Beyreuther K, Masters CL, Evin G. Increased expression of the amyloid precursor beta-secretase in Alzheimer's disease. Ann Neurol. 2002;51:783–6.PubMedCrossRef
110.
Zurück zum Zitat Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R, Beach T, Sue L, Sabbagh M, Cai H, Wong P, Price D, Shen Y. Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer's disease patients. Proc Natl Acad Sci U S A. 2004;101:3632–7.PubMedPubMedCentralCrossRef Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R, Beach T, Sue L, Sabbagh M, Cai H, Wong P, Price D, Shen Y. Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer's disease patients. Proc Natl Acad Sci U S A. 2004;101:3632–7.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, Beach T, Sue L, Wong P, Price D, Li R, Shen Y. Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med. 2003;9:3–4.PubMedCrossRef Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, Beach T, Sue L, Wong P, Price D, Li R, Shen Y. Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med. 2003;9:3–4.PubMedCrossRef
112.
Zurück zum Zitat Miners JS, van Helmond Z, Kehoe PG, Love S. Changes with age in the activities of beta-secretase and the Abeta-degrading enzymes neprilysin, insulin-degrading enzyme and angiotensin-converting enzyme. Brain Pathol. 2010;20:794–802.PubMedCrossRef Miners JS, van Helmond Z, Kehoe PG, Love S. Changes with age in the activities of beta-secretase and the Abeta-degrading enzymes neprilysin, insulin-degrading enzyme and angiotensin-converting enzyme. Brain Pathol. 2010;20:794–802.PubMedCrossRef
113.
Zurück zum Zitat Zhao J, Fu Y, Yasvoina M, Shao P, Hitt B, O'Connor T, Logan S, Maus E, Citron M, Berry R, Binder L, Vassar R. β-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer's disease pathogenesis. J Neurosci. 2007;27:3639–49.PubMedCrossRef Zhao J, Fu Y, Yasvoina M, Shao P, Hitt B, O'Connor T, Logan S, Maus E, Citron M, Berry R, Binder L, Vassar R. β-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer's disease pathogenesis. J Neurosci. 2007;27:3639–49.PubMedCrossRef
114.
Zurück zum Zitat Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, De Castro V, Jimenez S, Ruano D, Vizuete M, Davila JC, Garcia-Verdugo JM, Jimenez AJ, Vitorica J, Gutierrez A. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathol. 2012;123:53–70.PubMedCrossRef Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, De Castro V, Jimenez S, Ruano D, Vizuete M, Davila JC, Garcia-Verdugo JM, Jimenez AJ, Vitorica J, Gutierrez A. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathol. 2012;123:53–70.PubMedCrossRef
115.
Zurück zum Zitat Li JM, Xue ZQ, Deng SH, Luo XG, Patrylo PR, Rose GW, Cai H, Cai Y, Yan XX. Amyloid plaque pathogenesis in 5XFAD mouse spinal cord: retrograde transneuronal modulation after peripheral nerve injury. Neurotox Res. 2013;24:1–14.PubMedCrossRef Li JM, Xue ZQ, Deng SH, Luo XG, Patrylo PR, Rose GW, Cai H, Cai Y, Yan XX. Amyloid plaque pathogenesis in 5XFAD mouse spinal cord: retrograde transneuronal modulation after peripheral nerve injury. Neurotox Res. 2013;24:1–14.PubMedCrossRef
116.
Zurück zum Zitat Sadleir KR, Kandalepas PC, Buggia-Prévot V, Nicholson DA, Thinakaran G, Vassar R. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer’s disease. Acta Neuropathol. 2016;132:235–56.PubMedPubMedCentralCrossRef Sadleir KR, Kandalepas PC, Buggia-Prévot V, Nicholson DA, Thinakaran G, Vassar R. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer’s disease. Acta Neuropathol. 2016;132:235–56.PubMedPubMedCentralCrossRef
117.
118.
Zurück zum Zitat Omalu BI, Mancuso JA, Cho P, Wecht CH. Diagnosis of Alzheimer's disease in an exhumed decomposed brain after twenty months of burial in a deep grave. J Forensic Sci. 2005;50:1453–8.PubMedCrossRef Omalu BI, Mancuso JA, Cho P, Wecht CH. Diagnosis of Alzheimer's disease in an exhumed decomposed brain after twenty months of burial in a deep grave. J Forensic Sci. 2005;50:1453–8.PubMedCrossRef
119.
