Skip to main content
Erschienen in: Child's Nervous System 7/2020

Open Access 12.05.2020 | Review Article

Clinical and genetic characterization of patients with Pierre Robin sequence and spinal disease: review of the literature and novel terminal 10q deletion

verfasst von: Anudeep Yekula, Connor Grant, Mihir Gupta, David R. Santiago-Dieppa, Pate J. Duddleston, David Gonda, Michael Levy

Erschienen in: Child's Nervous System | Ausgabe 7/2020

Abstract

Introduction

The Pierre-Robin sequence (PRS) is a pattern of congenital facial abnormalities comprising micrognathia, glossoptosis, and airway obstruction. Associated spinal pathologies have rarely been reported with PRS.

Methods

We explore the molecular genetic basis of this association through a systematic review of spinal disease in patients with PRS. We also present an illustrative case of a PRS patient with tethered cord in the setting of chromosome 10q terminal deletion.

Results

Our systematic literature review of spinal disease in patients with PRS revealed several patterns in the underlying genetic syndromes causing these conditions to co-occur. These principles are illustrated in the case of a 6-month-old female with PRS and a 14.34-Mb terminal deletion of chromosome 10q, who was found to have a sacral dimple during a routine outpatient checkup. Magnetic resonance imaging of the spine revealed a lumbar syrinx associated with tethered spinal cord. Surgical de-tethering was undertaken, with subsequent improvement in motor function and decrease in the size of the syrinx. The deletion of chromosome 10q in our patient had not previously been described in association with tethered cord or PRS.

Conclusion

Spinal pathologies are understudied contributors to disease burden in patients with PRS. The range of predisposing syndromes and mutations in patients with both PRS and spinal disorders remains poorly characterized but may be more defined than previously conceived. Clinical screening is most critical during neonatal and adolescent developmental periods with continued neurological assessment. This study emphasizes the need for early genetic testing and counseling in this patient population, in parallel with research efforts to develop molecular classifications to guide clinical management.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00381-020-04642-2) contains supplementary material, which is available to authorized users.
Anudeep Yekula and Connor Grant contributed equally to this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
OMIM
Online Mendelian inheritance in man
PRS
Pierre Robin sequence
WES
Whole exome sequencing

Background

The Pierre Robin sequence (PRS), also known as Robin sequence, is a pattern of congenital facial abnormalities comprising micrognathia, glossoptosis, and airway obstruction [1]. The reported incidence varies widely with an approximate occurrence of 1 in 8500 to 14,000 births. Approximately 50% of PRS cases are isolated (non-syndromic), while the remainder are associated with additional anomalies such as a genetic or acquired syndrome [25].
PRS is most commonly associated with hearing loss, dysmorphic facial features, global developmental delay/intellectual disability, and/or congenital heart defects [4]. Spinal pathologies have rarely been reported in association with PRS, often co-occurring with other congenital anomalies [622]. The molecular genetic and clinical characteristics of spinal disease in PRS remain poorly characterized. We thus performed a systematic review of spinal disease in patients with PRS. We additionally report a case of a PRS patient presenting with tethered cord and lumbar syrinx in the setting of chromosome 10q terminal deletion.

Illustrative case

A 6-month-old female with a history of PRS was found to have a sacral dimple during a routine outpatient checkup. Neurological examination was notable for diffuse hypotonia and global developmental delay, but without focal deficit, incontinence, or prior urinary tract infections. No other cutaneous stigmata were noted. Medical history included premature birth at 31 weeks with grade I intraventricular hemorrhage. She had multiple congenital abnormalities including micrognathia, glossoptosis, and airway obstruction characteristic of PRS, as well as cleft palate, strabismus, patent ductus arteriosus, mild dilation of the aortic sinuses, clinodactyly of the fifth finger, and syndactyly involving the bilateral second and third toes.
Prior microarray analysis as a neonate had shown a 14.34 Mb terminal deletion of chromosome 10q. The deletion extended from band 10q26.11 to 10q26.3, comprising 112 genes including 62 OMIM genes (Supplementary Table 1). Genetic counseling was pursued, and the patient’s parents declined additional familial karyotyping.
Magnetic resonance imaging (MRI) of the spine with and without contrast revealed a syrinx of the conus medullaris without other abnormalities (Fig. 1a). This was managed expectantly with repeat MRI at 12 months of age, which showed expansion of the syrinx and fatty infiltration of the filum terminale consistent with tethered spinal cord (Fig. 1b). Surgical release of the tethered cord was thus undertaken. The procedure was uneventful and the patient recovered well postoperatively. Follow-up MRI 8 months postoperatively showed slight decrease in the size of the syrinx (Fig. 1c). One year postoperatively, neurological examination remained nonfocal without any deficits referable to the tethered cord or surgical procedure. Motor and cognitive function were improved compared to initial presentation but with ongoing delay in meeting respective milestones.

Systematic literature review

Methods

We performed a systematic search for all cases of spinal diseases in patients with PRS reported in the literature using the PubMed, Google Scholar, Trip, and MEDLINE databases. The search strategy and results are summarized in Fig. 2. Inclusion criteria were (1) confirmed PRS, (2) any spinal pathology, and (3) English language. Search strings included all combinations of the terms “Pierre Robin sequence” or “Robin sequence” with the terms “spine,” “spinal,” “vertebral,” “tethered,” and “scoliosis.” Abstracts and full-text articles were screened to identify reports that passed the inclusion criteria. Additional publications were identified from the references listed in each study. We excluded reports that lacked case-level descriptions of spinal pathology, clinical characteristics, or management. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria were followed. Ethical approval for the case report was obtained from the Institutional Review Board of Rady Children’s Hospital.

