Skip to main content
Erschienen in: BMC Cancer 1/2018

Open Access 01.12.2018 | Debate

Circular RNA: new star, new hope in cancer

verfasst von: Zikang Zhang, Qing Xie, Dongmei He, Yuan Ling, Yuchao Li, Jiangbin Li, Hua Zhang

Erschienen in: BMC Cancer | Ausgabe 1/2018

Abstract

Background

Circular RNAs are a new class of endogenous non-coding RNA that can function as crucial regulators of diverse cellular processes. The diverse types of circular RNAs with varying cytogenetics in cancer have also been reported.

Main body of the abstract

Circular RNAs can act as a microRNA sponge or through other mechanisms to regulate gene expression as either tumor inhibitors or accelerators, suggesting that circular RNAs can serve as newly developed biomarkers with clinic implications. Here, we summerized recent advances on circular RNAs in cancer and described a circular RNA network associated with tumorigenesis. The clinical implications of circular RNAs in cancer were also discussed in this paper.

Short conclusion

Growing evidence has revealed the crucial regulatory roles of circular RNAs in cancer and the elucidation of functional mechanisms involving circular RNAs would be helpful to construct a circRNA-miRNA-mRNA regulatory network. Moreover, circular RNAs can be easily detected due to their relative stability, widespread expression, and abundance in exosomes, blood and saliva; thus, circular RNAs have potential as new and ideal clinical biomarkers in cancer.
Hinweise
Zikang Zhang and Qing Xie contributed equally to this work.
Abkürzungen
Akt/PKB
v-akt murine thymoma viral oncogene homolog 1/protein kinase B
AR
Androgen receptor
BBC
Basal cell carcinoma
BC
Breast cancer
CCNE1
Cyclin E1
CCRCC
Clear cell renal cell carcinoma
CDK2
Cyclin-dependent kinase2
CDK4
Cyclin-dependent kinase4
CDK6
Cyclin-dependent kinase6
circRNAs
Circular RNAs
CRC
Colorectal cancer
ESCC
Esophageal cancer
EVs
Extracellular vesicles
GC
Gastric cancer
HCC
Hepatocellular carcinoma
miRNA
microRNA
mTOR
Mammalian target of rapamycin
MVI
Microvascular invasion
ncRNA
Non-coding RNA
OS
Overall survival
PDAC
Pancreatic ductal adenocarcinoma
PIK3CD
Phosphoinositide 3-kinase catalytic subunit delta
RBP
RNA binding proteins
RES
Reticuloendothelial system
RT-PCR
Reverse transcription PCR

Background

More than 75% of non-coding RNAs have been found in transcription of the human genome [1]. Circular RNAs (circRNAs), 100 bp to 4 kb in size, were regarded as non-functional by-products of aberrant RNA splicing [2, 3]. Recently, with the improvements in novel next-generation deep sequencing and bioinformatics technology, an increasing number of circRNAs with regulatory functions were found in many tapes of cancers [46]. Unlike linear transcripts, the structures of circRNAs are covalently closed loops without tails in the 5′-3′ port, which stabilizes the structures enough to resist digestion by RNase [710]. CircRNAs are generally classified as three types: exonic circRNAs, exonic-intronic circRNAs and intronic circRNAs. Most exonic circRNAs exist in cytoplasm, whereas the other two are mainly found in cell nucleus [10]. Some circRNAs exist in human body fluid, making them easy to be detected [9, 10]. Most circRNAs are extremely abundant, relatively stable and widely expressed in eukaryotic cells, suggesting that circRNAs have potential regulatory roles [11].
Some circRNAs discovered in human tissues have been related to diverse cellular processes, including senescence, growth and apoptosis, etc. [12, 13]. Moreover, deregulated circRNA expression profiles correlated with some cancers have been identified, suggesting that circRNAs can function as tumor inhibitors or accelerators [14]. Emerging evidence that circRNAs are important regulators in cancer implies they might serve as new clinical biomarkers in cancer [15, 16]. This review concentrates on recent advances in circRNA research in cancer and summarizes the current significance of circRNAs in the clinical implications of cancer.

The regulation mechanisms of circRNAs

The regulation mechanisms of circRNAs have been revealed by increasing studies. The most notable of these mechanisms is that circRNAs can work as microRNA (miRNA) sponges. CircRNAs can block the binding of miRNAs with the 3’ UTR of a specific gene by directly binding to miRNAs, thus indirectly regulating the gene expression [17, 18]. For example, ciRS-7 can function as a sponge of miR-7 and consequently repress its function in cancer [19]. The second mechanism is that circRNAs play as regulators in gene expression by competing with mRNA production in pre-mRNA splicing [20]. Another mechanism of circRNAs involves binding to RNA binding proteins (RBPs) as transcription regulators [15, 16]. Moreover, circRNAs can serve as mRNA traps, another form of alternative splicing, and remove start codons from mature mRNAs to reduce protein translation in cancer [21] (Fig. 1).

Translation of circRNAs

Translation of ncRNAs is poorly noted due to the classic ORFs longer than 100 codon are lacking. With more research on small open reading frames (sORFs), the proteins or peptides with biological functions that are translated by ncRNAs have received more attention [22]. CircRNAs, as a novel form of ncRNAs described in recent studies, have been found to be abundantly expressed in the cytoplasm, suggesting that they have the potential to regulate disease processes via translation of proteins or peptides [23]. Four mechanisms of circRNA protein or peptide translation have been identified. Wang et al. found that artificial synthetic circRNAs with internal ribosome entry sites (IRESs) can be translated [24]. Another mechanism has been found that circRNAs were effectively translated according to roll circle amplification (RCA) in human liver cells [25]. In addition, Yun et al. found that translation of circRNAs was driven by N6-methyladenosine (m6A) in human cells [26]. Recent research has found a novel cap-independent translation mechanism in circRNAs [22]. There have also been exciting breakthroughs in the study of circRNA protein translation as it relates to the regulation of cancer progression. FBXW7-185aa, which is translated from circ-FBXW7, regulates the stability of c-myc and inhibits the development of malignant glioma. This suggests that the functional protein resulting from circRNA translation may be a biomarker or therapeutic target for cancer. This demonstrates a new regulation mechanism of circRNAs in cancer [27] (Fig. 1).

Exosome delivery of circRNAs in cancer

Extracellular vesicles released by cells can be divided into three categories according to origin and size, including microvesicles, apoptotic bodies, and exosomes [28]. Many biological molecules exist in EVs, such as DNA, RNA, bioactive lipids, and proteins [28, 29]. Exosomes are approximately 30 to 100 nm in diameter and can be derived from many cells; in addition, exosomes can be transported from the originating cell to the recipient cell [30]. Exosomes with coding transcripts and non-coding RNAs are easily discovered in accessible body fluids, particularly blood, and are released more frequently by tumor cells, implying that exosomes can act as cancer communication agents to help cancer cells escape from immune surveillance and contribute to tumor formation [30, 31].
Recently, a number of studies have found that more exosomes are released from cancer cells than from normal cells. It was reported that circRNAs in gastric cancer (GC) can be transferred from GC cells to normal cells via exosomes, indicating that exo-circRNAs are important in the peritoneal metastasis of GC [32]. Moreover, deregulated circRNAs have been found in the exosomes of different cancers, and cancer-associated chromosomal translocations generate fusion-circRNAs-exosomes that can promote cellular transformation and tumor progression [33, 34]. Interestingly, other studies have also found that exosomes can participate in the clearance of intracellular circRNAs, and exosomes themselves can be further cleared by the reticuloendothelial system (RES) or excreted via the liver or kidneys [35, 36] (Fig. 1).