Zurück zum Zitat Gelpi E, Preusser M, Bauer G, Budka H. Autopsy at 2 months after death: brain is satisfactorily preserved for neuropathology. Forensic Sci Int. 2007;168:177–82.PubMedCrossRef Gelpi E, Preusser M, Bauer G, Budka H. Autopsy at 2 months after death: brain is satisfactorily preserved for neuropathology. Forensic Sci Int. 2007;168:177–82.PubMedCrossRef
120.
Zurück zum Zitat Blazquez-Llorca L, Valero-Freitag S, Rodrigues EF, Merchán-Pérez Á, Rodríguez JR, Dorostkar MM, DeFelipe J, Herms J. High plasticity of axonal pathology in Alzheimer's disease mouse models. Acta Neuropathol Commun. 2017;5:14.PubMedPubMedCentralCrossRef Blazquez-Llorca L, Valero-Freitag S, Rodrigues EF, Merchán-Pérez Á, Rodríguez JR, Dorostkar MM, DeFelipe J, Herms J. High plasticity of axonal pathology in Alzheimer's disease mouse models. Acta Neuropathol Commun. 2017;5:14.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Adalbert R, Nogradi A, Babetto E, Janeckova L, Walker SA, Kerschensteiner M, Misgeld T, Coleman MP. Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies. Brain. 2009;132:402–16.PubMedCrossRef Adalbert R, Nogradi A, Babetto E, Janeckova L, Walker SA, Kerschensteiner M, Misgeld T, Coleman MP. Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies. Brain. 2009;132:402–16.PubMedCrossRef
122.
Zurück zum Zitat Dickson TC, Vickers JC. The morphological phenotype of β-amyloid plaques and associated neuritic changes in Alzheimer’s disease. Neurosci. 2001;105:99–107.CrossRef Dickson TC, Vickers JC. The morphological phenotype of β-amyloid plaques and associated neuritic changes in Alzheimer’s disease. Neurosci. 2001;105:99–107.CrossRef
123.
Zurück zum Zitat Duyckaerts C, Delatour B, Potier MC. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 2009;118:5–36.PubMedCrossRef Duyckaerts C, Delatour B, Potier MC. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 2009;118:5–36.PubMedCrossRef
124.
Zurück zum Zitat Campbell MJ, Lewis DA, Foote SL, Morrison JH. Distribution of choline acetyltransferase-, serotonin-, dopamine-beta-hydroxylase-, tyrosine hydroxylase-immunoreactive fibers in monkey primary auditory cortex. J Comp Neurol. 1987;261:209–20.PubMedCrossRef Campbell MJ, Lewis DA, Foote SL, Morrison JH. Distribution of choline acetyltransferase-, serotonin-, dopamine-beta-hydroxylase-, tyrosine hydroxylase-immunoreactive fibers in monkey primary auditory cortex. J Comp Neurol. 1987;261:209–20.PubMedCrossRef
125.
Zurück zum Zitat Berger B, Gaspar P, Verney C. Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci. 1991;14:21–7.PubMedCrossRef Berger B, Gaspar P, Verney C. Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci. 1991;14:21–7.PubMedCrossRef
126.
Zurück zum Zitat Cai Y, Zhang XM, Macklin LN, Cai H, Luo XG, Oddo S, Laferla FM, Struble RG, Rose GM, Patrylo PR, Yan XX. BACE1 elevation is involved in amyloid plaque development in the triple transgenic model of Alzheimer’s disease: differential Aβ antibody labeling of early-onset axonal terminal pathology. Neurotox Res. 2012;21:160–74.PubMedCrossRef Cai Y, Zhang XM, Macklin LN, Cai H, Luo XG, Oddo S, Laferla FM, Struble RG, Rose GM, Patrylo PR, Yan XX. BACE1 elevation is involved in amyloid plaque development in the triple transgenic model of Alzheimer’s disease: differential Aβ antibody labeling of early-onset axonal terminal pathology. Neurotox Res. 2012;21:160–74.PubMedCrossRef
127.
