Skip to main content
Erschienen in: Inflammation 5/2011

01.10.2011

Cathelicidin Peptide LL-37 Modulates TREM-1 Expression and Inflammatory Responses to Microbial Compounds

verfasst von: Gimano D. Amatngalim, Anastasia Nijnik, Pieter S. Hiemstra, Robert E. W. Hancock

Erschienen in: Inflammation | Ausgabe 5/2011

Einloggen, um Zugang zu erhalten

Abstract

Inflammatory diseases remain an important cause of morbidity and mortality. Cathelicidins are immunomodulatory and antimicrobial peptides with potent anti-endotoxic properties. Although the effects of the human cathelicidin LL-37 on cellular responses to Toll-like receptor (TLR) ligands have been investigated, its effects on responses to other pro-inflammatory stimuli have not been well studied. Triggering receptor expressed on myeloid cells (TREM-1) acts to amplify inflammatory responses and plays important roles in the pathogenesis of endotoxemia. In this work, the effects of LL-37 on responses to TREM-1 stimulation, alone and in the presence of a range of microbial compounds, were analyzed. It was shown that in peripheral blood mononuclear cells LL-37 strongly suppressed synergistic responses to TREM-1 and TLR4 stimulation, partly through the inhibition of TREM-1 expression on monocytes; similar effects were observed using the TLR2 ligand lipoteichoic acid. In contrast, LL-37 stimulated TREM-1 upregulation by peptidoglycan (PGN, TLR2 ligand that is also recognized via nucleotide-binding oligomerization domain containing 2 after fragmentation and intracellular uptake), as well as the responses to combined TREM-1 and PGN stimulation, possibly via the p38 mitogen-activated protein kinase pathway. LL-37 did not affect TREM-1-induced neutrophil degranulation or the production of reactive oxygen species and interleukin-8 by neutrophils. These findings provide further insight into the roles of LL-37 during inflammation and may have implications for its in vivo immunomodulatory properties and for the design of synthetic cathelicidin derivatives as anti-inflammatory and anti-endotoxic molecules.
Literatur
1.
Zurück zum Zitat Zanetti, M. 2004. Cathelicidins, multifunctional peptides of the innate immunity. Journal of Leukocyte Biology 75: 39–48.PubMedCrossRef Zanetti, M. 2004. Cathelicidins, multifunctional peptides of the innate immunity. Journal of Leukocyte Biology 75: 39–48.PubMedCrossRef
2.
Zurück zum Zitat Durr, U.H., U.S. Sudheendra, and A. Ramamoorthy. 2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta 1758: 1408–1425.PubMedCrossRef Durr, U.H., U.S. Sudheendra, and A. Ramamoorthy. 2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta 1758: 1408–1425.PubMedCrossRef
3.
Zurück zum Zitat Nijnik, A., and R.E.W. Hancock. 2009. The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Current Opinion in Hematology 16: 41–47.PubMedCrossRef Nijnik, A., and R.E.W. Hancock. 2009. The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Current Opinion in Hematology 16: 41–47.PubMedCrossRef
4.
Zurück zum Zitat Larrick, J.W., J. Lee, S. Ma, X. Li, U. Francke, S.C. Wright, and R.F. Balint. 1996. Structural, functional analysis and localization of the human CAP18 gene. FEBS Letters 398: 74–80.PubMedCrossRef Larrick, J.W., J. Lee, S. Ma, X. Li, U. Francke, S.C. Wright, and R.F. Balint. 1996. Structural, functional analysis and localization of the human CAP18 gene. FEBS Letters 398: 74–80.PubMedCrossRef
5.
Zurück zum Zitat Sorensen, O.E., P. Follin, A.H. Johnsen, J. Calafat, G.S. Tjabringa, P.S. Hiemstra, and N. Borregaard. 2001. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97: 3951–3959.PubMedCrossRef Sorensen, O.E., P. Follin, A.H. Johnsen, J. Calafat, G.S. Tjabringa, P.S. Hiemstra, and N. Borregaard. 2001. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97: 3951–3959.PubMedCrossRef
6.
Zurück zum Zitat Bals, R., D.J. Weiner, R.L. Meegalla, and J.M. Wilson. 1999. Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. Journal of Clinical Investigation 103: 1113–1117.PubMedCrossRef Bals, R., D.J. Weiner, R.L. Meegalla, and J.M. Wilson. 1999. Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. Journal of Clinical Investigation 103: 1113–1117.PubMedCrossRef
7.
Zurück zum Zitat Schaller-Bals, S., A. Schulze, and R. Bals. 2002. Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. American Journal of Respiratory and Critical Care Medicine 165: 992–995.PubMed Schaller-Bals, S., A. Schulze, and R. Bals. 2002. Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. American Journal of Respiratory and Critical Care Medicine 165: 992–995.PubMed
8.
Zurück zum Zitat Bowdish, D.M., D.J. Davidson, Y.E. Lau, K. Lee, M.G. Scott, and R.E. Hancock. 2005. Impact of LL-37 on anti-infective immunity. Journal of Leukocyte Biology 77: 451–459.PubMedCrossRef Bowdish, D.M., D.J. Davidson, Y.E. Lau, K. Lee, M.G. Scott, and R.E. Hancock. 2005. Impact of LL-37 on anti-infective immunity. Journal of Leukocyte Biology 77: 451–459.PubMedCrossRef
9.
