Skip to main content
Erschienen in: Obesity Surgery 1/2020

Open Access 15.08.2019 | Original Contributions

Changes in Bone Metabolism After Sleeve Gastrectomy Versus Gastric Bypass: a Meta-Analysis

verfasst von: Zhao Tian, Xin-Tong Fan, Shi-Zhen Li, Ting Zhai, Jing Dong

Erschienen in: Obesity Surgery | Ausgabe 1/2020

Abstract

Background

Gastric bypass (GB) and sleeve gastrectomy (SG) are two common types of bariatric surgery that carry many potential complications. Among these complications, bone metabolism-related diseases have attracted substantial attention; however, no meta-analysis of them has been performed to date.

Methods

We searched PubMed, Web of Science, The Cochrane Library, and Embase to identify relevant studies published before January 2019. The following indicators were evaluated: serum parathyroid hormone (PTH), calcium, phosphorus and 25-hydroxyvitamin D levels, body mass index (BMI), and bone mineral density (BMD).

Results

Thirteen studies met our inclusion criteria. Overall results showed that patients undergoing GB had lower levels of 25-hydroxyvitamin D (MD = − 1.85, 95% CI (− 3.32, − 0.39) P = 0.01) and calcium (MD = − 0.15, 95% CI (− 0.24, − 0.07) P = 0.0006) as well as higher levels of PTH (MD = 3.58, 95% CI (0.61, 7.09) P = 0.02) and phosphorus (MD = 0.22, 95% CI (0.10, 0.35) P = 0.0005). The results of BMI and BMD were comparable in each group.

Conclusion

Our meta-analysis suggested that obese patients undergoing GB had lower levels of serum calcium and 25-hydroxyvitamin D as well as higher levels of serum phosphorus and PTH. To prevent postoperative bone metabolism-related diseases, appropriate postoperative interventions should be undertaken for particular surgical procedures.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s11695-019-04119-5) contains supplementary material, which is available to authorized users.
Zhao Tian and Xin-Tong Fan contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Most recent estimates suggest that more than 1/3 of world population is overweight. Obesity is becoming an even more serious problem with the increasing incidence of obesity-related diseases. Overweight and obesity are closely associated with many severe health problems, including type 2 diabetes, hypertension, cancer, sleep apnea, cardiovascular disease, hyperlipidemia, and stroke [1, 2].
Bariatric surgery is an established treatment for obesity and its complications. Nevertheless, a growing body of evidence indicates that bariatric surgery might lead to severe bone metabolism disorders: acceleration of bone remodeling, significantly elevated bone turnover, and decreased bone mineral density (BMD) [3]. Following these pathological changes is the markedly increased incidence of fractures [4, 5], osteoporosis [6], osteomalacia [7], and other bone-related diseases. Gastric bypass (GB) is currently one of the most popular bariatric procedures [8]. Sleeve gastrectomy (SG), which maintains the integrity of pylorus and bowel, is another commonly used approach to weight loss [9]. Extensive systematic reviews and meta-analyses have compared these two operations from many perspectives, including efficiency of weight loss [10, 11], curative effects on type 2 diabetes [12, 13], and other obesity-related comorbidities [14, 15]. Nevertheless, to date, no meta-analysis has been performed to demonstrate which procedure is superior with respect to bone-related complications.
Because concern is growing regarding bone-related complications induced by bariatric surgeries, a further literature review is needed to assess the latest scientific evidence comparing these two bariatric surgeries. Despite the fact that patients receive timely vitamin D and mineral supplementation after bariatric surgery, some patients nevertheless suffered osteomalacia, osteopenia, and osteoporosis [16]. This suggests that some deficiency might exist in the current supplementation strategies in terms of the defense against unbalanced bone metabolism. The bariatric procedure with more severe influence on endogenous bone metabolism requires higher quantities of relevant micronutrient supplementation. Therefore, the aim of our study was to identify the safer of two bariatric surgeries with respect to bone-related complications and to provide a theoretical basis for the establishment of clinical guidance for bone-related disease prevention after bariatric surgery.