Zurück zum Zitat Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH. Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol. 2004;165:357–71.PubMedPubMedCentralCrossRef Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH. Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol. 2004;165:357–71.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Yu F, Zhang Y, Chuang DM. Lithium reduces BACE1 overexpression, beta amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury. J Neurotrauma. 2012;29:2342–51.PubMedPubMedCentralCrossRef Yu F, Zhang Y, Chuang DM. Lithium reduces BACE1 overexpression, beta amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury. J Neurotrauma. 2012;29:2342–51.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Pajoohesh-Ganji A, Burns MP, Pal-Ghosh S, Tadvalkar G, Hokenbury NG, Stepp MA, Faden AI. Inhibition of amyloid precursor protein secretases reduces recovery after spinal cord injury. Brain Res. 2014;1560:73–82.PubMedPubMedCentralCrossRef Pajoohesh-Ganji A, Burns MP, Pal-Ghosh S, Tadvalkar G, Hokenbury NG, Stepp MA, Faden AI. Inhibition of amyloid precursor protein secretases reduces recovery after spinal cord injury. Brain Res. 2014;1560:73–82.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Daneshvar DH, Goldstein LE, Kiernan PT, Stein TD, McKee AC. Post-traumatic neurodegeneration and chronic traumatic encephalopathy. Mol Cell Neurosci. 2015;66:81–90.PubMedCrossRef Daneshvar DH, Goldstein LE, Kiernan PT, Stein TD, McKee AC. Post-traumatic neurodegeneration and chronic traumatic encephalopathy. Mol Cell Neurosci. 2015;66:81–90.PubMedCrossRef
131.
Zurück zum Zitat Li JM, Cai Y, Liu F, Yang L, Hu X, Patrylo PR, Cai H, Luo XG, Xiao D, Yan XX. Experimental microembolism induces localized neuritic pathology in guinea pig cerebrum. Oncotarget. 2015;6:10772.PubMedPubMedCentralCrossRef Li JM, Cai Y, Liu F, Yang L, Hu X, Patrylo PR, Cai H, Luo XG, Xiao D, Yan XX. Experimental microembolism induces localized neuritic pathology in guinea pig cerebrum. Oncotarget. 2015;6:10772.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Yan XX, Cai Y, Zhang XM, Luo XG, Cai H, Rose GM, Patrylo PR. BACE1 elevation is associated with aberrant limbic axonal sprouting in epileptic CD1 mice. Exp Neurol. 2012;235:228–37.PubMedPubMedCentralCrossRef Yan XX, Cai Y, Zhang XM, Luo XG, Cai H, Rose GM, Patrylo PR. BACE1 elevation is associated with aberrant limbic axonal sprouting in epileptic CD1 mice. Exp Neurol. 2012;235:228–37.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Deng X, Li M, Ai W, He L, Lu D, Patrylo PR, Cai H, Luo X, Li Z, Yan X. Lipolysaccharide-induced neuroinflammation is associated with Alzheimer-like amyloidogenic axonal pathology and dendritic degeneration in rats. Adv Alzheimer Dis. 2014;3:78–93.PubMedPubMedCentralCrossRef Deng X, Li M, Ai W, He L, Lu D, Patrylo PR, Cai H, Luo X, Li Z, Yan X. Lipolysaccharide-induced neuroinflammation is associated with Alzheimer-like amyloidogenic axonal pathology and dendritic degeneration in rats. Adv Alzheimer Dis. 2014;3:78–93.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Tajiri N, Kellogg SL, Shimizu T, Arendash GW, Borlongan CV. Traumatic brain injury precipitates cognitive impairment and extracellular Aβ aggregation in Alzheimer's disease transgenic mice. PLoS One. 2013;8:e78851.PubMedPubMedCentralCrossRef Tajiri N, Kellogg SL, Shimizu T, Arendash GW, Borlongan CV. Traumatic brain injury precipitates cognitive impairment and extracellular Aβ aggregation in Alzheimer's disease transgenic mice. PLoS One. 2013;8:e78851.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Yan XX, Cai Y, Shelton J, Deng SH, Luo XG, Oddo S, Laferla FM, Cai H, Rose GM, Patrylo PR. Chronic temporal lobe epilepsy is associated with enhanced Alzheimer-like neuropathology in 3× Tg-AD mice. PLoS One. 2012;7:e48782.PubMedPubMedCentralCrossRef Yan XX, Cai Y, Shelton J, Deng SH, Luo XG, Oddo S, Laferla FM, Cai H, Rose GM, Patrylo PR. Chronic temporal lobe epilepsy is associated with enhanced Alzheimer-like neuropathology in 3× Tg-AD mice. PLoS One. 2012;7:e48782.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Collins JM, King AE, Woodhouse A, Kirkcaldie MT, Vickers JC. The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer's disease. Exp Neurol. 2015;267:219–29.PubMedCrossRef Collins JM, King AE, Woodhouse A, Kirkcaldie MT, Vickers JC. The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer's disease. Exp Neurol. 2015;267:219–29.PubMedCrossRef
137.