Expression profiles and identification of circRNAs in cancer

As microarray chip and next-generation sequencing technologies have been developed, many circRNAs were examined or identified in cancer samples. The expression profiles of circRNAs during the early stages of pancreatic ductal adenocarcinoma (PDAC) have been demonstrated, which revealed that deregulated circRNAs may participate in the progression of PDAC and potentially serve as a novel therapeutic biomarker [37, 38]. In another study, microarray analysis also showed that circRNA_100855 and circRNA_104912 are the most significantly deregulated circRNAs in laryngeal cancer tissues, whereas circRNA_001059 and circRNA_000167 are significantly deregulated in radioresistant esophageal cancer [39, 40]. In colorectal cancer, 379 dysregulated circRNAs were identified using circRNA microarray analysis [41].
In gliomas, RNA-Seq data showed the existence of over 476 deregulated circRNAs [42]. A recent study identified circRNAs associated with breast cancer subtypes using Circ-Seq [43]. Additionally, circRNA expression profiles in KRAS mutant colon cancer were identified from RNA-Seq data [44].
Interestingly, by combining microarray circRNA expression profiles with bioinformatics target prediction and sequence analysis, many deregulated circRNAs with miRNA response elements (MREs) have been identified in basal cell carcinoma (BBC) and cutaneous squamous cell carcinoma (CSCC) [45, 46]. More recently, it was reported that 69 differentially expressed circRNAs might interact with certain miRNAs to influence mRNA expression in gastric cancer (GC) [47].

The circRNA regulation network in cancer

Although the overall mechanisms of circRNAs in cancers have not been entirely elucidated, crucial regulatory roles of circRNAs in cancer have been revealed. Recent studies on circRNAs mainly focused on the roles as miRNA sponges, interactions with binding proteins and translation into proteins or peptides [22, 48]. An increasing amount of evidence has shown the involvement of circRNAs in regulatory signaling pathways that influence the progression and development of cancer,making circRNAs a potential therapeutic target [49]. Here, a clearer circRNA regulation network in cancer and its relevance to tumorigenesis is summarized (Fig. 2).
CircRNAs regulate apoptosis in cancer. It has been shown that circ-Foxo3 can promote MDM2-induced degradation of p53 by binding to MDM2 and p53; however, circ-Foxo3 contributes more to repression of MDM2-induced Foxo3 ubiquitination by binding to Foxo3 and thus increasing the expression of the downstream gene PUMA to induce apoptosis in breast carcinoma [50, 51]. In another study, increased circUBAP2 was found to upregulate its target Bcl-2 and inhibit apoptosis in osteosarcoma by sponging miR-143 [52].
CircRNAs regulate the cell cycle in cancer. It has been demonstrated that miR-7 can inhibit cancer progression by suppressing CCNE1 and PIK3CD in hepatocellular carcinoma (HCC) [53, 54]. A recent study proved that ciRS-7 can function as an oncogene to halt the cell cycle by upregulating CCNE1 and promoting cell proliferation via PI3K/AKT pathway by directly targeting miR-7 in HCC [55]. Moreover, deregulated miR-217 can target EZH2, which can increase the level of cyclin D1 to accelerate cell cycle progression and lead to malignant transformation. In addition, upregulated circ100284 can bind miR-217 and promote cell cycle progression in arsenic-induced skin cancer [56].
CircRNAs regulate cancer proliferation. The overall expression of circ-CDR1 can also increase EGFR expression and lead to cell proliferation by sponging miR-7 in HCC [57]. Additionally, it was revealed that circ-ITCH can inhibit miR-7 to partly enhance the effect of ITCH, which suppresses cell proliferation by inhibiting the Wnt/β-Catenin pathway in lung cancer and ESCC [58, 59]. In bladder cancer, another study demonstrated that circTCF25 can suppress miR-107 and miR-103a-3p to accelerate proliferation and migration, which led to increased CDK6 and further activation of cyclin D to promote cell cycle progression into the S phase [60].
CircRNAs regulate invasion and metastasis in cancer. Upregulated androgen receptor (AR) expression can accelerate the development of clear cell renal cell carcinoma (CCRCC) by inhibiting miR-145 [61]. Recently, a new mechanism of AR regulation was revealed. AR can enhance migration and invasion through circHIAT1-microRNA-protein signaling, and circHIAT1 can increase signaling by serving as a miRNA suppressor more so than a miRNA sponge in CCRCC [62]. Previous studies demonstrated that E2F5 can promote cell growth and is frequently observed in diverse human cancers [63]. Furthermore, overexpression of circ_001569 accelerates proliferation and invasion through targeting miR-145, which suppresses E2F5 and FMNL2 in colorectal cancer (CRC) [64]. In addition, it was reported that circHIPK3 competes with miR-558 to inhibit heparinase and cause rapid invasion metastasis in bladder cancer [65].
Although the rough roles of several circRNAs in some cancers have been confirmed, the functions and regulation pathways of most circRNAs in cancer remain to be revealed.

Clinically relevant implications of circRNAs in cancer

Differential expression profiling analysis and functional studies of circRNAs in tumors are important for the further understanding of circRNAs and cancer. Meanwhile, similar to microRNAs and lncRNAs, circRNAs also show potential as new independent diagnostic and prognostic biomarkers, which provides new approaches to improve clinical diagnosis and treatment. Here, we summarize currently known cancer-associated circRNAs related to clinical implications in Table 1 and mainly discuss the potential of some circRNAs as clinical biomarkers.
Table 1
Cancer associated circRNAs
Cancer type
CircRNA
Samples
Cases
Expression
Association
Reference
Bladder cancer
CircPTK2
Tissue/blood
40 pairs
Up
Poor differentiation, higher lymph node metastasis and T stage
[83]
Circ-ITCH
Tissue
72 pairs
Down
Higher TNM stage and histological grade
[96]
Esophageal cancer
Has_circ_0067934
Tissue
51 pairs
Up
Poor differentiation and higher TNM stage
[84]
CiRS-7
Tissue
86 pairs
Up
Higher clinical stage and pathological grade
[97]
Colorectal cancer
Hsa_circ_0007534
Tissue
33 pairs
Up
Higher clinical stage and lymph node metastasis
[68]
Hsa_circ_001988
Tissue
31 pairs
Down
Associated with differentiation and perineural invasion
[67]
Hsa_circ_0000069
Tissue
30 pairs
Up
Associated with patient age and TNM stage
[98]
CiRS-7
Tissue
40 pairs
Up
Higher T-stage and metastasis/poor prognosis
[70]
Circular BANP
Tissue
35 pairs
Up
Unknown
[41]
CircRNA0003906
Tissue
122 pairs
Down
Poor differentiation, higher lymphatic metastasis/diagnosis value
[99]
Hsa_circ_0001649
Tissue/blood
Total 146
Down (tissue)/up (blood)
Associated with differentiation
[100]
Circ_0014717
Tissue
46 pairs
Down
Associated with TNM stage and distal metastasis/poor prognosis
[69]
Hsa_circ_0000567
Tissue
102 pairs
Down
Lower clinical stage and lymph node metastasis/diagnosis value
[101]
CircHIPK3
Tissue
Total 218
Up
Associated with TNM stage and metastasis/poor prognosis
[102]
Hepatocellular carcinoma
CiRS-7
Tissue
108 pairs
Up (39.8%)/down (60.2%)
Associated with MVI
[103]
Hsa_circ_0005075
Tissue
66 pairs
Up
Larger size tumors/diagnostic potential
[75]
Hsa_circ_0001649
Tissue
89 pairs
Down
Larger tumor size and tumor embolus formation/poor prognosis
[104]
Hsa_circ_0003570
Tissue
107 pairs
Down
Associated with tumor diameter, differentiation and vascular formation
[73]
CircMTO1
Tissue
261 pairs
Down
Poor prognosis
[74]
CircZKSCAN1
Tissue
102 pairs
Down
Potential diagnostic value
[76]
Hsa_circ_0000673
Tissue
51 pairs
Up
Poor overall survival
[105]
CircC3P1
Tissue
47 pairs
Down
Higher TNM stage, tumor size and vascular invasion
[106]
Gastric cancer
Hsa_circ_002059
Tissue/plasma
Total 147
Down
Associated with distal metastasis, TNM stage, gender and age
[11]
Hsa_circ_0000190
Tissue/plasma
104 pairs
Down
Associated with tumor diameter, metastasis and TNM stage (tissue)/CEA (plasma)
[81]
Circ-104916
Tissue
70 pairs
Down
Higher tumor stage and lymphatic metastasis
[80]
CircRNA_100269
Tissue
112 pairs
Down
Associated with histological subtypes and nodes invasion
[107]
Hsa_circ_0000745
Tissue/plasma
20 pairs
Down
Associated with tumor differentiation (tissue)/node metastasis (plasma)
[108]
Hsa circ 0074362
Tissue
127 pairs
Down
Associated with CA19–9 and lymphatic metastasis
[109]
CircPVT1
Tissue
187 pairs
Up
Associated with overall survival
[110]
Hsa_circ_0006633
Tissue/plasma
Total 338
Down(tissue)/up(plasma)
Associated with distal metastasis and CEA (tissue)
[78]
Hsa_circ_0001895
Tissue
Total 257
Down
Associated with differentiation, Borrmann type and CEA
[111]
Hsa_circ_0014717
Tissue/gastric juice
Total 122
Down
Associated with tumor stage, metastasis, CEA and CA19–9 (tissue)
[79]
Hsa_circ_0003159
Tissue
108 pairs
Down
Higher gender, distal metastasis and node metastasis
[112]
Hsa_circ_0000181
Tissue/plasma
Total 115
Down
Associated with tumor diameter, metastasis and CA19–9 (tissue)/differentiation and CEA
[82]
Hsa_circ_0000520
Tissue
56 pairs
Down
Higher TNM stage
[113]
CircMYO9B
Tissue
21 pairs
Up
Lower survival rate
[114]
Breast cancer
CircGFRA1
Tissue
Total 222
Up
Higher tumor size, TNM stage, lymphatic metastasis and histological grade
[115]
Cir-ITCH
Tissue
Total 78
Up
Associated with age
[58]
CircRNA_100876
Tissue
101 pairs
Up
Associated with lymphatic metastasis and advanced stage
[116]
Osteosarcoma
CircPVT1
Tissue/serum/lung metastasis
Total 80
Up
Poor prognosis/diagnosis value
[95]
Lung cancer
CircFADS2
Tissue
43 pairs
Up
Poor differentiation, advanced TNM stage and lymphatic metastasis
[117]
CircRNA_102231
Tissue
57 pairs
Up
Associated with TNM stage and lymph node metastasis
[118]