Zurück zum Zitat Mookherjee, N., K.L. Brown, D.M. Bowdish, S. Doria, R. Falsafi, K. Hokamp, F.M. Roche, R. Mu, G.H. Doho, J. Pistolic, J.P. Powers, J. Bryan, F.S. Brinkman, and R.E. Hancock. 2006. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. Journal of Immunology 176: 2455–2464. Mookherjee, N., K.L. Brown, D.M. Bowdish, S. Doria, R. Falsafi, K. Hokamp, F.M. Roche, R. Mu, G.H. Doho, J. Pistolic, J.P. Powers, J. Bryan, F.S. Brinkman, and R.E. Hancock. 2006. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. Journal of Immunology 176: 2455–2464.
10.
Zurück zum Zitat Kandler, K., R. Shaykhiev, P. Kleemann, F. Klescz, M. Lohoff, C. Vogelmeier, and R. Bals. 2006. The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. International Immunology 18: 1729–1736.PubMedCrossRef Kandler, K., R. Shaykhiev, P. Kleemann, F. Klescz, M. Lohoff, C. Vogelmeier, and R. Bals. 2006. The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. International Immunology 18: 1729–1736.PubMedCrossRef
11.
Zurück zum Zitat Molhoek, E.M., A.L. den Hertog, A.M. de Vries, K. Nazmi, E.C. Veerman, F.C. Hartgers, M. Yazdanbakhsh, F.J. Bikker, and D. van der Kleij. 2009. Structure–function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses. Biological Chemistry 390: 295–303.PubMedCrossRef Molhoek, E.M., A.L. den Hertog, A.M. de Vries, K. Nazmi, E.C. Veerman, F.C. Hartgers, M. Yazdanbakhsh, F.J. Bikker, and D. van der Kleij. 2009. Structure–function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses. Biological Chemistry 390: 295–303.PubMedCrossRef
12.
Zurück zum Zitat Nell, M.J., G.S. Tjabringa, A.R. Wafelman, R. Verrijk, P.S. Hiemstra, J.W. Drijfhout, and J.J. Grote. 2006. Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application. Peptides 27: 649–660.PubMedCrossRef Nell, M.J., G.S. Tjabringa, A.R. Wafelman, R. Verrijk, P.S. Hiemstra, J.W. Drijfhout, and J.J. Grote. 2006. Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application. Peptides 27: 649–660.PubMedCrossRef
13.
Zurück zum Zitat Scott, M.G., D.J. Davidson, M.R. Gold, D. Bowdish, and R.E. Hancock. 2002. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. Journal of Immunology 169: 3883–3891. Scott, M.G., D.J. Davidson, M.R. Gold, D. Bowdish, and R.E. Hancock. 2002. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. Journal of Immunology 169: 3883–3891.
14.
Zurück zum Zitat Pinheiro da Silva, F., R.L. Gallo, and V. Nizet. 2009. Differing effects of exogenous or endogenous cathelicidin on macrophage toll-like receptor signaling. Immunology and Cell Biology 87(6): 496–500.PubMedCrossRef Pinheiro da Silva, F., R.L. Gallo, and V. Nizet. 2009. Differing effects of exogenous or endogenous cathelicidin on macrophage toll-like receptor signaling. Immunology and Cell Biology 87(6): 496–500.PubMedCrossRef
15.
Zurück zum Zitat Di Nardo, A., M.H. Braff, K.R. Taylor, C. Na, R.D. Granstein, J.E. McInturff, S. Krutzik, R.L. Modlin, and R.L. Gallo. 2007. Cathelicidin antimicrobial peptides block dendritic cell TLR4 activation and allergic contact sensitization. Journal of Immunology 178: 1829–1834. Di Nardo, A., M.H. Braff, K.R. Taylor, C. Na, R.D. Granstein, J.E. McInturff, S. Krutzik, R.L. Modlin, and R.L. Gallo. 2007. Cathelicidin antimicrobial peptides block dendritic cell TLR4 activation and allergic contact sensitization. Journal of Immunology 178: 1829–1834.
16.
Zurück zum Zitat Tjabringa, G.S., J. Aarbiou, D.K. Ninaber, J.W. Drijfhout, O.E. Sorensen, N. Borregaard, K.F. Rabe, and P.S. Hiemstra. 2003. The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. Journal of Immunology 171: 6690–6696. Tjabringa, G.S., J. Aarbiou, D.K. Ninaber, J.W. Drijfhout, O.E. Sorensen, N. Borregaard, K.F. Rabe, and P.S. Hiemstra. 2003. The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. Journal of Immunology 171: 6690–6696.
17.
Zurück zum Zitat Elssner, A., M. Duncan, M. Gavrilin, and M.D. Wewers. 2004. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. Journal of Immunology 172: 4987–4994. Elssner, A., M. Duncan, M. Gavrilin, and M.D. Wewers. 2004. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. Journal of Immunology 172: 4987–4994.