Materials and Methods

This meta-analysis was based on the Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines [17] and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [18].

Data Sources and Searches

Databases searched included PubMed, Web of Science, the Cochrane Library, and Embase. The final search was carried out on 9 January 2019. Our full search strategy in PubMed was presented in supplementary materials.

Study Selection

Inclusion criteria were as follows: (i) original comparative reports with ≥ 5 patients; (ii) written in English; (iii) conducted on human subjects; (iv) observation of related indices of bone metabolism after SG and GB.
Exclusion criteria were as follows: (i) studies with unreliable design or substantial statistical errors; (ii) only one type of bariatric surgery included; and (iii) patients with stomach, kidney, liver, or any bone disease that might affect bone metabolism.

Data Extraction and Quality Assessment

Both included studies and data extraction were evaluated independently by two investigators (Tian and Fan) using a standardized tool. If there were discrepancies, they were resolved through discussion or resolution by a third investigator. We extracted the data measured at the end point of every study and we selected the most complete and recent data if several articles were derived from the same population. The information collected was as follows: first author, publication year, country, study design, age, BMI, BMD, serum calcium, phosphorus, parathyroid hormone, and 25-hydroxyvitamin D levels before and after the surgery.
The Newcastle-Ottawa Scale (NOS) was employed to judge the quality of included cohort studies and case-control studies [19]. A score of 0–9 stars was used to assess their quality. We considered a study as high quality when the score reached greater than six stars, and other studies were regarded as moderate. The Cochrane methodology was used to evaluate the quality of the included RCTs. Each criterion was judged as low, unknown, or high-risk bias. A risk of bias summary was used to place the results of the assertion.

Statistical Analysis

Statistical analysis was performed using Review Manager (RevMan 5.3) statistical software and Stata 12.0. Continuous variables were analyzed using mean differences (MD) and 95% confidence intervals (CIs). We used Cochran’s Q (chi-square) test to quantify the heterogeneity [20], and a random effect model was used to estimate pooled effect sizes [21]. P < 0.05 was defined as statistical significance. Subgroup analysis was performed according to time course, measurement method, study design, and operative technique. Potential publication bias was evaluated using Egger’s test [22] and Begg’s test [23].

Results

The detailed steps for the literature search are presented in Fig. 1. The initial literature search yielded 395 articles, and 116 from them were deleted because of duplication. Two reviewers then excluded 238 articles after screening titles and abstracts independently, and 41 articles were assessed for eligibility. Ultimately, 13 studies [2436] were selected for inclusion.

Study Characteristics and Quality Assessment

The 13 included studies were published from 2010 to 2018. The GB group included 734 patients, while the SG group included 769 patients. The characteristics and quality assessment of the studies are presented in Table 1 and Supplement materials. Nine studies [2629, 31, 3336] focused on laparoscopic surgery, and the remaining four [24, 25, 30, 32] dealt with unknown surgery. Circulating calcium, phosphorus, parathyroid hormone, and 25-hydroxyvitamin D levels in all included studies were examined after overnight fasting except for one study [24] in which there was no detailed explanation. Blood samples were obtained from serum except two studies where they were obtained from plasma [30, 35]. Bone mineral density was measured using dual-energy X-ray absorptiometry (DEXA) in all related studies. Three authors independently reviewed and cross-checked the articles, and all agreed that the relevant studies were qualified.
Table 1
Characteristics of the included studies
Study
Region
Study type
Surgical (M/F)
Follow (month)
Age (years)
Initial BMI (kg/m2)
Initial calcium (mg/dl)
Initial phosphorus (ng/ml)
Initial 25-hydroxyvitamin D (ng/ml)
Initial parathyroid (pg/ml)
Normal range
9–11
3–5
> 30
10–65
Muriel Coupaye 2013
France
Cohort
LGB (12/31)
12
45 ± 11
48.5 ± 9.6
9.82 ± 0.36
3.503 ± 0.527
14.8 ± 10.7
52.1 ± 28.5
LSG (12/31)
 