CircRNAs in colorectal cancer

Colorectal cancer has become the fourth most deadly cancer in the world, and its occurrence is related to changes in individual genetics [66]. CircRNAs might potentially be a new biomarker to facilitate CRC diagnosis and prognosis. A positive correlation between several deregulated circRNAs in CRC and clinical indicators has been identified. For example, qRT-PCR analysis of 31 CRC patients showed that circ_001988 expression is downregulated and significantly associated with peripheral invasion and less differentiation [67]. Additionally, higher expression of hsa_circ_0007534 in CRC tumor tissue is associated with neoplasm staging and lymphatic metastasis [68]. CircRNAs may be used to predict prognosis in CRC, as Wang et al. found that patients with downregulated hsa_circ_0014717 have poorer OS and poor prognosis [69]. Moreover, overexpressed ciRS-7 can promote aggressiveness of CRC and is positively related with a high T-stage and lymphatic and distant metastasis, implying that ciRS-7 might be releated to a worse prognosis [70].

CircRNAs in hepatocellular carcinoma

HCC is responsible for nearly 90% of primary malignancies of the liver, and patients with advanced stage disease always have poor prognoses [71, 72]. CircRNAs might function as a prognostic predictor and therapeutic target in HCC. One study demonstrated that downregulated circ_0003570 is closely related to tumor diameter, differentiation status and vascular formation in HCC [73]. Another study revealed that downregulated circMTO1 is associated with dismal prognosis in HCC and that upregulated circMTO1 can act as a sponge of miR-9 to increase the level of p21 and inhibit the malignant development of HCC [74]. Moreover, upregulated circ_0005075 is correlated with larger tumor size and increased cell adhesion, whereas downregulated circZKSCAN1 is involved in several cancer-related signaling pathways to suppress the growth of HCC. Both of the AUROCs for these circRNAs indicated a potential diagnostic value [75, 76].

CircRNAs in gastric cancer

Although many efforts have been made to improve the diagnosis and therapy of GC, five-year OS rates in gastric cancer patients are still less than 30% [77]. New biomarkers for diagnosis and therapy are still necessary, and up to now, mostly low expression of circRNAs in GC has been observed. The clinical samples have been derived from not only tumor tissue and plasma but also gastric juice, suggesting that circRNAs may be useful potential biomarkers [78, 79]. The downregulated circ-104916 has been found to be associated with higher invasion, neoplasm staging and lymph node metastasis in GC [80]. Additionally, both circ_0000190 and circ_002059 are more lowly expressed in GC tissues, which is relevant to some clinical parameters [11, 81]. Furthermore, the expression of circ_0000181 is significantly decreased in GC, and circ_0000181 is associated with many clinical indicators in GC patients, implying that it might serve as a good biomarker [82].

CircRNAs in other cancers

In breast cancer, downregulated circ-Foxo3 can enhance cell survival and decrease cell apoptosis [52]. In bladder cancer, circPTK2 is highly expressed among fourty pairs of tissues and blood specimens, and its expression level is significantly associated with lower differentiation, N2-N3 lymphatic metastasis, and higher T stage [83]. In ESCC, circ_0067934 is significantly upregulated and associated with poor differentiation, whereas cir-ITCH is downregulated and functions as a tumor inhibitor by regulating tumor cell viability [59, 84]. In lung cancer and colorectal cancer, downregulated circ-ITCH plays an important tumor suppressor role [58, 85]. Upregulated circSMARCA5 can accelerate cell cycle and suppress apoptosis in prostate cancer [86]. In glioma, both circ-TTBK2 and cZNF292 are highly expressed and play crucial oncogenic roles in promoting glioma malignancy progression [87, 88].

CircRNAs in chemoradiation resistance

The emergence of chemoradiation resistance can lead to poor prognosis or recurrence [8991]. At present, studies have found changed circRNA expression profiles in radioresistant ESCC cells, ADM-resistant breast cancer cells and 5-FU-based chemoradiation-resistant CRC cells. Through biological analysis, some circRNAs have been found to influence the chemoradiation resistance of cancer cells by regulating specific genes or pathways [40, 9294]. Another study has revealed that downregulated circPVT1, which is overexpressed in osteosarcoma tissues and chemoradiation-resistant cells, can weaken expression of the classical chemoradiation resistance gene ABCB1 to reduce the resistance to cisplatin and doxorubicin in osteosarcoma cells [95]. Although there is still very little research regarding circRNAs and chemoradiation resistance in cancer, it has a great potential that circRNAs can be used as novel biomarkers to predict the efficiency of chemoradiation and prognosis or recurrence in drug-resistant cancers.

Conclusions

Many studies indicated that circRNAs, similar to miRNAs and lncRNAs, may have significant regulatory effects on pathophysiologic processes, including tumorigenesis. The connections of circRNAs with cancer has become a hot research field. CircRNAs can be easily detected due to their relative stability, widespread expression, and abundant presence in exosomes, blood and saliva, indicating that circRNAs might be novel and ideal diagnostic and prognostic biomarkers in cancer. In this paper, we drew conclusions about recent advances on circRNAs in cancer and presented a circRNA-mediated network involved in cell cycle control, apoptosis, proliferation, invasion and metastasis in cancer.
At present, some circRNA expression profiles in several cancers have been identified; however, there are still many questions that need to be addressed. Further investigation is needed regarding the various gene regulatory mechanisms of circRNAs other than miRNA sponges. The important relationship between the exo-circRNAs and tumor metastasis and the development of novel and valid ways to predict target genes of circRNAs using bioinformatics, among other issues, need to be addressed. This will provide new insights into circRNAs to construct circRNA-miRNA-mRNA regulation networks, reveal cancer pathogenesis mechanisms and seek novel potential diagnosis biomarker or therapeutic targets for future cancer management.