18.
Zurück zum Zitat Niyonsaba, F., A. Someya, M. Hirata, H. Ogawa, and I. Nagaoka. 2001. Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. European Journal of Immunology 31: 1066–1075.PubMedCrossRef Niyonsaba, F., A. Someya, M. Hirata, H. Ogawa, and I. Nagaoka. 2001. Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. European Journal of Immunology 31: 1066–1075.PubMedCrossRef
19.
Zurück zum Zitat Schiemann, F., E. Brandt, R. Gross, B. Lindner, J. Mittelstadt, C.P. Sommerhoff, J. Schulmistrat, and F. Petersen. 2009. The cathelicidin LL-37 activates human mast cells and is degraded by mast cell tryptase: Counter-regulation by CXCL4. Journal of Immunology 183: 2223–2231.CrossRef Schiemann, F., E. Brandt, R. Gross, B. Lindner, J. Mittelstadt, C.P. Sommerhoff, J. Schulmistrat, and F. Petersen. 2009. The cathelicidin LL-37 activates human mast cells and is degraded by mast cell tryptase: Counter-regulation by CXCL4. Journal of Immunology 183: 2223–2231.CrossRef
20.
Zurück zum Zitat Lande, R., J. Gregorio, V. Facchinetti, B. Chatterjee, Y.H. Wang, B. Homey, W. Cao, Y.H. Wang, B. Su, F.O. Nestle, T. Zal, I. Mellman, J.M. Schroder, Y.J. Liu, and M. Gilliet. 2007. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449: 564–569.PubMedCrossRef Lande, R., J. Gregorio, V. Facchinetti, B. Chatterjee, Y.H. Wang, B. Homey, W. Cao, Y.H. Wang, B. Su, F.O. Nestle, T. Zal, I. Mellman, J.M. Schroder, Y.J. Liu, and M. Gilliet. 2007. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449: 564–569.PubMedCrossRef
21.
Zurück zum Zitat Ganguly, D., G. Chamilos, R. Lande, J. Gregorio, S. Meller, V. Facchinetti, B. Homey, F.J. Barrat, T. Zal, and M. Gilliet. 2009. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. The Journal of Experimental Medicine 206: 1983–1994.PubMedCrossRef Ganguly, D., G. Chamilos, R. Lande, J. Gregorio, S. Meller, V. Facchinetti, B. Homey, F.J. Barrat, T. Zal, and M. Gilliet. 2009. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. The Journal of Experimental Medicine 206: 1983–1994.PubMedCrossRef
22.
Zurück zum Zitat Zhang, Z., G. Cherryholmes, and J.E. Shively. 2008. Neutrophil secondary necrosis is induced by LL-37 derived from cathelicidin. Journal of Leukocyte Biology 84: 780–788.PubMedCrossRef Zhang, Z., G. Cherryholmes, and J.E. Shively. 2008. Neutrophil secondary necrosis is induced by LL-37 derived from cathelicidin. Journal of Leukocyte Biology 84: 780–788.PubMedCrossRef
23.
Zurück zum Zitat Barlow, P.G., Y. Li, T.S. Wilkinson, D.M. Bowdish, Y.E. Lau, C. Cosseau, C. Haslett, A.J. Simpson, R.E. Hancock, and D.J. Davidson. 2006. The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system. Journal of Leukocyte Biology 80: 509–520.PubMedCrossRef Barlow, P.G., Y. Li, T.S. Wilkinson, D.M. Bowdish, Y.E. Lau, C. Cosseau, C. Haslett, A.J. Simpson, R.E. Hancock, and D.J. Davidson. 2006. The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system. Journal of Leukocyte Biology 80: 509–520.PubMedCrossRef
24.
Zurück zum Zitat Nagaoka, I., H. Tamura, and M. Hirata. 2006. An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. Journal of Immunology 176: 3044–3052. Nagaoka, I., H. Tamura, and M. Hirata. 2006. An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. Journal of Immunology 176: 3044–3052.
25.
Zurück zum Zitat Yu, J., N. Mookherjee, K. Wee, D.M. Bowdish, J. Pistolic, Y. Li, L. Rehaume, and R.E. Hancock. 2007. Host defense peptide LL-37, in synergy with inflammatory mediator IL-1beta, augments immune responses by multiple pathways. Journal of Immunology 179: 7684–7691. Yu, J., N. Mookherjee, K. Wee, D.M. Bowdish, J. Pistolic, Y. Li, L. Rehaume, and R.E. Hancock. 2007. Host defense peptide LL-37, in synergy with inflammatory mediator IL-1beta, augments immune responses by multiple pathways. Journal of Immunology 179: 7684–7691.
26.
Zurück zum Zitat Mookherjee, N., P. Hamill, J. Gardy, D. Blimkie, R. Falsafi, A. Chikatamarla, D.J. Arenillas, S. Doria, T.R. Kollmann, and R.E. Hancock. 2009. Systems biology evaluation of immune responses induced by human host defence peptide LL-37 in mononuclear cells. Molecular Biosystems 5: 483–496.PubMedCrossRef Mookherjee, N., P. Hamill, J. Gardy, D. Blimkie, R. Falsafi, A. Chikatamarla, D.J. Arenillas, S. Doria, T.R. Kollmann, and R.E. Hancock. 2009. Systems biology evaluation of immune responses induced by human host defence peptide LL-37 in mononuclear cells. Molecular Biosystems 5: 483–496.PubMedCrossRef
27.
