Skip to main content
Erschienen in: Journal of Cardiovascular Magnetic Resonance 1/2009

Open Access 01.12.2009 | Case report

Cardiac injuries in blunt chest trauma

verfasst von: Marina Huguet, Catalina Tobon-Gomez, Bart H Bijnens, Alejandro F Frangi, Marius Petit

Erschienen in: Journal of Cardiovascular Magnetic Resonance | Ausgabe 1/2009

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Blunt chest traumas are a clinical challenge, both for diagnosis and treatment. The use of Cardiovascular Magnetic Resonance can play a major role in this setting. We present two cases: a 12-year-old boy and 45-year-old man. Late gadolinium enhancement imaging enabled visualization of myocardial damage resulting from the trauma.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1532-429X-11-35) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MH and CTG contributed equally to this paper and should be considered joint first authors. They drafted the manuscript, and interpreted CMR images. MH was responsible for CMR acquisition. BHB was responsible for the idea for the manuscript and wrote the mechanism interpretation of the manuscript. AFF provided access to the computational atlas for fiber orientation interpretation. MP helped write and rewrote the manuscript. All authors read and approved the final manuscript.

Background

Blunt chest traumas are a clinical challenge, both for diagnosis and treatment, since they are often associated with substantial cardiac injury [1]. If not recognized and treated promptly, it may have severe, or even fatal, complications for the patient due to myocardial herniation [2]. Myocardial contusion usually shows enzyme rises, electrocardiographic abnormalities and contractile dysfunction [1]. Since these symptoms can be similar for acute peri-traumatic myocardial infarction, a correct diagnosis may be difficult. The use of Cardiovascular Magnetic Resonance (CMR) can play a major role in diagnosing the etiology of the cardiac abnormalities in this setting.

Case Presentation

Patient Description

We present two cases where the use of CMR is illustrated for the diagnosis and understanding of cardiac injury. The first patient was a 12-year-old boy referred to our center after a blunt thoracic-abdominal trauma by a rollover vehicle accident at the age of six. Although he was initially asymptomatic, a subsequent tachycardia was noted. An echocardiogram, acquired two years after the trauma, revealed a left midventricular aneurysm with loss of myocardium affecting the septal and posteriorlateral walls.
The second patient was a 45-year-old man who suffered from a blunt chest trauma after precipitating into a trench in which he was buried by construction material and lost consciousness. His echocardiogram showed a ventricular-septal defect with a left to right shunt. The CMR was performed the day after the trauma.

Examination

Both patients underwent an CMR examination to estimate the severity of myocardial damage using a 1.5 T scanner (Signa CVi-HDx, GE Medical Systems, Waukesha, WS) with a dedicated cardiac coil. The protocol included balanced steady-state free precession gradient-echo images (CINE) and late gadolinium enhancement (LGE) inversion recovery images (after IV administration of 0.2 mmol/kg of gadopentate dimeglumine contrast).
The main structural abnormality observed in both patients was the loss of myocardium. The first patient (Figure 1) developed a posterolateral mid-wall aneurism without wall rupture (Figure 1). The LGE images revealed a helical pattern of enhancement, starting at the lower midseptum, along the inferior wall up to the posterolateral wall above the insertion of the papillary muscle (Figure 1B-F). This contrast distribution does not correspond to any particular coronary territory. The second patient (Figure 2) had a rupture of the interventricular septum and the inferior wall with a secondary haemopericardium. The location of septal thinning and the inferior wall rupture are possible points of increased wall stress, as depicted in Figure 3. The LGE images showed no marked contrast enhancement (Figure 2F).

Discussion

The patterns of myocardial damage visible from these images are consistent with previously reported injury sites [3, 4]. In Figure 3, a possible mechanism is presented for explaining the observed rupture. We hypothesize that the sudden increase in intrathoracic pressure during trauma [5] causes the right ventricular pressure to rise and the cavity to expand. This fastly displaces the right ventricular free wall outward, stretching the moderator band and generating a point of high wall stress around its septal insertion. Additionally, the induced increase in left ventricular pressure closes the mitral valve and stretches the tendinous chords and papillary muscles, creating a higher wall stress around the insertion of the papillary muscles. The increased stress from the right ventricular moderator band and the chordal apparatus puts the connecting (helical) endocardial muscle fibres, which run along the septal, inferior and lateral wall, from apex towards the base (Figure 3 right), under extreme wall stress, resulting in fibre damage, as observed in patient 1.
Finally, the lack of LGE in the second patient might be due to either: the acute state of the injury or the strong loss of myocardium resulting in no-reflow [6]. However, further investigation is required to establish the prevalence of this condition among patients.
CMR has the potential to distinguish acute infarction from myocardial contusion, since it allows for a three-dimensional evaluation of the myocardial injury caused by blunt chest trauma. The use of CINE images can depict motion abnormalities and myocardial rupture, while the pattern observed in LGE images can describe the extent of injury (helical pattern vs. coronary territory).