Zurück zum Zitat Yan XX, Jen LS, Garey LJ. NADPH-diaphorase-positive neurons in primate cerebral cortex colocalize with GABA and calcium-binding proteins. Cereb Cortex. 1996;6:524–9.PubMedCrossRef Yan XX, Jen LS, Garey LJ. NADPH-diaphorase-positive neurons in primate cerebral cortex colocalize with GABA and calcium-binding proteins. Cereb Cortex. 1996;6:524–9.PubMedCrossRef
138.
Zurück zum Zitat Anstey KJ, Lipnicki DM, Low LF. Cholesterol as a risk factor for dementia and cognitive decline: a systematic review of prospective studies with meta-analysis. Am J Geriatr Psychiatry. 2008;16:343–54.PubMedCrossRef Anstey KJ, Lipnicki DM, Low LF. Cholesterol as a risk factor for dementia and cognitive decline: a systematic review of prospective studies with meta-analysis. Am J Geriatr Psychiatry. 2008;16:343–54.PubMedCrossRef
139.
Zurück zum Zitat Solomon A, Kivipelto M, Wolozin B, Zhou J, Whitmer RA. Midlife serum cholesterol and increased risk of Alzheimer's and vascular dementia three decades later. Dement Geriatr Cogn Disord. 2009;28:75–80.PubMedPubMedCentralCrossRef Solomon A, Kivipelto M, Wolozin B, Zhou J, Whitmer RA. Midlife serum cholesterol and increased risk of Alzheimer's and vascular dementia three decades later. Dement Geriatr Cogn Disord. 2009;28:75–80.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Tolppanen AM, Solomon A, Soininen H, Kivipelto M. Midlife vascular risk factors and Alzheimer’s disease: evidence from epidemiological studies. J Alzheimers Dis. 2012;32:531–40.PubMed Tolppanen AM, Solomon A, Soininen H, Kivipelto M. Midlife vascular risk factors and Alzheimer’s disease: evidence from epidemiological studies. J Alzheimers Dis. 2012;32:531–40.PubMed
141.
Zurück zum Zitat Reed B, Villeneuve S, Mack W, DeCarli C, Chui HC, Jagust W. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. 2014;71:195–200.PubMedPubMedCentralCrossRef Reed B, Villeneuve S, Mack W, DeCarli C, Chui HC, Jagust W. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. 2014;71:195–200.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement. 2015;11:718–26.PubMedCrossRef Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement. 2015;11:718–26.PubMedCrossRef
143.
Zurück zum Zitat Safouris A, Psaltopoulou T, Sergentanis TN, Boutati E, Kapaki E, Tsivgoulis G. Vascular risk factors and Alzheimer’s disease pathogenesis: are conventional pharmacological approaches protective for cognitive decline progression? CNS Neurol Disord Drug Targets. 2015;14:257–69.PubMedCrossRef Safouris A, Psaltopoulou T, Sergentanis TN, Boutati E, Kapaki E, Tsivgoulis G. Vascular risk factors and Alzheimer’s disease pathogenesis: are conventional pharmacological approaches protective for cognitive decline progression? CNS Neurol Disord Drug Targets. 2015;14:257–69.PubMedCrossRef
144.
Zurück zum Zitat Huang G, Xue Z, Hu X, Wan LL, Li J, Cai Y, Patrylo PR, Luo XG, Pan A, Yan XX. Cholesterol potentiates β-amyloid genesis in cultured human umbilical vein endothelial cells. Adv Alzheimer’s Dis. 2016;5:23–34.CrossRef Huang G, Xue Z, Hu X, Wan LL, Li J, Cai Y, Patrylo PR, Luo XG, Pan A, Yan XX. Cholesterol potentiates β-amyloid genesis in cultured human umbilical vein endothelial cells. Adv Alzheimer’s Dis. 2016;5:23–34.CrossRef
145.