Zurück zum Zitat An, L.L., Y.H. Yang, X.T. Ma, Y.M. Lin, G. Li, Y.H. Song, and K.F. Wu. 2005. LL-37 enhances adaptive antitumor immune response in a murine model when genetically fused with M-CSFR (J6-1) DNA vaccine. Leukemia Research 29: 535–543.PubMedCrossRef An, L.L., Y.H. Yang, X.T. Ma, Y.M. Lin, G. Li, Y.H. Song, and K.F. Wu. 2005. LL-37 enhances adaptive antitumor immune response in a murine model when genetically fused with M-CSFR (J6-1) DNA vaccine. Leukemia Research 29: 535–543.PubMedCrossRef
28.
Zurück zum Zitat Kurosaka, K., Q. Chen, F. Yarovinsky, J.J. Oppenheim, and D. Yang. 2005. Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. Journal of Immunology 174: 6257–6265. Kurosaka, K., Q. Chen, F. Yarovinsky, J.J. Oppenheim, and D. Yang. 2005. Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. Journal of Immunology 174: 6257–6265.
29.
Zurück zum Zitat Yamasaki, K., A. Di Nardo, A. Bardan, M. Murakami, T. Ohtake, A. Coda, R.A. Dorschner, C. Bonnart, P. Descargues, A. Hovnanian, V.B. Morhenn, and R.L. Gallo. 2007. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Natural Medicines 13: 975–980.CrossRef Yamasaki, K., A. Di Nardo, A. Bardan, M. Murakami, T. Ohtake, A. Coda, R.A. Dorschner, C. Bonnart, P. Descargues, A. Hovnanian, V.B. Morhenn, and R.L. Gallo. 2007. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Natural Medicines 13: 975–980.CrossRef
30.
Zurück zum Zitat Hamill, P., K. Brown, H. Jenssen, and R.E. Hancock. 2008. Novel anti-infectives: Is host defence the answer? Current Opinion in Biotechnology 19: 628–636.PubMedCrossRef Hamill, P., K. Brown, H. Jenssen, and R.E. Hancock. 2008. Novel anti-infectives: Is host defence the answer? Current Opinion in Biotechnology 19: 628–636.PubMedCrossRef
31.
Zurück zum Zitat Hancock, R.E., and H.G. Sahl. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology 24: 1551–1557.PubMedCrossRef Hancock, R.E., and H.G. Sahl. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology 24: 1551–1557.PubMedCrossRef
32.
Zurück zum Zitat Mookherjee, N., L.M. Rehaume, and R.E. Hancock. 2007. Cathelicidins and functional analogues as antisepsis molecules. Expert Opinion on Therapeutic Targets 11: 993–1004.PubMedCrossRef Mookherjee, N., L.M. Rehaume, and R.E. Hancock. 2007. Cathelicidins and functional analogues as antisepsis molecules. Expert Opinion on Therapeutic Targets 11: 993–1004.PubMedCrossRef
33.
Zurück zum Zitat Scott, M.G., E. Dullaghan, N. Mookherjee, N. Glavas, M. Waldbrook, A. Thompson, A. Wang, K. Lee, S. Doria, P. Hamill, J.J. Yu, Y. Li, O. Donini, M.M. Guarna, B.B. Finlay, J.R. North, and R.E. Hancock. 2007. An anti-infective peptide that selectively modulates the innate immune response. Nature Biotechnology 25: 465–472.PubMedCrossRef Scott, M.G., E. Dullaghan, N. Mookherjee, N. Glavas, M. Waldbrook, A. Thompson, A. Wang, K. Lee, S. Doria, P. Hamill, J.J. Yu, Y. Li, O. Donini, M.M. Guarna, B.B. Finlay, J.R. North, and R.E. Hancock. 2007. An anti-infective peptide that selectively modulates the innate immune response. Nature Biotechnology 25: 465–472.PubMedCrossRef
34.
Zurück zum Zitat Nijnik, A., L. Madera, S. Ma, M. Waldbrook, M.R. Elliott, D.M. Easton, M.L. Mayer, S.C. Mullaly, J. Kindrachuk, H. Jenssen, and R.E. Hancock. 2010. Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. Journal of Immunology 184: 2539–2950.CrossRef Nijnik, A., L. Madera, S. Ma, M. Waldbrook, M.R. Elliott, D.M. Easton, M.L. Mayer, S.C. Mullaly, J. Kindrachuk, H. Jenssen, and R.E. Hancock. 2010. Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. Journal of Immunology 184: 2539–2950.CrossRef
35.
Zurück zum Zitat Bouchon, A., J. Dietrich, and M. Colonna. 2000. Cutting edge: Inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. Journal of Immunology 164: 4991–4995. Bouchon, A., J. Dietrich, and M. Colonna. 2000. Cutting edge: Inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. Journal of Immunology 164: 4991–4995.