Results

Our literature review of spinal pathology in patients with PRS identified 16 previously reported cases of spinal diseases (Table 1). The majority of patients presented with more than one spinal pathology. The most common disorders included congenital kyphoscoliosis (n = 7), cervical instability (n = 5), tethered cord (n = 2), and caudal regression syndrome (n = 2). Two patients had neural tube defects including spina bifida and myelomeningocele (n = 1 each). Although the majority of patients had multiple other congenital anomalies, only six patients had a known underlying genetic abnormality. Of the remaining ten patients, four had reportedly normal genetic analysis such as karyotype and/or microarray, while genetic testing was not reported in six.
Table 1
Results of systematic literature search for all reported cases of co-existing Pierre Robin sequence (PRS) and spinal pathologies
Case
Age
Sex
Co-existing syndrome
Presenting symptoms
Spinal pathology/management
Follow-up duration
Surgical outcome
Molecular genetics
Other anomalies/management
Reference
1
Neonate
F
Type 1 Stickler syndrome
Multiple anomalies at birth
1. Cervical instability due to congenital lack of anterior ring of C1 and lack of C2 dens/NR
NR
NA
COL.2A1 heterozygous exon 32 c.2078G>A transition
1. Micrognathia, glossoptosis, cleft palate/mandibular osteotomies
2. Stickler syndrome features
3. Sleep apnea/CPAP
[7]
2
Neonate
M
None
Multiple anomalies at birth
1. Chiari type I malformation/none
2. Caudal regression syndrome/none
3. Tethered cord/surgical release
NR
NR
Normal karyotype
1. Grade III gastroesophageal reflux/NR
2. Ventricular septal defect/NR
3. Bronchopulmonary dysplasia/NR
4. Bilateral inguinal hernia/NR
5. Multicystic dysplastic kidney/NR
6. Bilateral cryptorchism/NR
7.Bilateral short legs with malpositioned feet/NR
8. Grade I germinal matrix hemorrhage/NR
[8]
3
Neonate
F
None
Myoclonic activity and decerebrate rigidity
1. Cervical stenosis/none
NR
NA
Normal microarray
1. Micrognathia, glossoptosis, cleft palate/mandibular distraction osteogenesis
[9]
4
Neonate
M
SEDC
Multiple anomalies at birth
1. Occipitocervical instability/ C1 posterior decompression, occiput-C2 fusion, odontoidectomy
NR
NR
Normal karyotype and microarray
1. Micrognathia, glossoptosis, cleft palate/none
2. Gastroesophageal reflux/Nissen fundoplication and gastrostomy
[10]
5
2 months
M
None
Multiple anomalies at birth
1. Caudal regression syndrome/NR
NR
NA
NR
1. Micrognathia, glossoptosis, cleft palate/NR
[11]
6
3 months
M
Kniest dysplasia
Multiple anomalies at birth
1. Platispondyly and vertebral body tongue-like bony protrusions/none
1 month (mortality)
NA
NR
1. Micrognathia, glossoptosis, cleft palate/tracheostomy
2. Hydrocephalus/none
[12]
7
2 years
F
None
Quadriplegia
1. Congenital cervico-thoracic kyphosis secondary to vertebral hypoplasia/extension and closed reduction
2. Complete spinal cord injury at kyphotic level C7/T1/none
NR
NR
Normal karyotype of proband and parents
1. Micrognathia, glossoptosis, cleft palate/palatal pushback, bilateral myringotomy and tube placement
2. Speech and language delays secondary to otitis media/NR
[13]
8
8 years
M
None
Abnormal cervical range of motion
1. Occipitocervical instability of cervical spine due to ossification failure of anterior and posterior C1 arches/fusion from occiput to C2
1 yr
Complete symptom resolution
Normal karyotype
1. Micrognathia, glossoptosis, cleft palate/oral airway
2. Ventricular septal defect, heart failure/surgery, digoxin
3. Hydrocele/surgery
4. Inguinal hernia/herniorrhaphy
3. Perthes disease/varus osteotomy
[14]
9
8 years
F
None
NR
1. Congenital thoracolumbar kyphoscoliosis/external orthosis, physiotherapy
2. Atlanto-occipital and atlanto-axial subluxation/none
3. Klippel-Feil syndrome/none
NR
NA
NR
1. Micrognathia, glossoptosis, cleft palate/cleft palate repair
[15]
10
14 years
M
None
NR
1. Myelomeningocele/surgery
2. Cervico-thoracic kyphoscoliosis/NR
3. Tethered spinal cord/surgical release
NR
Complete symptom resolution
NR
1. Micrognathia, glossoptosis, cleft palate/NR
[16]
11
15 years
M
ISD
NR
1. Spinal bifida, congenital vertebral dislocation, and severe congenital scoliosis/posterior spinal fusion C6 to L1 followed by C7 to T10 anterior spinal fusion with vertebral strut graft
12 years
Iatrogenic incomplete SCI requiring decompression; worsened scoliosis
NR
1. Micrognathia, glossoptosis, cleft palate/NR
2. Iatrogenic SCI/wheelchair
3. Autism spectrum disorder, intellectual disability/NR
4. Neurogenic bowel and bladder/clean intermittent catherization
5. Sleep apnea/BiPAP and CPAP
4. Pelvic obliquity and iliac crest deformity/spinal-pelvic fusion
5. Bilateral hip subluxation and proximal femur deformity/surgery
[17]
12
15 years
M
NF2
Headache, ataxia
1. Multiple extramedullary intradural lesions, separate C7-T1 neurofibroma/NR
2. Holocord syrinx most likely due to Chiari malformation/NR
NR
NA
Deletion of 22q12.1 to 22.q12.3, including MN1 and NF2 genes
1. Micrognathia, glossoptosis, cleft palate/NR
2. Intellectual disability/NR
3. Severe bilateral hearing loss/hearing aids
4. Cerebellopontine schwannoma/resection
[18]
13
15 years
F
None
Bilateral, progressive lower limb numbness, difficulty in walking, urinary incontinence
1. Thoracic kyphoscoliosis/posterior fusion T1–T9
1 year
Complete symptom resolution
NR
1. Micrognathia, glossoptosis, cleft palate/NR
[19]
14
15 years
M
None
Occipital headache and gait disturbance
1. Chiari type I malformation/suboccipital decompression
2. Congenital occiput-C1 and C2-C3 fusions/C1 and C2 laminectomy
3 months
Complete symptom resolution
NR
1. Micrognathia, glossoptosis, cleft palate/none
[20]
15
22 years
F
12q deletion syndrome
Skeletal abnormalities, endocrine derangements
1. Thoracic scoliosis with congenital cervical and lumbar fusions/none
2. Klippel-Feil syndrome/none
NR
NA
Chromosome 12q13.2 to 12q13.3 deletion, including RPS26 and flanking genes
1. Micrognathia, glossoptosis, cleft palate/none
2. Congenital perimebranous ventricular defect/none
3. Neurodevelopmental delay/none
4. Diamond-Blackfan anemia/NR
5. Trigeminal nerve palsy/NR