44 ± 9
48.6 ± 7.8
9.14 ± 0.4
3.41 ± 0.527
15.2 ± 8.7
52 ± 28
Nuria Vilarrasa 2013
Spain
Cohort
RYGB (0/33)
12
49.7 ± 8.4
46.87 ± 4.8
9.34 ± 0.6
3.78 ± 0.9
20.16 ± 8.02
42.36 ± 17.63
SG (0/33)
 
45.8 ± 12
49.06 ± 7.2
9.26 ± 0.4
3.66 ± 0.68
17.66 ± 8.02
49.91 ± 24.82
Michel Vix 2013
France
RCT
LRYGB (6/39)
12
35.23 ± 9.37
47.0 ± 5.64
50.1 ± 16.39
LSG (12/43)
 
35.13 ± 9.7
45.5 ± 4.79
52.5 ± 17.34
Fernando Carrasco 2014
Chile
Cohort
GB (0/23)
12
36.9 ± 8.4
42.0 ± 3.8
20.5 ± 9.2
SG (0/20)
 
33.5 ± 8.6
37.4 ± 2.9
26.2 ± 12.7
Enrique Lanzarini 2015
Spain
Cohort
LRYGB (68)
24
42.5 ± 8.5
44.9 ± 2.8
14.8 ± 2.8
51.3 ± 25.6
LSG (96)
 
45.7 ± 8.9
43 ± 5.5
15.2 ± 7
54.4 ± 24.5
Hong Chang Tan 2015
Singapore
Cohort
LRYGB (5/5)
12
45.6 ± 9.1
36.7 ± 4.4
LSG (4/8)
 
36.3 ± 8
40.5 ± 6.6
Ming-Che Hsin, M.D. 2015
Taiwan
Case control
LRYGB (13/27)
12
29.9 ± 4.8
39.8 ± 3.4
LSG (13/27)
 
30.0 ± 6.4
39.5 ± 3.1
Miriam A. Bredella 2016
United States
Cohort
RYGB (2/9)
12
48.6 ± 8.9
44.1 ± 5.1
9.5 ± 0.5
25.5 ± 5.7
51.1 ± 16.1
SG (1/9)
 
49.6 ± 13.6
43.7 ± 5.9
9.6 ± 0.5
31.2 ± 12.7
62.9 ± 33.9
Andoni Lancha 2014
Spain
Cohort
LRYGB (8/32)
15
38.7 ± 13.5
45.2 ± 7.9
9.07 ± 0.42
3.41 ± 0.55
10.1 ± 4.6
85.4 ± 33.3
LSG (4/7)
 
44.3 ± 10.5
40.4 ± 6.1
8.4 ± 0.5
3.24 ± 0.53
13.5 ± 8.1
117.4 ± 66.3
Jih-Hua Wei 2014
Taiwan
Retrospective review
LRYGB (88/234)
12
35.8 ± 10.5
38.9 ± 7.5
9.1 ± 0.6
13.5 ± 6
50.9 ± 26.8
LSG (109/251)
 
34.8 ± 9.9
38.5 ± 7.4
9.1 ± 0.6
9.5 ± 5.3
53.6 ± 29.8
Megan R. Crawford, DO 2017
American
RCT
RYGB (21/16)
60
47.4 ± 8.8
37.3 ± 3.2
9.7 ± 0.52
21.6 ± 10
39.6 ± 17.1
SG (25/8)
 
47.8 ± 7.7
35.9 ± 4.1
9.5 ± 0.56
26.3 ± 15
44.4 ± 25.8
Muriel Coupaye 2012
France
Cohort
LRYGB (8/22)
6
45.6 ± 7.9
49.8 ± 8.4
8.98 ± 0.36
3.5 ± 0.56
14 ± 9.6
47.6 ± 25.6
LSG (8/22)
 
47.7 ± 9.7
49.6 ± 10.4
9.18 ± 0.44
3.4 ± 0.56
15.2 ± 9.5
54.9 ± 31.3
Fernando Carrasco 2018
Chile
Cohort
RYGB (32)
24
42.0 ± 4.2
8.82 ± 0.49
3.83 ± 0.52
20.9 ± 10.2
SG (26)
 