36.
Zurück zum Zitat Klesney-Tait, J., I.R. Turnbull, and M. Colonna. 2006. The TREM receptor family and signal integration. Nature Immunology 7: 1266–1273.PubMedCrossRef Klesney-Tait, J., I.R. Turnbull, and M. Colonna. 2006. The TREM receptor family and signal integration. Nature Immunology 7: 1266–1273.PubMedCrossRef
37.
Zurück zum Zitat Chen, L.C., J.D. Laskin, M.K. Gordon, and D.L. Laskin. 2008. Regulation of TREM expression in hepatic macrophages and endothelial cells during acute endotoxemia. Experimental and Molecular Pathology 84: 145–155.PubMedCrossRef Chen, L.C., J.D. Laskin, M.K. Gordon, and D.L. Laskin. 2008. Regulation of TREM expression in hepatic macrophages and endothelial cells during acute endotoxemia. Experimental and Molecular Pathology 84: 145–155.PubMedCrossRef
38.
Zurück zum Zitat Ford, J.W., and D.W. McVicar. 2009. TREM and TREM-like receptors in inflammation and disease. Current Opinion in Immunology 21: 38–46.PubMedCrossRef Ford, J.W., and D.W. McVicar. 2009. TREM and TREM-like receptors in inflammation and disease. Current Opinion in Immunology 21: 38–46.PubMedCrossRef
39.
Zurück zum Zitat Gibot, S., C. Buonsanti, F. Massin, M. Romano, M.N. Kolopp-Sarda, F. Benigni, G.C. Faure, M.C. Bene, P. Panina-Bordignon, N. Passini, and B. Levy. 2006. Modulation of the triggering receptor expressed on the myeloid cell type 1 pathway in murine septic shock. Infection and Immunity 74: 2823–2830.PubMedCrossRef Gibot, S., C. Buonsanti, F. Massin, M. Romano, M.N. Kolopp-Sarda, F. Benigni, G.C. Faure, M.C. Bene, P. Panina-Bordignon, N. Passini, and B. Levy. 2006. Modulation of the triggering receptor expressed on the myeloid cell type 1 pathway in murine septic shock. Infection and Immunity 74: 2823–2830.PubMedCrossRef
40.
Zurück zum Zitat Haselmayer, P., L. Grosse-Hovest, P. von Landenberg, H. Schild, and M.P. Radsak. 2007. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood 110: 1029–1035.PubMedCrossRef Haselmayer, P., L. Grosse-Hovest, P. von Landenberg, H. Schild, and M.P. Radsak. 2007. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood 110: 1029–1035.PubMedCrossRef
41.
Zurück zum Zitat Wong-Baeza, I., N. Gonzalez-Roldan, E. Ferat-Osorio, N. Esquivel-Callejas, R. Aduna-Vicente, L. Arriaga-Pizano, H. Astudillo-de la Vega, M.A. Villasis-Keever, R. Torres-Gonzalez, I. Estrada-Garcia, C. Lopez-Macias, and A. Isibasi. 2006. Triggering receptor expressed on myeloid cells (TREM-1) is regulated post-transcriptionally and its ligand is present in the sera of some septic patients. Clinical and Experimental Immunology 145: 448–455.PubMedCrossRef Wong-Baeza, I., N. Gonzalez-Roldan, E. Ferat-Osorio, N. Esquivel-Callejas, R. Aduna-Vicente, L. Arriaga-Pizano, H. Astudillo-de la Vega, M.A. Villasis-Keever, R. Torres-Gonzalez, I. Estrada-Garcia, C. Lopez-Macias, and A. Isibasi. 2006. Triggering receptor expressed on myeloid cells (TREM-1) is regulated post-transcriptionally and its ligand is present in the sera of some septic patients. Clinical and Experimental Immunology 145: 448–455.PubMedCrossRef
42.
Zurück zum Zitat Mohamadzadeh, M., S.S. Coberley, G.G. Olinger, W.V. Kalina, G. Ruthel, C.L. Fuller, D.L. Swenson, W.D. Pratt, D.B. Kuhns, and A.L. Schmaljohn. 2006. Activation of triggering receptor expressed on myeloid cells-1 on human neutrophils by Marburg and Ebola viruses. Journal of Virology 80: 7235–7244.PubMedCrossRef Mohamadzadeh, M., S.S. Coberley, G.G. Olinger, W.V. Kalina, G. Ruthel, C.L. Fuller, D.L. Swenson, W.D. Pratt, D.B. Kuhns, and A.L. Schmaljohn. 2006. Activation of triggering receptor expressed on myeloid cells-1 on human neutrophils by Marburg and Ebola viruses. Journal of Virology 80: 7235–7244.PubMedCrossRef
43.
Zurück zum Zitat Radsak, M.P., H.R. Salih, H.G. Rammensee, and H. Schild. 2004. Triggering receptor expressed on myeloid cells-1 in neutrophil inflammatory responses: Differential regulation of activation and survival. Journal of Immunology 172: 4956–4963. Radsak, M.P., H.R. Salih, H.G. Rammensee, and H. Schild. 2004. Triggering receptor expressed on myeloid cells-1 in neutrophil inflammatory responses: Differential regulation of activation and survival. Journal of Immunology 172: 4956–4963.