6. Bilateral mixed hearing loss/NR
[21]
16
31 years
F
None
NR
1. Scoliosis/spinal fusion
NR
NR
NR
NR
[22]
17
6 months
F
10q deletion syndrome
Multiple anomalies at birth
1. Syringomyelia/none
2. Tethered cord/surgical release
1 year
Complete resolution
Chromosome 10q26.11 to 10q26.3 deletion
1. Micrognathia, glossoptosis, cleft palate/CPAP, mandibular distraction osteogenesis
2. GERD/Nissen fundoplication
3. Exotropia/medial rectus muscle recession
Present case
Age denotes the patient’s age at time of first spinal pathology diagnosis. BiPAP, bilevel positive airway pressure; CPAP, continuous positive airway pressure; F, female; FISH, fluorescence in situ hybridization; KF, Klippel-Feil; ISD, ischiospinal dysostosis; M, male; NA, not applicable; NF2, neurofibromatosis type 2; NR, not reported; SCI, spinal cord injury; SEDC, spondyloepiphyseal dysplasia congenita
Patients predominantly presented at birth or adolescence, with two patients presenting with spinal deformities at 8 years of age. Clinical presentations corresponded to the spinal levels and pathologies involved. Surgical management was pursued in nine cases (53%). The remainder of cases were managed medically. The majority of patients managed surgically had complete resolution of symptoms without neurologic complications. One patient with congenital vertebral dislocation and severe congenital scoliosis who underwent posterior spinal fusion sustained an iatrogenic spinal cord injury that caused worsened scoliosis [17]. Four patients encountered anesthesia-related challenges, including prolonged intubation postoperatively (n = 3) [7, 10, 16], nasopharyngeal intubation requirement (n = 3) [7, 16, 20], and tracheostomy requirement (n = 1) [10].
Tubbs et al. [8] reported the first case of tethered cord in a neonate with PRS and normal karyotype, co-occurring with several congenital anomalies including Chiari I malformation and caudal regression syndrome [8]. Abraham et al. described a 15-year-old patient with tethered cord, co-occurring with myelomeningocele and kyphoscoliosis; genetic testing was not reported [16]. Both patients were treated surgically, but outcomes were not reported.
We also performed another literature search to identify all genetic syndromes associated with PRS that are also known to predispose to spinal pathologies. These conditions are described in Table 2. Although more than 50 genetic syndromes have been associated with PRS [23], only 15 have also been associated with spinal pathologies. In 9 of these 15 syndromes, no patients have yet been reported who are affected by both PRS and spinal disease. The underlying molecular genetic disturbances predominantly involve genes responsible for extracellular matrix synthesis and organization, ribosome biosynthesis, and Golgi complex function. These genes are most commonly located on chromosomes 5, 12, and 17, with isolated cases of mutations in genomic regions 6p, 7p, and 22q. To our knowledge, ours is the first reported case of PRS and spinal pathology involving abnormalities of chromosome 10.
Table 2
Clinical and molecular genetic features of syndromes known to be associated with both Pierre Robin sequence and spinal pathologies
Syndrome
Gene or chromosomal region
Gene function
Spinal pathology
Other clinical features
Campomelic dysplasia
SOX9
Transcription factor, regulates chondrocyte differentiation, skeletal development and collagen formation
Scoliosis, short and flat cervical vertebrae
Short stature, campomelia, hearing loss
Stickler syndrome type I
COL2A1
Type II collagen
Spondyloepiphyseal dysplasia
Ocular, auditory, skeletal, and orofacial abnormalities
Spondyloepiphyseal dysplasia congenita
COL2A1
Type II collagen
Short spine
Pectus carinatum, myopia
Kniest dysplasia
COL2A1
Type II collagen
Kyphosis, lumbar lordosis, atlantoaxial instability
Short trunk, short limbs, reduced joint mobility
Diastrophic dysplasia
SLC26A2
Sulfate transporter; extracellular matrix organization, endochondral bone formation
Kyphoscoliosis, hypoplasia of cervical vertebral bodies, spina bifida occulta
Short stature, short limbs, joint contractures, talipes equinovarus
Cerebrocostomandibular syndrome
Unknown
Unknown
Scoliosis
Narrow thorax, rib anomalies, conductive hearing loss, growth restriction
Cerebrocostomandibular-like syndrome
COG1
Golgi complex component, glycosylation
Costovertebral defects
Microcephaly, growth restriction, developmental delay, brain anomalies, cryptorchidism
Carey–Fineman–Ziter syndrome
Unknown
Unknown
Scoliosis
Hypotonia, moebius anomaly, growth delay, feeding difficulties
Otospondylomegaepiphyseal dysplasia
COL11A2
Type XI collagen
Vertebral body anomalies
Sensorineural hearing loss, enlarged epiphyses, short limbs, typical facial features
Congenital disorder of glycosylation type IIg/CCMS
COG1
Golgi complex component; glycosylation
Vertebral anomalies
Severe micrognathia, osteopenia, rib defects (rib gaps), mental retardation, growth retardation, microcephaly
Ischiospinal dysostosis (ISD)
BMPER
Bone morphogenetic protein inhibition; osteoblast and chondrocyte regulation
Kyphoscoliosis, vertebral anomalies
Dysplasia/aplasia of ischial rami, peculiar facial morphologies
22q11.2 deletion syndrome/velocardiofacial syndrome/DiGeorge syndrome
del 22q11.2
Transcription factors; regulation of developmental processes
Upper cervical instability from odontoid hypoplasia or os odontoideum, congenital C2 to C3 fusion, dysmorphic dens
Cleft palate, cardiac anomalies, typical facies, learning disabilities
Treacher Collins syndrome
TCOF1
Ribosome biosynthesis
Dysmorphic atlas
Antimongoloid slant of the eyes, eyelid coloboma, micrognathia, microtia and other ear deformities, hypoplastic zygomatic arches, macrostomia, conductive hearing loss, cleft palate
Neurofibromatosis 2
NF2
Merlin protein involved in myelination
Extramedullary spinal tumors
Vestibular schwannomas, benign tumors of nervous system
Chromosome 12q deletion
del 12q
Transcription factors; regulation of developmental processes
Scoliosis
Developmental delay, intellectual disability, behavioral problems, and distinctive facial features
NA, not applicable