37.3 ± 3.2
9.13 ± 0.61
3.92 ± 0.49
26.8 ± 12.8
Data presented as means ± SD. RCT, randomized controlled trial; GB, gastric bypass; SG, sleeve gastrectomy; RYGB, Roux-en-Y gastric bypass; L, laparoscopic; Subject M/F, subject male/female

Overall Analysis

BMI After GB Versus SG

As shown in Supplement Fig. 2, no significant difference was detected in terms of BMI (MD = − 0.05, 95% CI (− 0.78, 0.69) P = 0.90) after GB versus SG.

Calcium, Phosphorus, Parathyroid Hormone, and 25-Hydroxyvitamin D Levels After GB Versus SG

The results of meta-analysis revealed a more significant deficiency of 25-hydroxyvitamin D (MD = − 1.85, 95% CI (− 3.32, − 0.39) P = 0.01, Fig. 2) in the GB group. The circulating levels of parathyroid hormone were similar in patients undergoing SG and GB surgery (Supplement Fig. 3). Patients in the GB group had lower levels of calcium (MD = − 0.15, 95% CI (− 0.24, − 0.07) P = 0.0006, Fig. 3) and higher levels of phosphorus (MD = 0.22, 95% CI (0.10, 0.35) P = 0.0005, Fig. 3) than did the SG group.

Bone Density Changes

No significant difference was detected in BMD between the groups, regardless of location tested: femoral neck, lumbar spine, total hip, or total body (Fig. 4).

Subgroup Analysis

Because of high heterogeneity of PTH index in the overall analysis, we conducted a subgroup analysis to explore the source of heterogeneity. In subgroup analysis, study type (RCT or non-RCT), blood sample (plasma or serum), measuring method (ELISA or (E)CLIA), operative technique (laparoscopic, open/unknown), and follow-up time (short-term or long-term) were considered when we investigated the results of PTH. As illustrated in Table 2, the outcomes were of either high heterogeneity or no significance based on the presented evidence. We then performed an influence analysis (Supplement Fig. 4) and found that the article from Vix et al. [27] was the main source of heterogeneity. On the basis of the results of the influence analysis and the medium quality of this article, we doubted the credibility of their data and excluded this article when analyzing PTH. We found that the heterogeneity was completely eliminated and the PTH levels of the GB group were significantly higher than that of the SG group (MD = 3.58, 95% CI (0.61, 7.09) P = 0.02, Fig. 2).
Table 2
Summary risk estimates of parathyroid levels after GB versus SG
 
Number of studies
Number of participants (GB and SG)
Random effects SMD (95% CI)
I2 (%)
P value
Overall
9
609,644
5.41 [− 1.12, 11.95]
79
0.1
Subgroup analysis
  Blood sample
    Serum
7
536,600
6.09 [− 1.47, 13.64]
83
0.11
    Plasma
2
73,44
1.78 [− 7.20, 10.77]
0
0.7
  Measuring method
    ELISA
4
458,527
7.87 [− 2.72, 18.47]
90
0.15
    (E)CLIA
5
151,117
2.72 [− 2.84, 8.29]
0
0.34
  Operative technique
    Laparoscopic
6
528,568
7.13 [− 1.09, 15.36]
85
0.09
    Unknown/open
3
81,76
1.45 [− 5.61, 8.52]
0
0.69
  Follow-up time
    Short-term
5
142,144
5.71 [− 5.61, 17.03]
84
0.32
    Long-term
4
467,500
4.46 [− 0.91, 9.82]
37
0.1
  Study type
    RCT
2
75,74
3.54 [0.03, 7.05]
83
0.06
    Non-RCT
7
534,570
14.27 [− 0.50, 29.03]
4
0.05
SMD, standard mean difference; CI, confidence interval; ELISA, enzyme-linked immune sorbent assay; (E)CLIA, (electro) chemiluminescent immunoassay; RCT, randomized controlled trial

Publication Bias

Publication bias was measured using Egger’s test (T = 1.36, P = 0.194 > 0.1) and Begg’s test (Z = 0.16, P = 0.876 > 0.1). No publication bias was detected among the included articles.