44.
Zurück zum Zitat Bouchon, A., F. Facchetti, M.A. Weigand, and M. Colonna. 2001. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410: 1103–1107.PubMedCrossRef Bouchon, A., F. Facchetti, M.A. Weigand, and M. Colonna. 2001. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410: 1103–1107.PubMedCrossRef
45.
Zurück zum Zitat Netea, M.G., T. Azam, G. Ferwerda, S.E. Girardin, S.H. Kim, and C.A. Dinarello. 2006. Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the NACHT-LRR (NLR) pattern recognition receptors. Journal of Leukocyte Biology 80: 1454–1461.PubMedCrossRef Netea, M.G., T. Azam, G. Ferwerda, S.E. Girardin, S.H. Kim, and C.A. Dinarello. 2006. Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the NACHT-LRR (NLR) pattern recognition receptors. Journal of Leukocyte Biology 80: 1454–1461.PubMedCrossRef
46.
Zurück zum Zitat Schenk, M., A. Bouchon, F. Seibold, and C. Mueller. 2007. TREM-1-expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. Journal of Clinical Investigation 117: 3097–3106.PubMedCrossRef Schenk, M., A. Bouchon, F. Seibold, and C. Mueller. 2007. TREM-1-expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. Journal of Clinical Investigation 117: 3097–3106.PubMedCrossRef
47.
Zurück zum Zitat Gibot, S., F. Massin, C. Alauzet, M. Derive, C. Montemont, S. Collin, S. Fremont, and B. Levy. 2010. Effects of the TREM-1 pathway modulation during hemorrhagic shock in rats. Shock 32(6): 633–637.CrossRef Gibot, S., F. Massin, C. Alauzet, M. Derive, C. Montemont, S. Collin, S. Fremont, and B. Levy. 2010. Effects of the TREM-1 pathway modulation during hemorrhagic shock in rats. Shock 32(6): 633–637.CrossRef
48.
Zurück zum Zitat Lagler, H., O. Sharif, I. Haslinger, U. Matt, K. Stich, T. Furtner, B. Doninger, K. Schmid, R. Gattringer, A.F. de Vos, and S. Knapp. 2009. TREM-1 activation alters the dynamics of pulmonary IRAK-M expression in vivo and improves host defense during pneumococcal pneumonia. Journal of Immunology 183: 2027–2036.CrossRef Lagler, H., O. Sharif, I. Haslinger, U. Matt, K. Stich, T. Furtner, B. Doninger, K. Schmid, R. Gattringer, A.F. de Vos, and S. Knapp. 2009. TREM-1 activation alters the dynamics of pulmonary IRAK-M expression in vivo and improves host defense during pneumococcal pneumonia. Journal of Immunology 183: 2027–2036.CrossRef
49.
Zurück zum Zitat Gibot, S., F. Massin, M. Marcou, V. Taylor, R. Stidwill, P. Wilson, M. Singer, and G. Bellingan. 2007. TREM-1 promotes survival during septic shock in mice. European Journal of Immunology 37: 456–466.PubMedCrossRef Gibot, S., F. Massin, M. Marcou, V. Taylor, R. Stidwill, P. Wilson, M. Singer, and G. Bellingan. 2007. TREM-1 promotes survival during septic shock in mice. European Journal of Immunology 37: 456–466.PubMedCrossRef
50.
Zurück zum Zitat Darveau, R.P., and R.E. Hancock. 1983. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. Journal of Bacteriology 155: 831–838.PubMed Darveau, R.P., and R.E. Hancock. 1983. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. Journal of Bacteriology 155: 831–838.PubMed
51.
Zurück zum Zitat Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29: e45.PubMedCrossRef Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29: e45.PubMedCrossRef
52.
Zurück zum Zitat Knapp, S., S. Gibot, A. de Vos, H.H. Versteeg, M. Colonna, and T. van der Poll. 2004. Cutting edge: Expression patterns of surface and soluble triggering receptor expressed on myeloid cells-1 in human endotoxemia. Journal of Immunology 173: 7131–7134. Knapp, S., S. Gibot, A. de Vos, H.H. Versteeg, M. Colonna, and T. van der Poll. 2004. Cutting edge: Expression patterns of surface and soluble triggering receptor expressed on myeloid cells-1 in human endotoxemia. Journal of Immunology 173: 7131–7134.
53.
Zurück zum Zitat Gomez-Pina, V., A. Soares-Schanoski, A. Rodriguez-Rojas, C. Del Fresno, F. Garcia, M.T. Vallejo-Cremades, I. Fernandez-Ruiz, F. Arnalich, P. Fuentes-Prior, and E. Lopez-Collazo. 2007. Metalloproteinases shed TREM-1 ectodomain from lipopolysaccharide-stimulated human monocytes. Journal of Immunology 179: 4065–4073. Gomez-Pina, V., A. Soares-Schanoski, A. Rodriguez-Rojas, C. Del Fresno, F. Garcia, M.T. Vallejo-Cremades, I. Fernandez-Ruiz, F. Arnalich, P. Fuentes-Prior, and E. Lopez-Collazo. 2007. Metalloproteinases shed TREM-1 ectodomain from lipopolysaccharide-stimulated human monocytes. Journal of Immunology 179: 4065–4073.