Discussion and conclusions

Pierre Robin sequence (PRS), also known as Robin sequence (RS), begins with micrognathic mandible, leading to retro-positioning of the tongue (glossoptosis) and increased likelihood of airway compression at the level of the glottis. The inability of the base of the tongue to descend from the nasopharyngeal roof in turn impairs palate formation, leading to cleft palate [5, 24]. The triad of micrognathia, glossoptosis, and cleft palate is termed syndromic PRS (or “RS-plus”) when it occurs in association with an underlying genetic or acquired syndrome, in contrast to non-syndromic PRS occurring in isolation. Syndromic PRS carries a higher mortality than isolated PRS, making it imperative to establish definitive early diagnosis [25]. Disorders commonly associated with PRS include Stickler syndrome (most common) as well as 22q11.2 deletion, Treacher Collins, campomelic dysplasia, and Marshall syndromes. Chromosomal loci harboring genes associated with pre- and postnatal growth, neurodevelopment, morphogenesis, and patterning have been implicated in the development of PRS; these include regions 2q24.1–33.3, 4q32-qter, 17q21–24.3, and 11q21–23.1, among others [2633].
The molecular genetic understanding of PRS has primarily been derived from case reports or heterogeneous cohorts ranging from 66 to 191 subjects [4, 3335]. These studies have been critical to elucidating the epidemiology of PRS but are limited by lack of uniformity in genetic testing of patients and family members. Patients predominantly undergo karyotyping by conventional methods or microarray analysis. Although these approaches are sensitive for detecting copy number gains and losses associated with chromosomal imbalances, they are unable to detect point mutations, mosaic conditions, small deletions or duplications, balanced structural rearrangements, or certain polyploidy patterns. Only a small minority of patients in existing cohorts have received targeted or whole exome sequencing (WES). Studies describing systematic next-generation genetic sequencing of PRS patients or family members remain lacking.
Conducting such studies is inherently challenging due to the low prevalence as well as clinical and genetic heterogeneity of PRS. In this context, recent studies of rare neurodevelopmental disorders such as congenital hydrocephalus (CH) serve as roadmaps for future investigation. For example, Kahle and colleagues have performed parent-offspring trio WES in CH cohorts of similar size to published PRS cohorts. This unbiased strategy has uncovered that a significant portion of CH cases are associated with mutations in a defined subset of genes involved in brain development. These insights have in turn enabled hypothesis-driven laboratory investigation to guide targeted therapy development, as well as molecularly guided clinical classification that could guide surgical treatment decisions [36].
In the absence of a large genetically sequenced cohort of PRS patients, retrospective clinical series may serve as de facto cohorts to illuminate the molecular underpinnings of this disorder and its relation to other pathologies of interest. Accordingly, our systematic review and case description consolidate the current understanding of the embryological and developmental processes that may be shared between PRS and spinal disorders.
Given that PRS is commonly caused by disorders of morphogenesis, it is unsurprising that the majority of spinal pathologies we found were structural in nature and often due to disorders of bone and cartilage development. Several cases were due to genetic abnormalities in genes such as COL2A1 that are critical for chondrogenesis (Table 1). Expression of these genes is regulated by a common transcription factor, SOX9, which has independently been associated with both PRS and spinal deformity (Table 2). Similarly, we identified another report of a patient with ischiospinal dysostosis (ISD), a genetic disorder due to defects in separate pathways regulating chondrogenesis (Table 1). Several patients in our series manifested signs of cervical instability and craniocervical junction pathology, likely due to the shared developmental programs regulating formation of the cervical and mandibular regions.
We identified three patients in our literature review with both Chiari type I malformation and PRS (patients 2, 12, and 14 in Table 1). Intriguingly, one of these cases occurred in the setting of neurofibromatosis type 2 (NF2) (patient 12). Another patient had phenotypic features similar to DiGeorge syndrome (patient 2), while the final patient had congenital craniocervical vertebral fusion anomalies (patient 14). Given that NF2 and DiGeorge syndromes occur due to mutations at adjacent loci on the long arm of chromosome 22, we speculate that genes in this region may be responsible for shared developmental programs underlying morphogenesis of the mandible and spine, ultimately leading to PRS and disorders of the craniocervical junction, respectively. For example, preclinical studies have shown that the TBX1 gene on chromosome 22q11.2 is expressed in the pharyngeal arches, pouches, vertebral column, and tooth bud [23]. In this context, it is possible that deeper genetic characterization of the aforementioned patients may have revealed mutations in coding regions or regulatory elements of genes in these regions. Although neurofibromatosis type I (NF1) is also known to be associated with Chiari type I malformation [37], we did not encounter any patients with NF1 and PRS in our literature review (Table 1), nor any previously described association between NF1 and PRS (Table 2). However, the SOX9 and COG1 genes that underlie several developmental syndromes associated with both PRS and spinal pathologies are located in proximity to the NF1 gene on the long arm of chromosome 17. It is thus possible that, as in the case of NF2, patients with genetic abnormalities leading to NF1 and Chiari I malformation may also have increased rates of PRS.