Discussion

The skeleton plays crucial roles in supporting body weight, movement, maintaining blood calcium levels, phosphorus balance, and hematopoiesis. As bariatric surgery has become increasingly popular for weight loss and glucose control [37], postoperative changes in bone mineral metabolism have raised widespread concerns in recent years [38]. GB and SG are two of the most common bariatric procedures [39, 40]. Previous studies concluded that they had comparable effects on weight loss and type 2 diabetes remission [10, 13] while Osland et al. found that fewer early minor and major complications were associated with SG than with GB. In the context of these concerns and controversies, no meta-analysis regarding bone metabolism-related syndromes had been published previously. Therefore, we explored the differences between these two surgical procedures in terms of bone metabolism-related indices.
As early as the 1980s, Krolner et al. demonstrated that bariatric surgery could lead to osteoporosis, suggesting that osteoporosis was associated with weight loss [41]. However, the mechanism of osteoporosis after weight loss surgery remains unidentified. There are several hypotheses: (1) reduction in mechanical loads on bone followed by a decrease in bone mass resulted from weight loss [42]; (2) postoperative changes in hormones such as leptin, adiponectin, insulin, GLP-1, and ghrelin [4347]; and (3) surgical changes in the gastrointestinal tract leading to deficiencies in vitamin D and calcium [48].
PTH and vitamin D are two primary regulators of bone metabolism. In the kidney, PTH is the main stimulator of vitamin D synthesis, while vitamin D exerts negative feedback on PTH secretion. PTH and vitamin D are crucial to maintenance of phosphate and calcium balance. The former elevates calcium levels and suppresses phosphate metabolism. By contrast, vitamin D stimulates both calcium and phosphate metabolism, to provide sufficient mineral for bone formation [49]. In this meta-analysis, we reviewed these relevant indices of bone metabolism in two classical bariatric procedures. Eight of thirteen included studies reported the serum calcium level of postoperative patients undergoing SG or GB. Except for two studies [35, 36], the remaining six showed similar calcium levels between patients after SG and GB [24, 26, 29, 30, 32, 34]. In our overall analysis, we found that patients treated with GB had lower levels of calcium than did patients undergoing SG. Four studies found that levels of circulative phosphorus were similar [26, 29, 30, 34]. Only Lancha et al. reported the quantitative value of phosphorus in postoperative patients without making a comparison [35]. We observed higher phosphorus levels in patients undergoing GB, contrary to the results for calcium. Two of the included articles showed that vitamin D deficiency was more likely to occur 1 year after GB [29, 31], while other articles found that vitamin D levels were similar [24, 26, 28, 30, 32, 34]. Only one study [31] demonstrated that hyperparathyroidism was more likely to occur after GB, while the remaining studies showed that GB and SG were comparable with respect to the level of serum PTH [24, 26, 2830, 32, 34]. Nevertheless, after analysis, we concluded that obese patients were more likely to suffer from secondary hyperparathyroidism after GB than after SG, although this issue requires more high-quality clinical studies for further confirmation. Carrasco et al. concluded that femoral neck (FN) BMD decreased more profoundly after GB (follow-up of 24 months) [34], while other related studies reported similar results in terms of FN BMD between two groups (follow-up of 12 months) [25, 33]. The inconformity of this result might be due to the different follow-up time. As for the lumbar spine (LS) BMD, all studies found comparable results between GB and SG groups [25, 27, 3335]. Though we found no significant difference in BMD with the presence of differences in other indicators mentioned above, we believe this result could be explained. Only one study that measured BMD [34] had follow-up time reaching 2 years, while the other studies only followed up for 1 year. Only five studies measured BMD; therefore, it is possible that the insignificant difference of BMD is attributable to the insufficiency of follow-up time and lack of included studies.