54.
Zurück zum Zitat Girardin, S.E., L.H. Travassos, M. Herve, D. Blanot, I.G. Boneca, D.J. Philpott, P.J. Sansonetti, and D. Mengin-Lecreulx. 2003. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. The Journal of Biological Chemistry 278: 41702–41708.PubMedCrossRef Girardin, S.E., L.H. Travassos, M. Herve, D. Blanot, I.G. Boneca, D.J. Philpott, P.J. Sansonetti, and D. Mengin-Lecreulx. 2003. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. The Journal of Biological Chemistry 278: 41702–41708.PubMedCrossRef
55.
Zurück zum Zitat Kanneganti, T.D., M. Lamkanfi, and G. Nunez. 2007. Intracellular NOD-like receptors in host defense and disease. Immunity 27: 549–559.PubMedCrossRef Kanneganti, T.D., M. Lamkanfi, and G. Nunez. 2007. Intracellular NOD-like receptors in host defense and disease. Immunity 27: 549–559.PubMedCrossRef
56.
Zurück zum Zitat Girardin, S.E., I.G. Boneca, J. Viala, M. Chamaillard, A. Labigne, G. Thomas, D.J. Philpott, and P.J. Sansonetti. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. The Journal of Biological Chemistry 278: 8869–8872.PubMedCrossRef Girardin, S.E., I.G. Boneca, J. Viala, M. Chamaillard, A. Labigne, G. Thomas, D.J. Philpott, and P.J. Sansonetti. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. The Journal of Biological Chemistry 278: 8869–8872.PubMedCrossRef
57.
Zurück zum Zitat Dziarski, R., and D. Gupta. 2005. Staphylococcus aureus peptidoglycan is a toll-like receptor 2 activator: A reevaluation. Infection and Immunity 73: 5212–5216.PubMedCrossRef Dziarski, R., and D. Gupta. 2005. Staphylococcus aureus peptidoglycan is a toll-like receptor 2 activator: A reevaluation. Infection and Immunity 73: 5212–5216.PubMedCrossRef
58.
Zurück zum Zitat Travassos, L.H., S.E. Girardin, D.J. Philpott, D. Blanot, M.A. Nahori, C. Werts, and I.G. Boneca. 2004. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Reports 5: 1000–1006.PubMedCrossRef Travassos, L.H., S.E. Girardin, D.J. Philpott, D. Blanot, M.A. Nahori, C. Werts, and I.G. Boneca. 2004. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Reports 5: 1000–1006.PubMedCrossRef
59.
Zurück zum Zitat Zahringer, U., B. Lindner, S. Inamura, H. Heine, and C. Alexander. 2008. TLR2—Promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology 213: 205–224.PubMedCrossRef Zahringer, U., B. Lindner, S. Inamura, H. Heine, and C. Alexander. 2008. TLR2—Promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology 213: 205–224.PubMedCrossRef
60.
Zurück zum Zitat Akira, S., and K. Takeda. 2004. Toll-like receptor signalling. Nature Reviews. Immunology 4: 499–511.PubMedCrossRef Akira, S., and K. Takeda. 2004. Toll-like receptor signalling. Nature Reviews. Immunology 4: 499–511.PubMedCrossRef
61.
Zurück zum Zitat Rittirsch, D., M.A. Flierl, and P.A. Ward. 2008. Harmful molecular mechanisms in sepsis. Nature Reviews. Immunology 8: 776–787.PubMedCrossRef Rittirsch, D., M.A. Flierl, and P.A. Ward. 2008. Harmful molecular mechanisms in sepsis. Nature Reviews. Immunology 8: 776–787.PubMedCrossRef
62.
Zurück zum Zitat Riedemann, N.C., R.F. Guo, and P.A. Ward. 2003. The enigma of sepsis. Journal of Clinical Investigation 112: 460–467.PubMed Riedemann, N.C., R.F. Guo, and P.A. Ward. 2003. The enigma of sepsis. Journal of Clinical Investigation 112: 460–467.PubMed
63.
Zurück zum Zitat Mookherjee, N., H.L. Wilson, S. Doria, Y. Popowych, R. Falsafi, J.J. Yu, Y. Li, S. Veatch, F.M. Roche, K.L. Brown, F.S. Brinkman, K. Hokamp, A. Potter, L.A. Babiuk, P.J. Griebel, and R.E. Hancock. 2006. Bovine and human cathelicidin cationic host defense peptides similarly suppress transcriptional responses to bacterial lipopolysaccharide. Journal of Leukocyte Biology 80: 1563–1574.PubMedCrossRef Mookherjee, N., H.L. Wilson, S. Doria, Y. Popowych, R. Falsafi, J.J. Yu, Y. Li, S. Veatch, F.M. Roche, K.L. Brown, F.S. Brinkman, K. Hokamp, A. Potter, L.A. Babiuk, P.J. Griebel, and R.E. Hancock. 2006. Bovine and human cathelicidin cationic host defense peptides similarly suppress transcriptional responses to bacterial lipopolysaccharide. Journal of Leukocyte Biology 80: 1563–1574.PubMedCrossRef
64.