We found two prior reports of tethered cord co-occurring with PRS (Table 1, patients 2 and 10). Genetic analysis and diagnostic information regarding underlying syndromes were not reported. Both patients had multiple spinal deformities such as scoliosis that are known to be associated with tethered cord. Although tethered cord has not previously been linked to the terminal region of chromosome 10q deleted in our patient, she displayed many phenotypic features previously associated with this segment, including facial abnormalities, growth and psychomotor delay, and digital anomalies [38]. Deletions of 10q26 have been reported in less than 30 prior cases; this segment contains multiple genes and regions critical for a variety of developmental processes [39] but has not previously been associated with PRS or tethered cord. It remains unclear which specific gene(s) in this region or deleted in our patient’s case (listed in Supplementary Table 1) may be responsible for either condition.
Roberti and colleagues described a 22-year-old patient with PRS and spinal deformity who harbored an interstitial chromosome 12q microdeletion covering more than 20 known genes and causing a complex malformative syndrome [21]. As in our case, genotype-phenotype correlations were not clear due to the dearth of reported similar cases and multiple genes affected. These included genes involved in extracellular matrix synthesis and cellular processes such as vesicular trafficking, similar to the other patients in our series. Collectively, these cases highlight the need for obtaining early genetic testing, establishing individualized genotype-phenotype correlations, and carefully evaluating patients for signs of underlying spinal pathology such as sacral dimples, clubfoot deformities, and frequent urinary tract infections. Detecting conditions such as tethered cord requires a high degree of clinical suspicion in patients with complex syndromes that may mask classic presenting symptoms early in the disease course.
Structural conditions such as occipitocervical instability, Chiari I malformation, and Klippel-Feil syndrome were highly represented in our literature review among reported PRS cases with spinal pathologies present at birth (Table 1), suggesting dysregulation of a common embryological process(es) underlying mandibular and spinal development. We speculate that this may take place as early as the sixth week of embryogenesis. During this week, neural crest-derived cells form the osteogenic membrane of the mandible [23], while concurrently the notochord and neural tube induce chondrification of developing vertebral structures [40]. In both of these phenomena, intercellular signaling leads to synthesis of collagen and proteoglycans, the two primary components of cartilage, which in turn serves as the “mold” for bone formation [41]. As stated above, the SOX9 transcription factor regulates many steps in chondrification including the expression of several genes involved in collagen and proteoglycan synthesis [23]. Collectively, these observations suggest that SOX9 pathway mutations leading to disordered chondrification during the sixth developmental week may be a parsimonious genetic explanation for the concomitant development of PRS and congenital structural spinal pathologies.
The management of PRS requires multidisciplinary collaboration, particularly in the setting of underlying genetic syndromes. Our systematic review and case description demonstrate that spinal pathologies are important but understudied contributors to disease burden in this patient population. Our findings raise the possibility that in patients with both PRS and spinal disorders, the range of predisposing syndromes and mutations may be more defined than previously anticipated, with pathways such as SOX9 of particular importance. Clinical screening may be most critical during specified ages such as the neonatal and adolescent periods, with emphasis on longitudinal assessment of deformity, cervical stability, and tethered cord symptomatology. Providers must encourage early genetic testing and counseling, including both microarray karyotyping and next-generation sequencing; the latter may involve whole exome sequencing for research purposes, in order to uncover novel regions of interest such as the terminal 10q deletion in our patient. Ultimately, these efforts will lead to development of targeted panels for deep sequencing at the individual level. However, developing clinically meaningful screening and management recommendations will require cohort-level genetic testing of patients and family members with rigorous genotype-phenotype correlation. In this context, the limitations of existing genetic testing, both in terms of sensitivity and clinical utility, must also be clearly discussed with patients and families.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest relating to the research, authorship, and/or publication of this work.
Ethical approval for the case report was obtained from the Institutional Review Board of Rady Children’s Hospital (protocol #120518).
Written informed consent for publication of clinical details and clinical images was obtained from the parent of the patient.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Anhänge