Our results might raise new concerns regarding current recommendations for vitamin D and calcium supplementation after surgery. Despite universal recommendations for vitamin and mineral supplements, deficiencies in micronutrients remain common after bariatric surgery [50, 51]. Several studies reported that the association between GB and bone loss was partly caused by malabsorption of calcium, phosphate, and vitamin D [52, 53]. Given that SG is a restrictive technique instead of a malabsorptive procedure [51], this could be the main reason for the difference between SG and GB groups regarding calcium, phosphate, and PTH levels. The Endocrine Society proposed that daily intake of vitamin D3 and basic calcium should be 1000 IU and 1200–2000 mg, respectively, for patients undergoing bariatric surgery [54], while other medical societies recommend taking 800 IU vitamin D and at least 1200 mg of basic calcium [55]. We found that the levels of calcium and vitamin D in patients undergoing GB were significantly lower than those of patients undergoing SG; this was followed by a higher probability of suffering from secondary hyperparathyroidism (this result was also reflected in our study). Both SG and GB patients in this study were deficient in vitamin D, and GB patients even had greater degrees of deficiency. GB patients were shown to have significantly lower calcium levels, though calcium levels in both groups were on the edge of the normal range. Therefore, we argue that larger doses of vitamin D should be considered for the daily supplementation of GB patients, and that circulating levels of calcium, 25-hydroxyvitamin D should be monitored more frequently, especially when patients are suffering from vitamin D deficiency or secondary hyperparathyroidism.
Our meta-analysis also has some limitations. First, regarding medical ethics, only two of the trials were randomized controlled trials, and the sample sizes in some studies were comparably limited. The second limitation is that, because of the limited number of included studies, we could not perform adequate combinatorial analysis when performing subgroup analysis, and analyses on many other parameters that might reflect bone metabolism (e.g., alkaline phosphatase, CRP, some hormones like ghrelin and adiponectin, fracture incidence, and T scores) were not considered in the final results. Finally, despite every effort to conduct a comprehensive search, the analysis was still restricted by the quality of individual studies and other important factors could not be further analyzed, including menstrual cycle, eating habits, and ethnic differences, all of which might affect bone metabolism. Considering the limitations of our meta-analysis, further large-scale research with long-term follow-up and comparative nonsurgical controls are still needed in order to suggest improved strategies for the selection of particular surgical procedures, as well as to suggest postoperative nutritional supplements to prevent bone loss and osteoporosis in patients undergoing bariatric procedures.
In summary, the overall analysis suggested that obese patients undergoing GB had lower levels of serum calcium and 25-hydroxyvitamin D as well as higher levels of serum phosphorus. Our results also indicated that GB and SG had similar effects on postoperative BMI, PTH, and BMD. In subgroup analysis, we found individuals in the GB group were more likely to develop hyperparathyroidism. Because the majority of the included studies presented only 12-month data, our results showed the beginning of a trend. The data suggest that longer-term analyses may reveal further separation of levels to the degree of clinical significance. This study is expected to raise our level of attention regarding the selection of surgical procedures, as well as supporting strategies of vitamin D and other supplements for the prevention of bone-related metabolism diseases.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