Funding

This work was supported by the National Natural Science Foundation of China (81300398), the Natural Science Foundation of Guangdong Province (2015A030313528), the 2013 Sail Plan “Introduction of the Shortage of Top-Notch Talent” Project (YueRenCaiBan [2014] 1) and the Project of Administration of Traditional Chinese Medicine of Guangdong Province (20141277, 20162079). The funding body had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Wallaert A, Durinck K, Taghon T, Van Vlierberghe P, Speleman F. T-ALL and thymocytes: a message of noncoding RNAs. J Hematol Oncol. 2017;10(1):66.PubMedPubMedCentralCrossRef Wallaert A, Durinck K, Taghon T, Van Vlierberghe P, Speleman F. T-ALL and thymocytes: a message of noncoding RNAs. J Hematol Oncol. 2017;10(1):66.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, et al. Circular RNA: a new star of noncoding RNAs. Cancer Lett. 2015;365:141–8.PubMedCrossRef Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, et al. Circular RNA: a new star of noncoding RNAs. Cancer Lett. 2015;365:141–8.PubMedCrossRef
3.
Zurück zum Zitat Cocquerelle C, Mascrez B, Hetuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993;7:155–60.PubMedCrossRef Cocquerelle C, Mascrez B, Hetuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993;7:155–60.PubMedCrossRef
4.
Zurück zum Zitat Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, et al. Circular RNA is expressed across the eukaryotic tree of life. PLoS One. 2014;9(6):e90859.PubMedPubMedCentralCrossRef Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, et al. Circular RNA is expressed across the eukaryotic tree of life. PLoS One. 2014;9(6):e90859.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 1976;73:3852–6.PubMedPubMedCentralCrossRef Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 1976;73:3852–6.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Arnberg AC, Van Ommen GJ, Grivell LA, Van Bruggen EF, Borst P. Some yeast mitochondrial RNAs are circular. Cell. 1980;19:313–9.PubMedCrossRef Arnberg AC, Van Ommen GJ, Grivell LA, Van Bruggen EF, Borst P. Some yeast mitochondrial RNAs are circular. Cell. 1980;19:313–9.PubMedCrossRef
7.
Zurück zum Zitat Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012;7:e30733.PubMedPubMedCentralCrossRef Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012;7:e30733.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–57.PubMedPubMedCentralCrossRef Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–57.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.PubMedCrossRef Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.PubMedCrossRef
11.
Zurück zum Zitat Li P, Chen S, Chen H, Mo X, Li T, Shao Y, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 2015;444:132–6.PubMedCrossRef Li P, Chen S, Chen H, Mo X, Li T, Shao Y, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 2015;444:132–6.PubMedCrossRef
14.
Zurück zum Zitat Wang F, Nazarali AJ, Ji S. Circular RNAs as potential biomarkers for cancer diagnosis and therapy. Am J Cancer Res. 2016;6(6):1167–76.PubMedPubMedCentral Wang F, Nazarali AJ, Ji S. Circular RNAs as potential biomarkers for cancer diagnosis and therapy. Am J Cancer Res. 2016;6(6):1167–76.PubMedPubMedCentral
17.
Zurück zum Zitat Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.PubMedCrossRef Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.PubMedCrossRef
19.
Zurück zum Zitat Peng L, Yuan XQ, Li GC. The emerging landscape of circular RNA ciRS-7 in cancer. Oncol Rep. 2015;33(6):2669–74.PubMedCrossRef Peng L, Yuan XQ, Li GC. The emerging landscape of circular RNA ciRS-7 in cancer. Oncol Rep. 2015;33(6):2669–74.PubMedCrossRef
20.
Zurück zum Zitat Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66.PubMedCrossRef Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66.PubMedCrossRef
21.
Zurück zum Zitat Song X, Zeng Z, Wei H, Wang Z. Alternative splicing in cancers: from aberrant regulation to new therapeutics. Semin Cell Dev Biol. 2018;75:13–22.PubMedCrossRef Song X, Zeng Z, Wei H, Wang Z. Alternative splicing in cancers: from aberrant regulation to new therapeutics. Semin Cell Dev Biol. 2018;75:13–22.PubMedCrossRef
22.
Zurück zum Zitat Li LJ, Leng RX, Fan YG, Pan HF, Ye DQ. Translation of noncoding RNAs: focus on lncRNAs, pri-miRNAs, and circRNAs. Exp Cell Res. 2017;361(1):1–8.PubMedCrossRef Li LJ, Leng RX, Fan YG, Pan HF, Ye DQ. Translation of noncoding RNAs: focus on lncRNAs, pri-miRNAs, and circRNAs. Exp Cell Res. 2017;361(1):1–8.PubMedCrossRef
23.
25.
Zurück zum Zitat Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, et al. Rolling circle translation of circular RNA in living human cells. Sci Rep. 2015;5:16435.PubMedPubMedCentralCrossRef Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, et al. Rolling circle translation of circular RNA in living human cells. Sci Rep. 2015;5:16435.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 2017;27(5):626–41.PubMedPubMedCentralCrossRef Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 2017;27(5):626–41.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, et al. Novel Role of FBXW7 Circular RNA in Repressing Glioma Tumorigenesis. J Natl Cancer Inst. 2018;110(3):304-15. Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, et al. Novel Role of FBXW7 Circular RNA in Repressing Glioma Tumorigenesis. J Natl Cancer Inst. 2018;110(3):304-15.
28.
Zurück zum Zitat Panagopoulos K, Cross-Knorr S, Dillard C, Pantazatos D, Del Tatto M, Mills D, et al. Reversal of chemosensitivity and induction of cell malignancy of a non-malignant prostate cancer cell line upon extracellular vesicle exposure. Mol Cancer. 2013;12(1):118.PubMedPubMedCentralCrossRef Panagopoulos K, Cross-Knorr S, Dillard C, Pantazatos D, Del Tatto M, Mills D, et al. Reversal of chemosensitivity and induction of cell malignancy of a non-malignant prostate cancer cell line upon extracellular vesicle exposure. Mol Cancer. 2013;12(1):118.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Li X, Wang S, Zhu R, Li H, Han Q, Zhao RC. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway. J Hematol Oncol. 2016;9:42.PubMedPubMedCentralCrossRef Li X, Wang S, Zhu R, Li H, Han Q, Zhao RC. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway. J Hematol Oncol. 2016;9:42.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Yan Y, Fu G, Ye Y, Ming L. Exosomes participate in the carcinogenesis and the malignant behavior of gastric cancer. Scand J Gastroenterol. 2017;52(5):499–504.PubMedCrossRef Yan Y, Fu G, Ye Y, Ming L. Exosomes participate in the carcinogenesis and the malignant behavior of gastric cancer. Scand J Gastroenterol. 2017;52(5):499–504.PubMedCrossRef
33.
34.
Zurück zum Zitat Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M. RNA in extracellular vesicles. Wiley Interdiscip Rev RNA. 2017;8(4):e1413. Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M. RNA in extracellular vesicles. Wiley Interdiscip Rev RNA. 2017;8(4):e1413.
35.