Electronic supplementary material

Literatur
1.
Zurück zum Zitat Breugem CC, Evans KN, Poets CF, Suri S, Picard A, Filip C, Paes EC, Mehendale FV, Saal HM, Basart H, Murthy J, Joosten KFM, Speleman L, Collares MVM, van den Boogaard MJH, Muradin M, Andersson MEM, Kogo M, Farlie PG, Don Griot P, Mossey PA, Slator R, Abadie V, Hong P (2016) Best practices for the diagnosis and evaluation of infants with Robin sequence. JAMA Pediatr 170:894–902CrossRef Breugem CC, Evans KN, Poets CF, Suri S, Picard A, Filip C, Paes EC, Mehendale FV, Saal HM, Basart H, Murthy J, Joosten KFM, Speleman L, Collares MVM, van den Boogaard MJH, Muradin M, Andersson MEM, Kogo M, Farlie PG, Don Griot P, Mossey PA, Slator R, Abadie V, Hong P (2016) Best practices for the diagnosis and evaluation of infants with Robin sequence. JAMA Pediatr 170:894–902CrossRef
2.
Zurück zum Zitat Vatlach S, Maas C, Poets CF (2014) Birth prevalence and initial treatment of Robin sequence in Germany: a prospective epidemiologic study. Orphanet J Rare Dis 9:9CrossRef Vatlach S, Maas C, Poets CF (2014) Birth prevalence and initial treatment of Robin sequence in Germany: a prospective epidemiologic study. Orphanet J Rare Dis 9:9CrossRef
3.
Zurück zum Zitat Printzlau A, Andersen M (2004) Pierre Robin sequence in Denmark: a retrospective population-based epidemiological study. Cleft Palate Craniofac J 41:47–52CrossRef Printzlau A, Andersen M (2004) Pierre Robin sequence in Denmark: a retrospective population-based epidemiological study. Cleft Palate Craniofac J 41:47–52CrossRef
4.
Zurück zum Zitat Gomez-Ospina N, Bernstein JA (2016) Clinical, cytogenetic, and molecular outcomes in a series of 66 patients with Pierre Robin sequence and literature review: 22q11.2 deletion is less common than other chromosomal anomalies. Am J Med Genet A 170A:870–880CrossRef Gomez-Ospina N, Bernstein JA (2016) Clinical, cytogenetic, and molecular outcomes in a series of 66 patients with Pierre Robin sequence and literature review: 22q11.2 deletion is less common than other chromosomal anomalies. Am J Med Genet A 170A:870–880CrossRef
5.
Zurück zum Zitat Hsieh ST, Woo AS (2019) Pierre Robin Sequence. Clin Plast Surg 46:249–259CrossRef Hsieh ST, Woo AS (2019) Pierre Robin Sequence. Clin Plast Surg 46:249–259CrossRef
6.
Zurück zum Zitat Côté A, Fanous A, Almajed A, Lacroix Y (2015) Pierre Robin sequence: review of diagnostic and treatment challenges. Int J Pediatr Otorhinolaryngol 79:451–464CrossRef Côté A, Fanous A, Almajed A, Lacroix Y (2015) Pierre Robin sequence: review of diagnostic and treatment challenges. Int J Pediatr Otorhinolaryngol 79:451–464CrossRef
7.
Zurück zum Zitat Barr RM, Khan SA, Shah MN, Roy S, Teichgraeber JF, Greives MR (2016) Cervical instability in Pierre Robin sequence: an addition to the algorithm. J Craniofac Surg 27:1674–1676CrossRef Barr RM, Khan SA, Shah MN, Roy S, Teichgraeber JF, Greives MR (2016) Cervical instability in Pierre Robin sequence: an addition to the algorithm. J Craniofac Surg 27:1674–1676CrossRef
8.
Zurück zum Zitat Tubbs RS, Oakes WJ (2006) Chiari I malformation, caudal regression syndrome, and Pierre Robin syndrome: a previously unreported combination. Childs Nerv Syst 22:1507–1508CrossRef Tubbs RS, Oakes WJ (2006) Chiari I malformation, caudal regression syndrome, and Pierre Robin syndrome: a previously unreported combination. Childs Nerv Syst 22:1507–1508CrossRef
9.
Zurück zum Zitat Abu-Ghname A, Masoumy M, Monson LA (2019) Cervical stenosis in non-syndromic Pierre Robin sequence. J Craniofac Surg 30:1866–1868CrossRef Abu-Ghname A, Masoumy M, Monson LA (2019) Cervical stenosis in non-syndromic Pierre Robin sequence. J Craniofac Surg 30:1866–1868CrossRef
10.
Zurück zum Zitat Zhu X, Evans KN, El-Gharbawy A, Lee JY, Brooker JE, Jabbour N, Tyler-Kabara EC, Madan-Khertarpal S, Losee JE, Goldstein JA (2018) Cervical spine injury from unrecognized craniocervical instability in severe Pierre Robin sequence associated with skeletal dysplasia. Cleft Palate Craniofac J 55:773–777CrossRef Zhu X, Evans KN, El-Gharbawy A, Lee JY, Brooker JE, Jabbour N, Tyler-Kabara EC, Madan-Khertarpal S, Losee JE, Goldstein JA (2018) Cervical spine injury from unrecognized craniocervical instability in severe Pierre Robin sequence associated with skeletal dysplasia. Cleft Palate Craniofac J 55:773–777CrossRef
12.
Zurück zum Zitat Cirillo Silengo M, Davi GF, Bianco R, DeMarco A, Franceschini P (1983) Kniest disease with Pierre Robin syndrome and hydrocephalus. Pediatr Radiol 13:106–109CrossRef Cirillo Silengo M, Davi GF, Bianco R, DeMarco A, Franceschini P (1983) Kniest disease with Pierre Robin syndrome and hydrocephalus. Pediatr Radiol 13:106–109CrossRef
13.
Zurück zum Zitat Al Kaissi A, Ganger R, Klaushofer K, Grill F (2011) Cervico-thoracic kyphosis in a girl with Pierre Robin sequence. Ger Med Sci 9:Doc06PubMedPubMedCentral Al Kaissi A, Ganger R, Klaushofer K, Grill F (2011) Cervico-thoracic kyphosis in a girl with Pierre Robin sequence. Ger Med Sci 9:Doc06PubMedPubMedCentral
15.
Zurück zum Zitat Molnár S, Szappanos L, Körmendi Z, Veres R (2007) Occipitoatlantoaxial instability and congenital thoracic vertebral deformity in Pierre Robin sequence: a case report. Spine 32:E501–E504CrossRef Molnár S, Szappanos L, Körmendi Z, Veres R (2007) Occipitoatlantoaxial instability and congenital thoracic vertebral deformity in Pierre Robin sequence: a case report. Spine 32:E501–E504CrossRef
16.