For this type of study, formal consent is not required.
Does not apply.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Anhänge
Literatur
2.
Zurück zum Zitat Katsareli EA, Dedoussis GV. Biomarkers in the field of obesity and its related comorbidities. Expert Opin Ther Targets. 2014;18(4):385–401.PubMed Katsareli EA, Dedoussis GV. Biomarkers in the field of obesity and its related comorbidities. Expert Opin Ther Targets. 2014;18(4):385–401.PubMed
7.
Zurück zum Zitat Georgoulas TI, Tournis S, Lyritis GP. Development of osteomalacic myopathy in a morbidly obese woman following bariatric surgery. J Musculoskelet Neuronal Interact. 2010;10(4):287–9.PubMed Georgoulas TI, Tournis S, Lyritis GP. Development of osteomalacic myopathy in a morbidly obese woman following bariatric surgery. J Musculoskelet Neuronal Interact. 2010;10(4):287–9.PubMed
9.
Zurück zum Zitat Regan JP, Inabnet WB, Gagner M, et al. Early experience with two-stage laparoscopic Roux-en-Y gastric bypass as an alternative in the super-super obese patient. Obes Surg. 2003;13(6):861–4.PubMed Regan JP, Inabnet WB, Gagner M, et al. Early experience with two-stage laparoscopic Roux-en-Y gastric bypass as an alternative in the super-super obese patient. Obes Surg. 2003;13(6):861–4.PubMed
11.
Zurück zum Zitat Jackson TD, Hutter MM. Morbidity and effectiveness of laparoscopic sleeve gastrectomy, adjustable gastric band, and gastric bypass for morbid obesity. Adv Surg. 2012;46:255–68. ReviewPubMed Jackson TD, Hutter MM. Morbidity and effectiveness of laparoscopic sleeve gastrectomy, adjustable gastric band, and gastric bypass for morbid obesity. Adv Surg. 2012;46:255–68. ReviewPubMed
14.
Zurück zum Zitat Osland E, Yunus RM, Khan S, et al. Postoperative early major and minor complications in laparoscopic vertical sleeve gastrectomy (LVSG) versus laparoscopic Roux-en-Y gastric bypass (LRYGB) procedures: a meta-analysis and systematic review. Obes Surg. 2016;26(10):2273–84. https://doi.org/10.1007/s11695-016-2101-8. ReviewPubMed Osland E, Yunus RM, Khan S, et al. Postoperative early major and minor complications in laparoscopic vertical sleeve gastrectomy (LVSG) versus laparoscopic Roux-en-Y gastric bypass (LRYGB) procedures: a meta-analysis and systematic review. Obes Surg. 2016;26(10):2273–84. https://​doi.​org/​10.​1007/​s11695-016-2101-8. ReviewPubMed
15.
Zurück zum Zitat Li J, Lai D, Wu D. Laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy to treat morbid obesity-related comorbidities: a systematic review and meta-analysis. Obes Surg. 2016;26(2):429–42.PubMed Li J, Lai D, Wu D. Laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy to treat morbid obesity-related comorbidities: a systematic review and meta-analysis. Obes Surg. 2016;26(2):429–42.PubMed
17.
Zurück zum Zitat Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12. Review Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12. Review
20.
Zurück zum Zitat Higgins JP, Thompson SG. Quantifying heterogeneity in a metaanalysis. Stat Med. 2002;21(11):1539–58.PubMed Higgins JP, Thompson SG. Quantifying heterogeneity in a metaanalysis. Stat Med. 2002;21(11):1539–58.PubMed
21.
Zurück zum Zitat DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.PubMed DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.PubMed
22.
Zurück zum Zitat Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997 Sep 13;315(7109):629–34.PubMedPubMedCentral Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997 Sep 13;315(7109):629–34.PubMedPubMedCentral
23.
Zurück zum Zitat Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.PubMed Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.PubMed
26.
Zurück zum Zitat Coupaye M, Rivière P, Breuil MC, et al. Comparison of nutritional status during the first year after sleeve gastrectomy and Roux-en-Y gastric bypass. Obes Surg. 2014;24(2):276–83. Coupaye M, Rivière P, Breuil MC, et al. Comparison of nutritional status during the first year after sleeve gastrectomy and Roux-en-Y gastric bypass. Obes Surg. 2014;24(2):276–83.
33.