Zurück zum Zitat Lasda E, Parker R. Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. PLoS One. 2016;11(2):e0148407.PubMedPubMedCentralCrossRef Lasda E, Parker R. Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. PLoS One. 2016;11(2):e0148407.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Qu S, Song W, Yang X, Wang J, Zhang R, Zhang Z, et al. Microarray expression profile of circular RNAs in human pancreatic ductal adenocarcinoma. Genom Data. 2015;5:385–7.PubMedPubMedCentralCrossRef Qu S, Song W, Yang X, Wang J, Zhang R, Zhang Z, et al. Microarray expression profile of circular RNAs in human pancreatic ductal adenocarcinoma. Genom Data. 2015;5:385–7.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Hao L, Hao X, Wang H, Liu Z, He Y, Pu M, et al. Circular RNA expression profile of pancreatic ductal adenocarcinoma revealed by microarray. Cell Physiol Biochem. 2016;40(6):1334–44.PubMedCrossRef Hao L, Hao X, Wang H, Liu Z, He Y, Pu M, et al. Circular RNA expression profile of pancreatic ductal adenocarcinoma revealed by microarray. Cell Physiol Biochem. 2016;40(6):1334–44.PubMedCrossRef
39.
Zurück zum Zitat Xuan L, Qu L, Zhou H, Wang P, Yu H, Wu T, et al. Circular RNA: a novel biomarker for progressive laryngeal cancer. Am J Transl Res. 2016;8(2):932–9.PubMedPubMedCentral Xuan L, Qu L, Zhou H, Wang P, Yu H, Wu T, et al. Circular RNA: a novel biomarker for progressive laryngeal cancer. Am J Transl Res. 2016;8(2):932–9.PubMedPubMedCentral
40.
Zurück zum Zitat Su H, Lin F, Deng X, Shen L, Fang Y, Fei Z, et al. Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells. J Transl Med. 2016;14(1):225.PubMedPubMedCentralCrossRef Su H, Lin F, Deng X, Shen L, Fang Y, Fei Z, et al. Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells. J Transl Med. 2016;14(1):225.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Zhu M, Xu Y, Chen Y, Yan F. Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer. Biomed Pharmacother. 2017;88:138–44.PubMedCrossRef Zhu M, Xu Y, Chen Y, Yan F. Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer. Biomed Pharmacother. 2017;88:138–44.PubMedCrossRef
42.
Zurück zum Zitat Song X, Zhang N, Han P, Moon BS, Lai RK, Wang K, et al. Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res. 2016;44(9):e87.PubMedPubMedCentralCrossRef Song X, Zhang N, Han P, Moon BS, Lai RK, Wang K, et al. Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res. 2016;44(9):e87.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Nair AA, Niu N, Tang X, Thompson KJ, Wang L, Kocher JP, et al. Circular RNAs and their associations with breast cancer subtypes. Oncotarget. 2016;7(49):80967–79.PubMedPubMedCentralCrossRef Nair AA, Niu N, Tang X, Thompson KJ, Wang L, Kocher JP, et al. Circular RNAs and their associations with breast cancer subtypes. Oncotarget. 2016;7(49):80967–79.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Dou Y, Cha DJ, Franklin JL, Higginbotham JN, Jeppesen DK, Weaver AM, et al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep. 2016;6:37982.PubMedPubMedCentralCrossRef Dou Y, Cha DJ, Franklin JL, Higginbotham JN, Jeppesen DK, Weaver AM, et al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep. 2016;6:37982.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Sand M, Bechara FG, Sand D, Gambichler T, Hahn SA, Bromba M, et al. Circular RNA expression in basal cell carcinoma. Epigenomics. 2016;8(5):619–32.PubMedCrossRef Sand M, Bechara FG, Sand D, Gambichler T, Hahn SA, Bromba M, et al. Circular RNA expression in basal cell carcinoma. Epigenomics. 2016;8(5):619–32.PubMedCrossRef
46.
Zurück zum Zitat Sand M, Bechara FG, Gambichler T, Sand D, Bromba M, Hahn SA, et al. Circular RNA expression in cutaneous squamous cell carcinoma. J Dermatol Sci. 2016;83(3):210–8.PubMedCrossRef Sand M, Bechara FG, Gambichler T, Sand D, Bromba M, Hahn SA, et al. Circular RNA expression in cutaneous squamous cell carcinoma. J Dermatol Sci. 2016;83(3):210–8.PubMedCrossRef
47.
Zurück zum Zitat Sui W, Shi Z, Xue W, Ou M, Zhu Y, Chen J, et al. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology. Oncol Rep. 2017;37(3):1804–14.PubMedCrossRef Sui W, Shi Z, Xue W, Ou M, Zhu Y, Chen J, et al. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology. Oncol Rep. 2017;37(3):1804–14.PubMedCrossRef
48.
Zurück zum Zitat Pan H, Li T, Jiang Y, Pan C, Ding Y, Huang Z, et al. Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem. 2018;119(1):440-6. Pan H, Li T, Jiang Y, Pan C, Ding Y, Huang Z, et al. Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem. 2018;119(1):440-6.
50.
Zurück zum Zitat Yang W, Du WW, Li X, Yee AJ, Yang BB. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene. 2016;35(30):3919–31.PubMedCrossRef Yang W, Du WW, Li X, Yee AJ, Yang BB. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene. 2016;35(30):3919–31.PubMedCrossRef
51.
Zurück zum Zitat Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 2017;24(2):357–70.PubMedCrossRef Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 2017;24(2):357–70.PubMedCrossRef
52.
Zurück zum Zitat Zhang H, Wang G, Ding C, Liu P, Wang R, Ding W, et al. Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget. 2017;8(37):61687–97.PubMedPubMedCentral Zhang H, Wang G, Ding C, Liu P, Wang R, Ding W, et al. Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget. 2017;8(37):61687–97.PubMedPubMedCentral
53.
Zurück zum Zitat Fang Y, Xue JL, Shen Q, Chen J, Tian L. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology. 2012;55(6):1852–62.PubMedCrossRef Fang Y, Xue JL, Shen Q, Chen J, Tian L. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology. 2012;55(6):1852–62.PubMedCrossRef
54.
Zurück zum Zitat Herrero-Sánchez MC, Rodríguez-Serrano C, Almeida J, San Segundo L, Inogés S, Santos-Briz Á, et al. Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development. J Hematol Oncol. 2016;9(1):113.PubMedPubMedCentralCrossRef Herrero-Sánchez MC, Rodríguez-Serrano C, Almeida J, San Segundo L, Inogés S, Santos-Briz Á, et al. Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development. J Hematol Oncol. 2016;9(1):113.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Yu L, Gong X, Sun L, Zhou Q, Lu B, Zhu L. The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One. 2016;11(7):e0158347.PubMedPubMedCentralCrossRef Yu L, Gong X, Sun L, Zhou Q, Lu B, Zhu L. The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One. 2016;11(7):e0158347.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Xue J, Liu Y, Luo F, Lu X, Xu H, Liu X, et al. Circ100284, via miR-217 regulation of EZH2, is involved in the arsenite-accelerated cell cycle of human keratinocytes in carcinogenesis. Biochim Biophys Acta. 2017;1863(3):753–63.PubMedCrossRef Xue J, Liu Y, Luo F, Lu X, Xu H, Liu X, et al. Circ100284, via miR-217 regulation of EZH2, is involved in the arsenite-accelerated cell cycle of human keratinocytes in carcinogenesis. Biochim Biophys Acta. 2017;1863(3):753–63.PubMedCrossRef
57.
Zurück zum Zitat Yang X, Xiong Q, Wu Y, Li S, Ge F. Quantitative proteomics reveals the regulatory networks of circular RNA CDR1as in hepatocellular carcinoma cells. J Proteome Res. 2017;16(10):3891–902.PubMedCrossRef Yang X, Xiong Q, Wu Y, Li S, Ge F. Quantitative proteomics reveals the regulatory networks of circular RNA CDR1as in hepatocellular carcinoma cells. J Proteome Res. 2017;16(10):3891–902.PubMedCrossRef
58.
Zurück zum Zitat Wan L, Zhang L, Fan K, Cheng ZX, Sun QC, Wang JJ. Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/beta-catenin pathway. Biomed Res Int. 2016;2016:1579490.PubMedPubMedCentral Wan L, Zhang L, Fan K, Cheng ZX, Sun QC, Wang JJ. Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/beta-catenin pathway. Biomed Res Int. 2016;2016:1579490.PubMedPubMedCentral