Zurück zum Zitat Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR, Bapineuzumab 301 and 302 Clinical Trial Investigators. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N Engl J Med. 2014;370:322–33.PubMedPubMedCentralCrossRef Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR, Bapineuzumab 301 and 302 Clinical Trial Investigators. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N Engl J Med. 2014;370:322–33.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Castello MA, Jeppson JD, Soriano S. Moving beyond anti-amyloid therapy for the prevention and treatment of Alzheimer’s disease. BMC Neurol. 2014;14:169.PubMedPubMedCentralCrossRef Castello MA, Jeppson JD, Soriano S. Moving beyond anti-amyloid therapy for the prevention and treatment of Alzheimer’s disease. BMC Neurol. 2014;14:169.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron. 2014;84:608–22.PubMedPubMedCentralCrossRef Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron. 2014;84:608–22.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Barão S, Moechars D, Lichtenthaler SF, De Strooper B. BACE1 physiological functions may limit its use as therapeutic target for Alzheimer's disease. Trends Neurosci. 2016;39:158–69.PubMedCrossRef Barão S, Moechars D, Lichtenthaler SF, De Strooper B. BACE1 physiological functions may limit its use as therapeutic target for Alzheimer's disease. Trends Neurosci. 2016;39:158–69.PubMedCrossRef
149.
Zurück zum Zitat Gu T, Wu WY, Dong ZX, Yu SP, Sun Y, Zhong Y, Lu YT, Li NG. Development and structural modification of BACE1 inhibitors. Molecules. 2016;22:4.CrossRef Gu T, Wu WY, Dong ZX, Yu SP, Sun Y, Zhong Y, Lu YT, Li NG. Development and structural modification of BACE1 inhibitors. Molecules. 2016;22:4.CrossRef
150.
Zurück zum Zitat Ohno M. Alzheimer’s therapy targeting the β-secretase enzyme BACE1: benefits and potential limitations from the perspective of animal model studies. Brain Res Bull. 2016;126:183–98.PubMedCrossRef Ohno M. Alzheimer’s therapy targeting the β-secretase enzyme BACE1: benefits and potential limitations from the perspective of animal model studies. Brain Res Bull. 2016;126:183–98.PubMedCrossRef
152.
Zurück zum Zitat Yan R. Physiological functions of the β-site amyloid precursor protein cleaving enzyme 1 and 2. Front Mol Neurosci. 2017;10:97.PubMedPubMedCentral Yan R. Physiological functions of the β-site amyloid precursor protein cleaving enzyme 1 and 2. Front Mol Neurosci. 2017;10:97.PubMedPubMedCentral
153.
Zurück zum Zitat Hitt BD, Jaramillo TC, Chetkovich DM, Vassar R. BACE1−/−mice exhibit seizure activity that does not correlate with sodium channel level or axonal localization. Mol Neurodegener. 2010;5:31.PubMedPubMedCentralCrossRef Hitt BD, Jaramillo TC, Chetkovich DM, Vassar R. BACE1−/−mice exhibit seizure activity that does not correlate with sodium channel level or axonal localization. Mol Neurodegener. 2010;5:31.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A, DeStrooper B, Saftig P, Birchmeier C, Haass C. Control of peripheral nerve myelination by the beta-secretase BACE1. Science. 2006;314:664–6.PubMedCrossRef Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A, DeStrooper B, Saftig P, Birchmeier C, Haass C. Control of peripheral nerve myelination by the beta-secretase BACE1. Science. 2006;314:664–6.PubMedCrossRef
155.
Zurück zum Zitat Filser S, Ovsepian SV, Masana M, Blazquez-Llorca L, Brandt Elvang A, Volbracht C, Müller MB, Jung CK, Herms J. Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol Psychiatry. 2015;77:729–39.PubMedCrossRef Filser S, Ovsepian SV, Masana M, Blazquez-Llorca L, Brandt Elvang A, Volbracht C, Müller MB, Jung CK, Herms J. Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol Psychiatry. 2015;77:729–39.PubMedCrossRef
156.
Zurück zum Zitat Miyakawa T, Shimoji A, Kuramoto R, Higuchi Y. The relationship between senile plaques and cerebral blood vessels in Alzheimer’s disease and senile dementia. Morphological mechanism of senile plaque production. Virchows Arch B Cell Pathol Mol Pathol. 1982;40:121–9.CrossRef Miyakawa T, Shimoji A, Kuramoto R, Higuchi Y. The relationship between senile plaques and cerebral blood vessels in Alzheimer’s disease and senile dementia. Morphological mechanism of senile plaque production. Virchows Arch B Cell Pathol Mol Pathol. 1982;40:121–9.CrossRef
157.
Zurück zum Zitat Kawai M, Kalaria RN, Harik SI, Perry G. The relationship of amyloid plaques to cerebral capillaries in Alzheimer’s disease. Am J Pathol. 1990;137:1435–46.PubMedPubMedCentral Kawai M, Kalaria RN, Harik SI, Perry G. The relationship of amyloid plaques to cerebral capillaries in Alzheimer’s disease. Am J Pathol. 1990;137:1435–46.PubMedPubMedCentral
158.