Zurück zum Zitat Tan HC, Tan ZW, Tham KW, et al. One year changes in QCT and DXA bone densities following bariatric surgery in a multiethnic Asian cohort. Osteoporos Sarcopenia. 2015;1(2):115–20. Tan HC, Tan ZW, Tham KW, et al. One year changes in QCT and DXA bone densities following bariatric surgery in a multiethnic Asian cohort. Osteoporos Sarcopenia. 2015;1(2):115–20.
39.
Zurück zum Zitat Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37. Review. Erratum in: JAMA. 2005 Apr 13;293(14):1728.PubMed Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37. Review. Erratum in: JAMA. 2005 Apr 13;293(14):1728.PubMed
41.
Zurück zum Zitat Krølner B, Ranløv PJ, Clemmesen T, et al. Bone loss after gastroplasty for morbid obesity: side-effect or adaptive response to weight reduction? Lancet. 1982;1(8278):956–7. Krølner B, Ranløv PJ, Clemmesen T, et al. Bone loss after gastroplasty for morbid obesity: side-effect or adaptive response to weight reduction? Lancet. 1982;1(8278):956–7.
42.
Zurück zum Zitat Lean JM, Jagger CJ, Chambers TJ, et al. Increased insulin-like growth factor I mRNA expression in rat osteocytes in response to mechanical stimulation. Am J Phys. 1995;268(2 Pt 1):E318–27. Lean JM, Jagger CJ, Chambers TJ, et al. Increased insulin-like growth factor I mRNA expression in rat osteocytes in response to mechanical stimulation. Am J Phys. 1995;268(2 Pt 1):E318–27.
46.
Zurück zum Zitat Talbott SM, Cifuentes M, Dunn MG, et al. Energy restriction reduces bone density and biomechanical properties in aged female rats. J Nutr. 2001;131(9):2382–7.PubMed Talbott SM, Cifuentes M, Dunn MG, et al. Energy restriction reduces bone density and biomechanical properties in aged female rats. J Nutr. 2001;131(9):2382–7.PubMed
48.
Zurück zum Zitat Mach MAV, Stoeckli R, Bilz S, et al. Changes in bone mineral content after surgical treatment of morbid obesity. Metabolism. 2004;53(7):918–21.PubMed Mach MAV, Stoeckli R, Bilz S, et al. Changes in bone mineral content after surgical treatment of morbid obesity. Metabolism. 2004;53(7):918–21.PubMed
49.
Zurück zum Zitat Khundmiri SJ, Murray RD, Lederer E. PTH and vitamin D. Compr Physiol. 2015;6(2):561. Khundmiri SJ, Murray RD, Lederer E. PTH and vitamin D. Compr Physiol. 2015;6(2):561.
50.
Zurück zum Zitat Fried M, Yumuk V, Oppert JM, et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes Facts. 2013;6:449–68.PubMedPubMedCentral Fried M, Yumuk V, Oppert JM, et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes Facts. 2013;6:449–68.PubMedPubMedCentral
51.
Zurück zum Zitat Bal BS, Finelli FC, Shope TR, et al. Nutritional deficiencies after bariatric surgery. Nat Rev Endocrinol. 2012;8:544–56.PubMed Bal BS, Finelli FC, Shope TR, et al. Nutritional deficiencies after bariatric surgery. Nat Rev Endocrinol. 2012;8:544–56.PubMed
52.
Zurück zum Zitat Coates PS, Fernstrom JD, Fernstrom MH, et al. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab. 2004;89:1061–5. Coates PS, Fernstrom JD, Fernstrom MH, et al. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab. 2004;89:1061–5.
53.
Zurück zum Zitat JM G’m, Vilarrasa N, Masdevall C, et al. Regulation of bone mineral density in morbidly obese women: a cross-sectional study in two cohorts before and after bypass surgery. Obes Surg. 2009;19:345–50. JM G’m, Vilarrasa N, Masdevall C, et al. Regulation of bone mineral density in morbidly obese women: a cross-sectional study in two cohorts before and after bypass surgery. Obes Surg. 2009;19:345–50.
Metadaten
Titel
Changes in Bone Metabolism After Sleeve Gastrectomy Versus Gastric Bypass: a Meta-Analysis
verfasst von
Zhao Tian
Xin-Tong Fan
Shi-Zhen Li
Ting Zhai
Jing Dong
Publikationsdatum
15.08.2019
Verlag
Springer US
Erschienen in
Obesity Surgery / Ausgabe 1/2020
Print ISSN: 0960-8923
Elektronische ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-019-04119-5

Weitere Artikel der Ausgabe 1/2020

Obesity Surgery 1/2020 Zur Ausgabe

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Traumatologische Notfälle Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Fehlerkultur in der Medizin – Offenheit zählt!

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.