Zurück zum Zitat Abraham V, Grewal S, Bhatia G, Kaur N, Raghav W, Jain P, Gupta N, Singh M, George C (2018) Pierre robin sequence with cervicothoracic kyphoscoliosis: an anesthetic challenge. J Anaesthesiol Clin Pharmacol 34:128–129PubMedPubMedCentral Abraham V, Grewal S, Bhatia G, Kaur N, Raghav W, Jain P, Gupta N, Singh M, George C (2018) Pierre robin sequence with cervicothoracic kyphoscoliosis: an anesthetic challenge. J Anaesthesiol Clin Pharmacol 34:128–129PubMedPubMedCentral
18.
Zurück zum Zitat Davidson TB, Sanchez-Lara PA, Randolph LM, Krieger MD, Wu S-Q, Panigrahy A, Shimada H, Erdreich-Epstein A (2012) Microdeletion del(22)(q12.2) encompassing the facial development-associated gene, MN1 (meningioma 1) in a child with Pierre-Robin sequence (including cleft palate) and neurofibromatosis 2 (NF2): a case report and review of the literature. BMC Med Genet 13:19. https://doi.org/10.1186/1471-2350-13-19 Davidson TB, Sanchez-Lara PA, Randolph LM, Krieger MD, Wu S-Q, Panigrahy A, Shimada H, Erdreich-Epstein A (2012) Microdeletion del(22)(q12.2) encompassing the facial development-associated gene, MN1 (meningioma 1) in a child with Pierre-Robin sequence (including cleft palate) and neurofibromatosis 2 (NF2): a case report and review of the literature. BMC Med Genet 13:19. https://​doi.​org/​10.​1186/​1471-2350-13-19
19.
Zurück zum Zitat Kunakornsawat S, Sathira-Angkura V, Prasartritha T, Sudprasert W, Tungsiripat R (2015) The treatment of flexion myelopathy of the thoracic spine in Pierre Robin sequence: a case report. J Med Assoc Thail 98:1041–1044 Kunakornsawat S, Sathira-Angkura V, Prasartritha T, Sudprasert W, Tungsiripat R (2015) The treatment of flexion myelopathy of the thoracic spine in Pierre Robin sequence: a case report. J Med Assoc Thail 98:1041–1044
20.
Zurück zum Zitat Lee J, Hida K, Seki T, Kitamura J, Iwasaki Y (2003) Pierre-Robin syndrome associated with Chiari type I malformation. Childs Nerv Syst 19:380–383CrossRef Lee J, Hida K, Seki T, Kitamura J, Iwasaki Y (2003) Pierre-Robin syndrome associated with Chiari type I malformation. Childs Nerv Syst 19:380–383CrossRef
21.
Zurück zum Zitat Roberti D, Conforti R, Giugliano T, Brogna B, Tartaglione I, Casale M, Piluso G, Perrotta S (2018) A novel 12q13.2-q13.3 microdeletion syndrome with combined features of Diamond Blackfan anemia, Pierre Robin sequence and Klippel Feil deformity. Front Genet 9:549. https://doi.org/10.3389/fgene.2018.00549 Roberti D, Conforti R, Giugliano T, Brogna B, Tartaglione I, Casale M, Piluso G, Perrotta S (2018) A novel 12q13.2-q13.3 microdeletion syndrome with combined features of Diamond Blackfan anemia, Pierre Robin sequence and Klippel Feil deformity. Front Genet 9:549. https://​doi.​org/​10.​3389/​fgene.​2018.​00549
22.
Zurück zum Zitat Rymer AN, Porteous GH, Neal JM (2015) Anesthetic challenges in an adult with Pierre Robin sequence, severe juvenile scoliosis, and respiratory failure. A A Case Rep 5:95–98CrossRef Rymer AN, Porteous GH, Neal JM (2015) Anesthetic challenges in an adult with Pierre Robin sequence, severe juvenile scoliosis, and respiratory failure. A A Case Rep 5:95–98CrossRef
23.
Zurück zum Zitat Logjes RJH, Breugem CC, Van Haaften G, Paes EC, Sperber GH, van den Boogaard M-JH, Farlie PG (2018) The ontogeny of Robin sequence. Am J Med Genet A 176:1349–1368CrossRef Logjes RJH, Breugem CC, Van Haaften G, Paes EC, Sperber GH, van den Boogaard M-JH, Farlie PG (2018) The ontogeny of Robin sequence. Am J Med Genet A 176:1349–1368CrossRef
24.
Zurück zum Zitat Gangopadhyay N, Mendonca DA, Woo AS (2012) Pierre robin sequence. Semin Plast Surg 26:76–82CrossRef Gangopadhyay N, Mendonca DA, Woo AS (2012) Pierre robin sequence. Semin Plast Surg 26:76–82CrossRef
25.
Zurück zum Zitat Evans KN, Sie KC, Hopper RA, Glass RP, Hing AV, Cunningham ML (2011) Robin sequence: from diagnosis to development of an effective management plan. Pediatrics 127:936–948CrossRef Evans KN, Sie KC, Hopper RA, Glass RP, Hing AV, Cunningham ML (2011) Robin sequence: from diagnosis to development of an effective management plan. Pediatrics 127:936–948CrossRef
26.
Zurück zum Zitat Jakobsen LP, Knudsen MA, Lespinasse J, García Ayuso C, Ramos C, Fryns J-P, Bugge M, Tommerup N (2006) The genetic basis of the Pierre Robin sequence. Cleft Palate Craniofac J 43:155–159CrossRef Jakobsen LP, Knudsen MA, Lespinasse J, García Ayuso C, Ramos C, Fryns J-P, Bugge M, Tommerup N (2006) The genetic basis of the Pierre Robin sequence. Cleft Palate Craniofac J 43:155–159CrossRef
27.
Zurück zum Zitat Gorlin RJ, Cohen MM Jr, RCM H (2001) Syndromes of the head and neck. Oxford University Press, Oxford Gorlin RJ, Cohen MM Jr, RCM H (2001) Syndromes of the head and neck. Oxford University Press, Oxford
28.
Zurück zum Zitat Borgaonkar DS (1997) Chromosomal variation in man: a catalog of chromosomal variants and anomalies. Wiley, Hoboken Borgaonkar DS (1997) Chromosomal variation in man: a catalog of chromosomal variants and anomalies. Wiley, Hoboken
29.
Zurück zum Zitat Strehle EM, Bantock HM (2003) The phenotype of patients with 4q-syndrome. Genet Couns 14:195–205PubMed Strehle EM, Bantock HM (2003) The phenotype of patients with 4q-syndrome. Genet Couns 14:195–205PubMed
30.
Zurück zum Zitat Losty PD, Flake AW, Rintala RJ, Hutson JM, Lwai N (2018) Rickham’s neonatal surgery. Springer, BerlinCrossRef Losty PD, Flake AW, Rintala RJ, Hutson JM, Lwai N (2018) Rickham’s neonatal surgery. Springer, BerlinCrossRef
31.