Zurück zum Zitat Kawai M, Cras P, Perry G. Serial reconstruction of beta-protein amyloid plaques: relationship to microvessels and size distribution. Brain Res. 1992;592:278–82.PubMedCrossRef Kawai M, Cras P, Perry G. Serial reconstruction of beta-protein amyloid plaques: relationship to microvessels and size distribution. Brain Res. 1992;592:278–82.PubMedCrossRef
159.
Zurück zum Zitat Erickson MA, Banks WA. Blood–brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J Cereb Blood Flow Metab. 2013;33:1500–13.PubMedPubMedCentralCrossRef Erickson MA, Banks WA. Blood–brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J Cereb Blood Flow Metab. 2013;33:1500–13.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat de la Torre JC. Alzheimer’s disease is a vasocognopathy: a new term to describe its nature. Neurol Res. 2004;26:517–24.PubMedCrossRef de la Torre JC. Alzheimer’s disease is a vasocognopathy: a new term to describe its nature. Neurol Res. 2004;26:517–24.PubMedCrossRef
161.
Zurück zum Zitat Stone J, Johnstone D, Mitrofanis J, O’Rourke M. The mechanical cause of age-related dementia: the brain is destroyed by the pulse. J Alz Dis. 2015;44:355–73. Stone J, Johnstone D, Mitrofanis J, O’Rourke M. The mechanical cause of age-related dementia: the brain is destroyed by the pulse. J Alz Dis. 2015;44:355–73.
162.
Zurück zum Zitat Hu X, Hu ZL, Li Z, Ruan CS, Qiu WY, Pan A, Li CQ, Cai Y, Shen L, Chu Y, Tang BS, Cai H, Zhou XF, Ma C, Yan XX. Sortilin ffragments deposit at senile plaques in human cerebrum. Front Neuroanat. 2017;11:45.PubMedPubMedCentralCrossRef Hu X, Hu ZL, Li Z, Ruan CS, Qiu WY, Pan A, Li CQ, Cai Y, Shen L, Chu Y, Tang BS, Cai H, Zhou XF, Ma C, Yan XX. Sortilin ffragments deposit at senile plaques in human cerebrum. Front Neuroanat. 2017;11:45.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Coria F, Castano E, Prelli F, Larrondo-Lillo M, van Duinen S, Shelanski ML, Frangione B. Isolation and characterization of amyloid P component from Alzheimer’s disease and other types of cerebral amyloidosis. Lab Investig. 1988;58:454–8.PubMed Coria F, Castano E, Prelli F, Larrondo-Lillo M, van Duinen S, Shelanski ML, Frangione B. Isolation and characterization of amyloid P component from Alzheimer’s disease and other types of cerebral amyloidosis. Lab Investig. 1988;58:454–8.PubMed
164.
Zurück zum Zitat Watson MD, Roher AE, Kim KS, Spiegel K, Emmerling M. Complement interactions with amyloid Abeta 1–42: a nidus for inflammation in AD brains. Amyloid: Int J Exp Clin Invest. 1997;4:147–56.CrossRef Watson MD, Roher AE, Kim KS, Spiegel K, Emmerling M. Complement interactions with amyloid Abeta 1–42: a nidus for inflammation in AD brains. Amyloid: Int J Exp Clin Invest. 1997;4:147–56.CrossRef
165.
Zurück zum Zitat Wu CW, Liao PC, Yu L, Wang ST, Chen ST, Wu M, Ku YM. Hemoglobin promotes Aβ oligomer formation and localizes in neurons and amyloid deposits. Neurobiol Dis. 2004;17:367–77.PubMedCrossRef Wu CW, Liao PC, Yu L, Wang ST, Chen ST, Wu M, Ku YM. Hemoglobin promotes Aβ oligomer formation and localizes in neurons and amyloid deposits. Neurobiol Dis. 2004;17:367–77.PubMedCrossRef
Metadaten
Titel
Can brain impermeable BACE1 inhibitors serve as anti-CAA medicine?
verfasst von
Jian-Ming Li
Li-Ling Huang
Fei Liu
Bei-Sha Tang
Xiao-Xin Yan
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
BMC Neurology / Ausgabe 1/2017
Elektronische ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-017-0942-y

Weitere Artikel der Ausgabe 1/2017

BMC Neurology 1/2017 Zur Ausgabe