59.
Zurück zum Zitat Li F, Zhang L, Li W, Deng J, Zheng J, An M, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway. Oncotarget. 2015;6(8):6001–13.PubMedPubMedCentral Li F, Zhang L, Li W, Deng J, Zheng J, An M, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway. Oncotarget. 2015;6(8):6001–13.PubMedPubMedCentral
60.
Zurück zum Zitat Zhong Z, Lv M, Chen J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep. 2016;6:30919.PubMedPubMedCentralCrossRef Zhong Z, Lv M, Chen J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep. 2016;6:30919.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Chen Y, Sun Y, Rao Q, Xu H, Li L, Chang C. Androgen receptor (AR) suppresses miRNA-145 to promote renal cell carcinoma (RCC) progression independent of VHL status. Oncotarget. 2015;6(31):31203–15.PubMedPubMedCentralCrossRef Chen Y, Sun Y, Rao Q, Xu H, Li L, Chang C. Androgen receptor (AR) suppresses miRNA-145 to promote renal cell carcinoma (RCC) progression independent of VHL status. Oncotarget. 2015;6(31):31203–15.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Wang K, Sun Y, Tao W, Fei X, Chang C. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett. 2017;394:1–12.PubMedCrossRef Wang K, Sun Y, Tao W, Fei X, Chang C. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett. 2017;394:1–12.PubMedCrossRef
63.
Zurück zum Zitat Jiang Y, Yim SH, Xu HD, Jung SH, Yang SY, Hu HJ, et al. A potential oncogenic role of the commonly observed E2F5 overexpression in hepatocellular carcinoma. World J Gastroenterol. 2011;17(4):470–7.PubMedPubMedCentralCrossRef Jiang Y, Yim SH, Xu HD, Jung SH, Yang SY, Hu HJ, et al. A potential oncogenic role of the commonly observed E2F5 overexpression in hepatocellular carcinoma. World J Gastroenterol. 2011;17(4):470–7.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget. 2016;7(18):26680–91.PubMedPubMedCentral Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget. 2016;7(18):26680–91.PubMedPubMedCentral
65.
Zurück zum Zitat Li Y, Zheng F, Xiao X, Xie F, Tao D, Huang C, et al. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep. 2017;18(9):1646–59.PubMedCrossRefPubMedCentral Li Y, Zheng F, Xiao X, Xie F, Tao D, Huang C, et al. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep. 2017;18(9):1646–59.PubMedCrossRefPubMedCentral
66.
Zurück zum Zitat Sun M, Song H, Wang S, Zhang C, Zheng L, Chen F, et al. Integrated analysis identifies microRNA-195 as a suppressor of Hippo-YAP pathway in colorectal cancer. J Hematol Oncol. 2017;10(1):79.PubMedPubMedCentralCrossRef Sun M, Song H, Wang S, Zhang C, Zheng L, Chen F, et al. Integrated analysis identifies microRNA-195 as a suppressor of Hippo-YAP pathway in colorectal cancer. J Hematol Oncol. 2017;10(1):79.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Wang X, Zhang Y, Huang L, Zhang J, Pan F, Li B, et al. Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int J Clin Exp Pathol. 2015;8(12):16020–5.PubMedPubMedCentral Wang X, Zhang Y, Huang L, Zhang J, Pan F, Li B, et al. Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int J Clin Exp Pathol. 2015;8(12):16020–5.PubMedPubMedCentral
68.
Zurück zum Zitat Zhang R, Xu J, Zhao J, Wang X. Silencing of hsa_circ_0007534 suppresses proliferation and induces apoptosis in colorectal cancer cells. Eur Rev Med Pharmacol Sci. 2018;22(1):118–26.PubMed Zhang R, Xu J, Zhao J, Wang X. Silencing of hsa_circ_0007534 suppresses proliferation and induces apoptosis in colorectal cancer cells. Eur Rev Med Pharmacol Sci. 2018;22(1):118–26.PubMed
69.
Zurück zum Zitat Wang F, Wang J, Cao X, Xu L, Chen L. Hsa_circ_0014717 is downregulated in colorectal cancer and inhibits tumor growth by promoting p16 expression. Biomed Pharmacother. 2018;98:775–82.PubMedCrossRef Wang F, Wang J, Cao X, Xu L, Chen L. Hsa_circ_0014717 is downregulated in colorectal cancer and inhibits tumor growth by promoting p16 expression. Biomed Pharmacother. 2018;98:775–82.PubMedCrossRef
70.
Zurück zum Zitat Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, et al. Circular RNA ciRS-7 - A promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res. 2017;23(14):3918–28.PubMedPubMedCentralCrossRef Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, et al. Circular RNA ciRS-7 - A promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res. 2017;23(14):3918–28.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Jayachandran A, Dhungel B, Steel JC. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. J Hematol Oncol. 2016;9(1):74.PubMedPubMedCentralCrossRef Jayachandran A, Dhungel B, Steel JC. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. J Hematol Oncol. 2016;9(1):74.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Khemlina G, Ikeda S, Kurzrock R. The biology of hepatocellular carcinoma: implications for genomic and immune therapies. Mol Cancer. 2017;16(1):149.PubMedPubMedCentralCrossRef Khemlina G, Ikeda S, Kurzrock R. The biology of hepatocellular carcinoma: implications for genomic and immune therapies. Mol Cancer. 2017;16(1):149.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Fu L, Wu S, Yao T, Chen Q, Xie Y, Ying S, et al. Decreased expression of hsa_circ_0003570 in hepatocellular carcinoma and its clinical significance. J Clin Lab Anal. 2018;32(2):e22239. Fu L, Wu S, Yao T, Chen Q, Xie Y, Ying S, et al. Decreased expression of hsa_circ_0003570 in hepatocellular carcinoma and its clinical significance. J Clin Lab Anal. 2018;32(2):e22239.
74.
Zurück zum Zitat Han D, Li J, Wang H, Su X, Hou J, Gu Y, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66(4):1151–64.PubMedCrossRef Han D, Li J, Wang H, Su X, Hou J, Gu Y, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66(4):1151–64.PubMedCrossRef
75.
Zurück zum Zitat Shang X, Li G, Liu H, Li T, Liu J, Zhao Q, et al. Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular carcinom development. Medicine (Baltimore). 2016;95(22):e3811.CrossRef Shang X, Li G, Liu H, Li T, Liu J, Zhao Q, et al. Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular carcinom development. Medicine (Baltimore). 2016;95(22):e3811.CrossRef
76.
Zurück zum Zitat Yao Z, Luo J, Hu K, Lin J, Huang H, Wang Q, et al. ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration and invasion but through different signaling pathways. Mol Oncol. 2017;11(4):422–37.PubMedPubMedCentralCrossRef Yao Z, Luo J, Hu K, Lin J, Huang H, Wang Q, et al. ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration and invasion but through different signaling pathways. Mol Oncol. 2017;11(4):422–37.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Xia J, Wang H, Li S, Wu Q, Sun L, Huang H, et al. Ion channels or aquaporins as novel molecular targets in gastric cancer. Mol Cancer. 2017;16(1):54.PubMedPubMedCentralCrossRef Xia J, Wang H, Li S, Wu Q, Sun L, Huang H, et al. Ion channels or aquaporins as novel molecular targets in gastric cancer. Mol Cancer. 2017;16(1):54.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Lu R, Shao Y, Ye G, Xiao B, Guo J. Low expression of hsa_circ_0006633 in human gastric cancer and its clinical significances. Tumour Biol. 2017;39(6):1010428317704175.PubMedCrossRef Lu R, Shao Y, Ye G, Xiao B, Guo J. Low expression of hsa_circ_0006633 in human gastric cancer and its clinical significances. Tumour Biol. 2017;39(6):1010428317704175.PubMedCrossRef