Zurück zum Zitat Benko S, Fantes JA, Amiel J, Kleinjan DJ, Thomas S, Ramsay J, Jamshidi N, Essafi A, Heaney S, Gordon CT, McBride D, Golzio C, Fisher M, Perry P, Abadie V, Ayuso C, Holder-Espinasse M, Kilpatrick N, Lees MM, Picard A, Temple IK, Thomas P, Vazquez MP, Vekemans M, Crollius HR, Hastie ND, Munnich A, Etchevers HC, Pelet A, Farlie PG, FitzPatrick DR, Lyonnet S (2009) Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet 41:359–364CrossRef Benko S, Fantes JA, Amiel J, Kleinjan DJ, Thomas S, Ramsay J, Jamshidi N, Essafi A, Heaney S, Gordon CT, McBride D, Golzio C, Fisher M, Perry P, Abadie V, Ayuso C, Holder-Espinasse M, Kilpatrick N, Lees MM, Picard A, Temple IK, Thomas P, Vazquez MP, Vekemans M, Crollius HR, Hastie ND, Munnich A, Etchevers HC, Pelet A, Farlie PG, FitzPatrick DR, Lyonnet S (2009) Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet 41:359–364CrossRef
32.
Zurück zum Zitat Amarillo IE, Dipple KM, Quintero-Rivera F (2013) Familial microdeletion of 17q24.3 upstream of SOX9 is associated with isolated Pierre Robin sequence due to position effect. Am J Med Genet A 161A:1167–1172CrossRef Amarillo IE, Dipple KM, Quintero-Rivera F (2013) Familial microdeletion of 17q24.3 upstream of SOX9 is associated with isolated Pierre Robin sequence due to position effect. Am J Med Genet A 161A:1167–1172CrossRef
33.
Zurück zum Zitat Basart H, Paes EC, Maas SM et al (2015) Etiology and pathogenesis of robin sequence in a large Dutch cohort. Am J Med Genet A 167:1983–1992CrossRef Basart H, Paes EC, Maas SM et al (2015) Etiology and pathogenesis of robin sequence in a large Dutch cohort. Am J Med Genet A 167:1983–1992CrossRef
34.
Zurück zum Zitat Izumi K, Konczal LL, Mitchell AL, Jones MC (2012) Underlying genetic diagnosis of Pierre Robin sequence: retrospective chart review at two children’s hospitals and a systematic literature review. J Pediatr 160:645–650.e2CrossRef Izumi K, Konczal LL, Mitchell AL, Jones MC (2012) Underlying genetic diagnosis of Pierre Robin sequence: retrospective chart review at two children’s hospitals and a systematic literature review. J Pediatr 160:645–650.e2CrossRef
35.
Zurück zum Zitat Bütow K-W, Hoogendijk CF, Zwahlen RA (2009) Pierre Robin sequence: appearances and 25 years of experience with an innovative treatment protocol. J Pediatr Surg 44:2112–2118CrossRef Bütow K-W, Hoogendijk CF, Zwahlen RA (2009) Pierre Robin sequence: appearances and 25 years of experience with an innovative treatment protocol. J Pediatr Surg 44:2112–2118CrossRef
36.
Zurück zum Zitat Furey CG, Zeng X, Dong W, Jin SC, Choi J, Timberlake AT, Dunbar AM, Allocco AA, Günel M, Lifton RP, Kahle KT (2018) Human genetics and molecular mechanisms of congenital hydrocephalus. World Neurosurg 119:441–443CrossRef Furey CG, Zeng X, Dong W, Jin SC, Choi J, Timberlake AT, Dunbar AM, Allocco AA, Günel M, Lifton RP, Kahle KT (2018) Human genetics and molecular mechanisms of congenital hydrocephalus. World Neurosurg 119:441–443CrossRef
37.
Zurück zum Zitat Pozetti M, Belsuzarri TAB, Belsuzarri NCB, Seixas NB, Araujo JFM (2016) Neurofibromatosis type 1 and Chiari type 1 malformation: a case report and literature review of a rare association. Surg Neurol Int 7:S469–S472CrossRef Pozetti M, Belsuzarri TAB, Belsuzarri NCB, Seixas NB, Araujo JFM (2016) Neurofibromatosis type 1 and Chiari type 1 malformation: a case report and literature review of a rare association. Surg Neurol Int 7:S469–S472CrossRef
38.
Zurück zum Zitat Chang Y-T, Chou I-C, Wang C-H, Chin Z-N, Kuo H-T, Lin C-C, Tsai C-H, Tsai F-J (2013) Chromosome 10q deletion del (10)(q26.1q26.3) is associated with cataract. Pediatr Neonatol 54:132–136CrossRef Chang Y-T, Chou I-C, Wang C-H, Chin Z-N, Kuo H-T, Lin C-C, Tsai C-H, Tsai F-J (2013) Chromosome 10q deletion del (10)(q26.1q26.3) is associated with cataract. Pediatr Neonatol 54:132–136CrossRef
39.
Zurück zum Zitat Lin S, Zhou Y, Fang Q, Wu J, Zhang Z, Ji Y, Luo Y (2016) Chromosome 10q26 deletion syndrome: two new cases and a review of the literature. Mol Med Rep 14:5134–5140CrossRef Lin S, Zhou Y, Fang Q, Wu J, Zhang Z, Ji Y, Luo Y (2016) Chromosome 10q26 deletion syndrome: two new cases and a review of the literature. Mol Med Rep 14:5134–5140CrossRef
40.
Zurück zum Zitat Kaplan KM, Spivak JM, Bendo JA (2005) Embryology of the spine and associated congenital abnormalities. Spine J 5:564–576CrossRef Kaplan KM, Spivak JM, Bendo JA (2005) Embryology of the spine and associated congenital abnormalities. Spine J 5:564–576CrossRef
41.
Zurück zum Zitat Pang D, Thompson DNP (2011) Embryology and bony malformations of the craniovertebral junction. Childs Nerv Syst 27:523–564CrossRef Pang D, Thompson DNP (2011) Embryology and bony malformations of the craniovertebral junction. Childs Nerv Syst 27:523–564CrossRef
Metadaten
Titel
Clinical and genetic characterization of patients with Pierre Robin sequence and spinal disease: review of the literature and novel terminal 10q deletion
verfasst von
Anudeep Yekula
Connor Grant
Mihir Gupta
David R. Santiago-Dieppa
Pate J. Duddleston
David Gonda
Michael Levy
Publikationsdatum
12.05.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Child's Nervous System / Ausgabe 7/2020
Print ISSN: 0256-7040
Elektronische ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-020-04642-2

Weitere Artikel der Ausgabe 7/2020

Child's Nervous System 7/2020 Zur Ausgabe

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Wie sieht der OP der Zukunft aus?

04.05.2024 DCK 2024 Kongressbericht

Der OP in der Zukunft wird mit weniger Personal auskommen – nicht, weil die Technik das medizinische Fachpersonal verdrängt, sondern weil der Personalmangel es nötig macht.

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Recycling im OP – möglich, aber teuer

02.05.2024 DCK 2024 Kongressbericht

Auch wenn sich Krankenhäuser nachhaltig und grün geben – sie tragen aktuell erheblich zu den CO2-Emissionen bei und produzieren jede Menge Müll. Ein Pilotprojekt aus Bonn zeigt, dass viele Op.-Abfälle wiederverwertet werden können.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.