Zurück zum Zitat Nijnik, A., J. Pistolic, A. Wyatt, S. Tam, and R.E. Hancock. 2009. Human cathelicidin peptide LL-37 modulates the effects of IFN-gamma on APCs. Journal of Immunology 183: 5788–5798.CrossRef Nijnik, A., J. Pistolic, A. Wyatt, S. Tam, and R.E. Hancock. 2009. Human cathelicidin peptide LL-37 modulates the effects of IFN-gamma on APCs. Journal of Immunology 183: 5788–5798.CrossRef
65.
Zurück zum Zitat Heng, Z., Heiderscheidt, C.A., Joo, M., Gao, X., Knezevic, N., Mehta, D., and Sadikot, R.T. 2010. MyD88-dependent and -independent activation of TREM-1 via specific TLR ligands. Eur J Immunol 40(1) :162–171. Heng, Z., Heiderscheidt, C.A., Joo, M., Gao, X., Knezevic, N., Mehta, D., and Sadikot, R.T. 2010. MyD88-dependent and -independent activation of TREM-1 via specific TLR ligands. Eur J Immunol 40(1) :162–171.
66.
Zurück zum Zitat Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443–451.PubMedCrossRef Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443–451.PubMedCrossRef
67.
Zurück zum Zitat Yoshimura, A., E. Lien, R.R. Ingalls, E. Tuomanen, R. Dziarski, and D. Golenbock. 1999. Cutting edge: Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. Journal of Immunology 163: 1–5. Yoshimura, A., E. Lien, R.R. Ingalls, E. Tuomanen, R. Dziarski, and D. Golenbock. 1999. Cutting edge: Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. Journal of Immunology 163: 1–5.
68.
Zurück zum Zitat Schwandner, R., R. Dziarski, H. Wesche, M. Rothe, and C.J. Kirschning. 1999. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. The Journal of Biological Chemistry 274: 17406–17409.PubMedCrossRef Schwandner, R., R. Dziarski, H. Wesche, M. Rothe, and C.J. Kirschning. 1999. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. The Journal of Biological Chemistry 274: 17406–17409.PubMedCrossRef
69.
Zurück zum Zitat Carneiro, L.A., L.H. Travassos, and D.J. Philpott. 2004. Innate immune recognition of microbes through Nod1 and Nod2: Implications for disease. Microbes and Infection 6: 609–616.PubMedCrossRef Carneiro, L.A., L.H. Travassos, and D.J. Philpott. 2004. Innate immune recognition of microbes through Nod1 and Nod2: Implications for disease. Microbes and Infection 6: 609–616.PubMedCrossRef
70.
Zurück zum Zitat Lau, Y.E., A. Rozek, M.G. Scott, D.L. Goosney, D.J. Davidson, and R.E. Hancock. 2005. Interaction and cellular localization of the human host defense peptide LL-37 with lung epithelial cells. Infection and Immunity 73: 583–591.PubMedCrossRef Lau, Y.E., A. Rozek, M.G. Scott, D.L. Goosney, D.J. Davidson, and R.E. Hancock. 2005. Interaction and cellular localization of the human host defense peptide LL-37 with lung epithelial cells. Infection and Immunity 73: 583–591.PubMedCrossRef
71.
Zurück zum Zitat Mookherjee, N., D.N. Lippert, P. Hamill, R. Falsafi, A. Nijnik, J. Kindrachuk, J. Pistolic, J. Gardy, P. Miri, M. Naseer, L.J. Foster, and R.E. Hancock. 2009. Intracellular receptor for human host defense peptide LL-37 in monocytes. Journal of Immunology 183: 2688–2696.CrossRef Mookherjee, N., D.N. Lippert, P. Hamill, R. Falsafi, A. Nijnik, J. Kindrachuk, J. Pistolic, J. Gardy, P. Miri, M. Naseer, L.J. Foster, and R.E. Hancock. 2009. Intracellular receptor for human host defense peptide LL-37 in monocytes. Journal of Immunology 183: 2688–2696.CrossRef
72.
Zurück zum Zitat Sandgren, S., A. Wittrup, F. Cheng, M. Jonsson, E. Eklund, S. Busch, and M. Belting. 2004. The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. The Journal of Biological Chemistry 279: 17951–17956.PubMedCrossRef Sandgren, S., A. Wittrup, F. Cheng, M. Jonsson, E. Eklund, S. Busch, and M. Belting. 2004. The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. The Journal of Biological Chemistry 279: 17951–17956.PubMedCrossRef
Metadaten
Titel
Cathelicidin Peptide LL-37 Modulates TREM-1 Expression and Inflammatory Responses to Microbial Compounds
verfasst von
Gimano D. Amatngalim
Anastasia Nijnik
Pieter S. Hiemstra
Robert E. W. Hancock
Publikationsdatum
01.10.2011
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2011
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-010-9248-6

Weitere Artikel der Ausgabe 5/2011

Inflammation 5/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.