79.
Zurück zum Zitat Shao Y, Li J, Lu R, Li T, Yang Y, Xiao B, Guo J. Global circular RNA expression profile of human gastric cancer and its clinical significance. Cancer Med. 2017;6(6):1173–80. Shao Y, Li J, Lu R, Li T, Yang Y, Xiao B, Guo J. Global circular RNA expression profile of human gastric cancer and its clinical significance. Cancer Med. 2017;6(6):1173–80.
80.
Zurück zum Zitat Li J, Zhen L, Zhang Y, Zhao L, Liu H, Cai D, et al. Circ-104916 is downregulated in gastric cancer and suppresses migration and invasion of gastric cancer cells. Onco Targets Ther. 2017;10:3521–9.PubMedPubMedCentralCrossRef Li J, Zhen L, Zhang Y, Zhao L, Liu H, Cai D, et al. Circ-104916 is downregulated in gastric cancer and suppresses migration and invasion of gastric cancer cells. Onco Targets Ther. 2017;10:3521–9.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Chen S, Li T, Zhao Q, Xiao B, Guo J. Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin Chim Acta. 2017;466:167–71.PubMedCrossRef Chen S, Li T, Zhao Q, Xiao B, Guo J. Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin Chim Acta. 2017;466:167–71.PubMedCrossRef
82.
Zurück zum Zitat Zhao Q, Chen S, Li T, Xiao B, Zhang X. Clinical values of circular RNA 0000181 in the screening of gastric cancer. J Clin Lab Anal. 2018;32(4):e22333.PubMedCrossRef Zhao Q, Chen S, Li T, Xiao B, Zhang X. Clinical values of circular RNA 0000181 in the screening of gastric cancer. J Clin Lab Anal. 2018;32(4):e22333.PubMedCrossRef
83.
Zurück zum Zitat Xu ZQ, Yang MG, Liu HJ, Su CQ. Circular RNA hsa_circ_0003221 (circPTK2) promotes the proliferation and migration of bladder cancer cells. J Cell Biochem. 2018;119(4):3317–25.PubMedCrossRef Xu ZQ, Yang MG, Liu HJ, Su CQ. Circular RNA hsa_circ_0003221 (circPTK2) promotes the proliferation and migration of bladder cancer cells. J Cell Biochem. 2018;119(4):3317–25.PubMedCrossRef
84.
Zurück zum Zitat Xia W, Qiu M, Chen R, Wang S, Leng X, Wang J, et al. Circular RNA has_circ_0067934 is upregulated in esophageal squamous cell carcinoma and promoted proliferation. Sci Rep. 2016;6:35576.PubMedPubMedCentralCrossRef Xia W, Qiu M, Chen R, Wang S, Leng X, Wang J, et al. Circular RNA has_circ_0067934 is upregulated in esophageal squamous cell carcinoma and promoted proliferation. Sci Rep. 2016;6:35576.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Huang G, Zhu H, Shi Y, Wu W, Cai H, Chen X. Cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/beta-catenin pathway. PLoS One. 2015;10(6):e0131225.PubMedPubMedCentralCrossRef Huang G, Zhu H, Shi Y, Wu W, Cai H, Chen X. Cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/beta-catenin pathway. PLoS One. 2015;10(6):e0131225.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Kong Z, Wan X, Zhang Y, Zhang P, Zhang Y, Zhang X, et al. Androgen-responsive circular RNA circSMARCA5 is up-regulated and promotes cell proliferation in prostate cancer. Biochem Biophys Res Commun. 2017;493(3):1217–23.PubMedCrossRef Kong Z, Wan X, Zhang Y, Zhang P, Zhang Y, Zhang X, et al. Androgen-responsive circular RNA circSMARCA5 is up-regulated and promotes cell proliferation in prostate cancer. Biochem Biophys Res Commun. 2017;493(3):1217–23.PubMedCrossRef
87.
Zurück zum Zitat Zheng J, Liu X, Xue Y, Gong W, Ma J, Xi Z, et al. TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1beta/Derlin-1 pathway. J Hematol Oncol. 2017;10(1):52.PubMedPubMedCentralCrossRef Zheng J, Liu X, Xue Y, Gong W, Ma J, Xi Z, et al. TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1beta/Derlin-1 pathway. J Hematol Oncol. 2017;10(1):52.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Yang P, Qiu Z, Jiang Y, Dong L, Yang W, Gu C, et al. Silencing of cZNF292 circular RNA suppresses human glioma tube formation via the Wnt/beta-catenin signaling pathway. Oncotarget. 2016;7(39):63449–55.PubMedPubMedCentral Yang P, Qiu Z, Jiang Y, Dong L, Yang W, Gu C, et al. Silencing of cZNF292 circular RNA suppresses human glioma tube formation via the Wnt/beta-catenin signaling pathway. Oncotarget. 2016;7(39):63449–55.PubMedPubMedCentral
89.
90.
91.
Zurück zum Zitat Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923.PubMedPubMedCentralCrossRef Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Gao D, Zhang X, Liu B, Meng D, Fang K, Guo Z, Li L. Screening circular RNA related to chemotherapeutic resistance in breast cancer. Epigenomics. 2017;9(9):1175–88.PubMedCrossRef Gao D, Zhang X, Liu B, Meng D, Fang K, Guo Z, Li L. Screening circular RNA related to chemotherapeutic resistance in breast cancer. Epigenomics. 2017;9(9):1175–88.PubMedCrossRef
93.
Zurück zum Zitat Xiong W, Jiang YX, Ai YQ, Liu S, Wu XR, Cui JG, et al. Microarray analysis of long non-coding RNA expression profile associated with 5-fluorouracil-based chemoradiation resistance in colorectal cancer cells. Asian Pac J Cancer Prev. 2015;16(8):3395–402.PubMedCrossRef Xiong W, Jiang YX, Ai YQ, Liu S, Wu XR, Cui JG, et al. Microarray analysis of long non-coding RNA expression profile associated with 5-fluorouracil-based chemoradiation resistance in colorectal cancer cells. Asian Pac J Cancer Prev. 2015;16(8):3395–402.PubMedCrossRef
95.
Zurück zum Zitat Kun-Peng Z, Xiao-Long M, Chun-Lin Z. Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int J Biol Sci. 2018;14(3):321–30.PubMedPubMedCentralCrossRef Kun-Peng Z, Xiao-Long M, Chun-Lin Z. Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int J Biol Sci. 2018;14(3):321–30.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Yang C, Yuan W, Yang X, Li P, Wang J, Han J, et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer. 2018;17(1):19.PubMedPubMedCentralCrossRef Yang C, Yuan W, Yang X, Li P, Wang J, Han J, et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer. 2018;17(1):19.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Sang M, Meng L, Sang Y, Liu S, Ding P, Ju Y, et al. Circular RNA ciRS-7 accelerates ESCC progression through acting as a miR-876-5p sponge to enhance MAGE-A family expression. Cancer Lett. 2018;14(3):321–30. Sang M, Meng L, Sang Y, Liu S, Ding P, Ju Y, et al. Circular RNA ciRS-7 accelerates ESCC progression through acting as a miR-876-5p sponge to enhance MAGE-A family expression. Cancer Lett. 2018;14(3):321–30.
98.
Zurück zum Zitat Guo JN, Li J, Zhu CL, Feng WT, Shao JX, Wan L, et al. Comprehensive profile of differentially expressed circular RNAs reveals that hsa_circ_0000069 is upregulated and promotes cell proliferation, migration, and invasion in colorectal cancer. Onco Targets Ther. 2016;9:7451–8.PubMedPubMedCentralCrossRef Guo JN, Li J, Zhu CL, Feng WT, Shao JX, Wan L, et al. Comprehensive profile of differentially expressed circular RNAs reveals that hsa_circ_0000069 is upregulated and promotes cell proliferation, migration, and invasion in colorectal cancer. Onco Targets Ther. 2016;9:7451–8.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Zhuo F, Lin H, Chen Z, Huang Z, Hu J. The expression profile and clinical significance of circRNA0003906 in colorectal cancer. Onco Targets Ther. 2017;10:5187–93.PubMedPubMedCentralCrossRef Zhuo F, Lin H, Chen Z, Huang Z, Hu J. The expression profile and clinical significance of circRNA0003906 in colorectal cancer. Onco Targets Ther. 2017;10:5187–93.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Ji W, Qiu C, Wang M, Mao N, Wu S, Dai Y. Hsa_circ_0001649: A circular RNA and potential novel biomarker for colorectal cancer. Biochem Biophys Res Commun. 2018;497(1):122–6.PubMedCrossRef Ji W, Qiu C, Wang M, Mao N, Wu S, Dai Y. Hsa_circ_0001649: A circular RNA and potential novel biomarker for colorectal cancer. Biochem Biophys Res Commun. 2018;497(1):122–6.PubMedCrossRef