Conclusion

In summary, CMR imaging enables to visualize the typical pattern of myocardial damage resulting from a blunt chest trauma, thus enabling to make an accurate evaluation of the induced injuries. It can be used to differentiate myocardial contusion from a peri-traumatic myocardial infarction.
Written informed consent was obtained from the patients for publication of this case report and any accompanying images.

Acknowledgements

This work was partially funded by the Spanish Industrial and Technological Development Centre (CDTI) under the CENIT Programme (CDTEAM Project). We would like to thank Viviana Zimmerman for the help with the visualization of fibre directions.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MH and CTG contributed equally to this paper and should be considered joint first authors. They drafted the manuscript, and interpreted CMR images. MH was responsible for CMR acquisition. BHB was responsible for the idea for the manuscript and wrote the mechanism interpretation of the manuscript. AFF provided access to the computational atlas for fiber orientation interpretation. MP helped write and rewrote the manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat El-Chami MF, Nicholson W, Helmy T: Blunt cardiac trauma. J Emerg Med. 2008, 35 (2): 127-133. 10.1016/j.jemermed.2007.03.018.CrossRefPubMed El-Chami MF, Nicholson W, Helmy T: Blunt cardiac trauma. J Emerg Med. 2008, 35 (2): 127-133. 10.1016/j.jemermed.2007.03.018.CrossRefPubMed
2.
Zurück zum Zitat Janson JT, Harris DG, Pretorius J, Rossouw GJ: Pericardial rupture and cardiac herniation after blunt chest trauma. Ann Thorac Surg. 2003, 75 (2): 581-582. 10.1016/S0003-4975(02)04298-4.CrossRefPubMed Janson JT, Harris DG, Pretorius J, Rossouw GJ: Pericardial rupture and cardiac herniation after blunt chest trauma. Ann Thorac Surg. 2003, 75 (2): 581-582. 10.1016/S0003-4975(02)04298-4.CrossRefPubMed
3.
Zurück zum Zitat Lyne J, Fox K, Mohiaddin RH: Follow up in a case of cardiac contusion using cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007, 9: 589-10.1080/10976640600778098.CrossRefPubMed Lyne J, Fox K, Mohiaddin RH: Follow up in a case of cardiac contusion using cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007, 9: 589-10.1080/10976640600778098.CrossRefPubMed
4.
Zurück zum Zitat Parmley LF, Manion WC, Mattingly TW: Nonpenetrating Traumatic Injury of the Heart. Circulation. 1958, 18 (3): 371-396.CrossRefPubMed Parmley LF, Manion WC, Mattingly TW: Nonpenetrating Traumatic Injury of the Heart. Circulation. 1958, 18 (3): 371-396.CrossRefPubMed
5.
Zurück zum Zitat Roxburgh JC: Myocardial contusion: Review. Injury. 1996, 27 (9): 603-605. 10.1016/S0020-1383(96)00120-9.CrossRefPubMed Roxburgh JC: Myocardial contusion: Review. Injury. 1996, 27 (9): 603-605. 10.1016/S0020-1383(96)00120-9.CrossRefPubMed
6.
Zurück zum Zitat Albert TSE, Kim RJ, Judd RM: Assessment of no-reflow regions using cardiac MRI. Basic Research in Cardiology. 2006, 101 (5): 383-390. 10.1007/s00395-006-0617-0.CrossRefPubMed Albert TSE, Kim RJ, Judd RM: Assessment of no-reflow regions using cardiac MRI. Basic Research in Cardiology. 2006, 101 (5): 383-390. 10.1007/s00395-006-0617-0.CrossRefPubMed
Metadaten
Titel
Cardiac injuries in blunt chest trauma
verfasst von
Marina Huguet
Catalina Tobon-Gomez
Bart H Bijnens
Alejandro F Frangi
Marius Petit
Publikationsdatum
01.12.2009
Verlag
BioMed Central
Erschienen in
Journal of Cardiovascular Magnetic Resonance / Ausgabe 1/2009
Elektronische ISSN: 1532-429X
DOI
https://doi.org/10.1186/1532-429X-11-35

Weitere Artikel der Ausgabe 1/2009

Journal of Cardiovascular Magnetic Resonance 1/2009 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.