101.
Zurück zum Zitat Wang J, Li X, Lu L, He L, Hu H, Xu Z. Circular RNA hsa_circ_0000567 can be used as a promising diagnostic biomarker for human colorectal cancer. J Clin Lab Anal. 2018;32(5):e22379.PubMedCrossRef Wang J, Li X, Lu L, He L, Hu H, Xu Z. Circular RNA hsa_circ_0000567 can be used as a promising diagnostic biomarker for human colorectal cancer. J Clin Lab Anal. 2018;32(5):e22379.PubMedCrossRef
102.
Zurück zum Zitat Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T, et al. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis. 2018;9(4):417.PubMedPubMedCentralCrossRef Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T, et al. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis. 2018;9(4):417.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Xu L, Zhang M, Zheng X, Yi P, Lan C, Xu M. The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2017;143(1):17–27.PubMedCrossRef Xu L, Zhang M, Zheng X, Yi P, Lan C, Xu M. The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2017;143(1):17–27.PubMedCrossRef
104.
Zurück zum Zitat Qin M, Liu G, Huo X, Tao X, Sun X, Ge Z, et al. Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark. 2016;16(1):161–9.PubMedCrossRef Qin M, Liu G, Huo X, Tao X, Sun X, Ge Z, et al. Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark. 2016;16(1):161–9.PubMedCrossRef
105.
Zurück zum Zitat Jiang W, Wen D, Gong L, Wang Y, Liu Z, Yin F. Circular RNA hsa_circ_0000673 promotes hepatocellular carcinoma malignance by decreasing miR-767-3p targeting SET. Biochem Biophys Res Commun. 2018;500(2):211–6.PubMedCrossRef Jiang W, Wen D, Gong L, Wang Y, Liu Z, Yin F. Circular RNA hsa_circ_0000673 promotes hepatocellular carcinoma malignance by decreasing miR-767-3p targeting SET. Biochem Biophys Res Commun. 2018;500(2):211–6.PubMedCrossRef
106.
Zurück zum Zitat Zhong L, Wang Y, Cheng Y, Wang W, Lu B, Zhu L, et al. Circular RNA circC3P1 suppresses hepatocellular carcinoma growth and metastasis through miR-4641/PCK1 pathway. Biochem Biophys Res Commun. 2018;499(4):1044–9.PubMedCrossRef Zhong L, Wang Y, Cheng Y, Wang W, Lu B, Zhu L, et al. Circular RNA circC3P1 suppresses hepatocellular carcinoma growth and metastasis through miR-4641/PCK1 pathway. Biochem Biophys Res Commun. 2018;499(4):1044–9.PubMedCrossRef
107.
Zurück zum Zitat Zhang Y, Liu H, Li W, Yu J, Li J, Shen Z, et al. CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630. Aging (Albany NY). 2017;9(6):1585–94. Zhang Y, Liu H, Li W, Yu J, Li J, Shen Z, et al. CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630. Aging (Albany NY). 2017;9(6):1585–94.
108.
Zurück zum Zitat Huang M, He YR, Liang LC, Huang Q, Zhu ZQ. Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer. World J Gastroenterol. 2017;23(34):6330–8.PubMedPubMedCentralCrossRef Huang M, He YR, Liang LC, Huang Q, Zhu ZQ. Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer. World J Gastroenterol. 2017;23(34):6330–8.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Xie Y, Shao Y, Sun W, Ye G, Zhang X, Xiao B, et al. Downregulated expression of hsa_circ_0074362 in gastric cancer and its potential diagnostic values. Biomark Med. 2018;12(1):11–20.PubMedCrossRef Xie Y, Shao Y, Sun W, Ye G, Zhang X, Xiao B, et al. Downregulated expression of hsa_circ_0074362 in gastric cancer and its potential diagnostic values. Biomark Med. 2018;12(1):11–20.PubMedCrossRef
110.
Zurück zum Zitat Chen J, Li Y, Zheng Q, Bao C, He J, Chen B, et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 2017;1(388):208–19.CrossRef Chen J, Li Y, Zheng Q, Bao C, He J, Chen B, et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 2017;1(388):208–19.CrossRef
111.
Zurück zum Zitat Shao Y, Chen L, Lu R, Zhang X, Xiao B, Ye G, et al. Decreased expression of hsa_circ_0001895 in human gastric cancer and its clinical significances. Tumour Biol. 2017;39(4):1010428317699125.PubMedCrossRef Shao Y, Chen L, Lu R, Zhang X, Xiao B, Ye G, et al. Decreased expression of hsa_circ_0001895 in human gastric cancer and its clinical significances. Tumour Biol. 2017;39(4):1010428317699125.PubMedCrossRef
112.
Zurück zum Zitat Tian M, Chen R, Li T, Xiao B. Reduced expression of circRNA hsa_circ_0003159 in gastric cancer and its clinical significance. J Clin Lab Anal. 2018;32(3):e22281. Tian M, Chen R, Li T, Xiao B. Reduced expression of circRNA hsa_circ_0003159 in gastric cancer and its clinical significance. J Clin Lab Anal. 2018;32(3):e22281.
113.
Zurück zum Zitat Sun H, Tang W, Rong D, Jin H, Fu K, Zhang W, et al. Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark. 2018;21(2):299–306.PubMedCrossRef Sun H, Tang W, Rong D, Jin H, Fu K, Zhang W, et al. Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark. 2018;21(2):299–306.PubMedCrossRef
114.
Zurück zum Zitat Wang N, Gu Y, Li L, Wang F, Lv P, Xiong Y, et al. Circular RNA circMYO9B facilitates breast cancer cell proliferation and invasiveness via upregulating FOXP4 expression by sponging miR-4316. Arch Biochem Biophys. 2018;653:63–70.PubMedCrossRef Wang N, Gu Y, Li L, Wang F, Lv P, Xiong Y, et al. Circular RNA circMYO9B facilitates breast cancer cell proliferation and invasiveness via upregulating FOXP4 expression by sponging miR-4316. Arch Biochem Biophys. 2018;653:63–70.PubMedCrossRef
115.
Zurück zum Zitat He R, Liu P, Xie X, Zhou Y, Liao Q, Xiong W, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res. 2017;36(1):145.PubMedPubMedCentralCrossRef He R, Liu P, Xie X, Zhou Y, Liao Q, Xiong W, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res. 2017;36(1):145.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Yao JT, Zhao SH, Liu QP, Lv MQ, Zhou DX, Liao ZJ, et al. Over-expression of CircRNA_100876 in non-small cell lung cancer and its prognostic value. Pathol Res Pract. 2017;213(5):453–6.PubMedCrossRef Yao JT, Zhao SH, Liu QP, Lv MQ, Zhou DX, Liao ZJ, et al. Over-expression of CircRNA_100876 in non-small cell lung cancer and its prognostic value. Pathol Res Pract. 2017;213(5):453–6.PubMedCrossRef
118.
Zurück zum Zitat Zong L, Sun Q, Zhang H, Chen Z, Deng Y, Li D, et al. Increased expression of circRNA_102231 in lung cancer and its clinical significance. Biomed Pharmacother. 2018;102:639–44.PubMedCrossRef Zong L, Sun Q, Zhang H, Chen Z, Deng Y, Li D, et al. Increased expression of circRNA_102231 in lung cancer and its clinical significance. Biomed Pharmacother. 2018;102:639–44.PubMedCrossRef
Metadaten
Titel
Circular RNA: new star, new hope in cancer
verfasst von
Zikang Zhang
Qing Xie
Dongmei He
Yuan Ling
Yuchao Li
Jiangbin Li
Hua Zhang
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2018
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4689-7

Weitere Artikel der Ausgabe 1/2018

BMC Cancer 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.