Skip to main content
Erschienen in: Clinical Pharmacokinetics 12/2018

16.04.2018 | Original Research Article

Clinical Investigation of Coproporphyrins as Sensitive Biomarkers to Predict Mild to Strong OATP1B-Mediated Drug–Drug Interactions

verfasst von: Annett Kunze, Emmanuel Njumbe Ediage, Lieve Dillen, Mario Monshouwer, Jan Snoeys

Erschienen in: Clinical Pharmacokinetics | Ausgabe 12/2018

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Coproporphyrin (CP) I and III have recently been proposed as endogenous clinical biomarkers to predict organic anion-transporting polypeptide 1B (OATP1B)-mediated drug–drug interactions (DDIs). In the present study, we first investigated the in vitro selectivity of CPI and CPIII towards drug uptake and efflux transporters. We then assessed the in vivo biomarker sensitivity towards OATP1B inhibition.

Methods

To assess transporter selectivity, incubations with CPI and CPIII were performed in vitro, using single transporter-expressing and control systems. Furthermore, CPI and CPIII plasma concentrations were determined from participants of three independent clinical trials who were administered with either a strong, moderate, or mild clinical OATP1B inhibitor.

Results

Our results show that CPI and CPIII are substrates of OATP1B1, OATP1B3, the multidrug resistance-associated protein (MRP) 2, and MRP3. No substrate interaction was shown for other prominent drug transporters that have been associated with clinical DDIs. Results from clinical studies demonstrated that changes in CPI and CPIII plasma levels were predictive for moderate (two to threefold area under the concentration–time curve [AUC] increase) and strong (≥ fivefold increases) clinical OATP1B inhibition. Furthermore, CPI, but not CPIII, concentration changes were predictive for a mild clinically observed DDI where CPI AUC increases of 1.4-fold were comparable with those observed for pitavastatin as victim drug (AUC increases of 1.5-fold).

Conclusion

Our results demonstrate the selectivity of CPI and CPIII towards the OATP1B/MRP pathway, and the herein reported data further underline the potential of CPI and CPIII as selective and sensitive clinical biomarkers to quantify OATP1B-mediated DDIs.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Maeda K. Organic anion transporting polypeptide (OATP)1B1 and OATP1B3 as important regulators of the pharmacokinetics of substrate drugs. Biol Pharm Bull. 2015;38(2):155–68.CrossRef Maeda K. Organic anion transporting polypeptide (OATP)1B1 and OATP1B3 as important regulators of the pharmacokinetics of substrate drugs. Biol Pharm Bull. 2015;38(2):155–68.CrossRef
2.
Zurück zum Zitat Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63(1):157–81.CrossRef Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63(1):157–81.CrossRef
3.
Zurück zum Zitat Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug–drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther. 2006;112(1):71–105.CrossRef Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug–drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther. 2006;112(1):71–105.CrossRef
4.
Zurück zum Zitat Vaidyanathan J, Yoshida K, Arya V, Zhang L. Comparing various in vitro prediction criteria to assess the potential of a new molecular entity to inhibit organic anion transporting polypeptide 1B1. J Clin Pharmacol. 2016;56(Suppl 7):S59–72.CrossRef Vaidyanathan J, Yoshida K, Arya V, Zhang L. Comparing various in vitro prediction criteria to assess the potential of a new molecular entity to inhibit organic anion transporting polypeptide 1B1. J Clin Pharmacol. 2016;56(Suppl 7):S59–72.CrossRef
5.
Zurück zum Zitat Snoeys J, Beumont M, Monshouwer M, Ouwerkerk-Mahadevan S. Mechanistic understanding of the nonlinear pharmacokinetics and intersubject variability of simeprevir: a PBPK-guided drug development approach. Clin Pharmacol Ther. 2016;99(2):224–34.CrossRef Snoeys J, Beumont M, Monshouwer M, Ouwerkerk-Mahadevan S. Mechanistic understanding of the nonlinear pharmacokinetics and intersubject variability of simeprevir: a PBPK-guided drug development approach. Clin Pharmacol Ther. 2016;99(2):224–34.CrossRef
6.
Zurück zum Zitat Feng B, Varma MV. Evaluation and quantitative prediction of renal transporter-mediated drug–drug interactions. J Clin Pharmacol. 2016;56(Suppl 7):S110–21.CrossRef Feng B, Varma MV. Evaluation and quantitative prediction of renal transporter-mediated drug–drug interactions. J Clin Pharmacol. 2016;56(Suppl 7):S110–21.CrossRef
7.
Zurück zum Zitat Varma MV, Lai Y, Feng B, Litchfield J, Goosen TC, Bergman A. Physiologically based modeling of pravastatin transporter-mediated hepatobiliary disposition and drug–drug interactions. Pharm Res. 2012;29(10):2860–73.CrossRef Varma MV, Lai Y, Feng B, Litchfield J, Goosen TC, Bergman A. Physiologically based modeling of pravastatin transporter-mediated hepatobiliary disposition and drug–drug interactions. Pharm Res. 2012;29(10):2860–73.CrossRef
8.
Zurück zum Zitat Varma MV, Lai Y, Kimoto E, Goosen TC, El-Kattan AF, Kumar V. Mechanistic modeling to predict the transporter- and enzyme-mediated drug–drug interactions of repaglinide. Pharm Res. 2013;30(4):1188–99.CrossRef Varma MV, Lai Y, Kimoto E, Goosen TC, El-Kattan AF, Kumar V. Mechanistic modeling to predict the transporter- and enzyme-mediated drug–drug interactions of repaglinide. Pharm Res. 2013;30(4):1188–99.CrossRef
9.
Zurück zum Zitat Chu X, Chan GH, Evers R. Identification of endogenous biomarkers to predict the propensity of drug candidates to cause hepatic or renal transporter-mediated drug–drug interactions. J Pharm Sci. 2017;106(9):2357–67.CrossRef Chu X, Chan GH, Evers R. Identification of endogenous biomarkers to predict the propensity of drug candidates to cause hepatic or renal transporter-mediated drug–drug interactions. J Pharm Sci. 2017;106(9):2357–67.CrossRef
10.
Zurück zum Zitat Rodrigues AD, Taskar KS, Kusuhara H, Sugiyama Y. Endogenous probes for drug transporters: balancing vision with reality. Clin Pharmacol Ther. 2018;103(3):434–48.CrossRef Rodrigues AD, Taskar KS, Kusuhara H, Sugiyama Y. Endogenous probes for drug transporters: balancing vision with reality. Clin Pharmacol Ther. 2018;103(3):434–48.CrossRef
11.
Zurück zum Zitat Bednarczyk D, Boiselle C. Organic anion transporting polypeptide (OATP)-mediated transport of coproporphyrins I and III. Xenobiotica. 2016;46(5):457–66.CrossRef Bednarczyk D, Boiselle C. Organic anion transporting polypeptide (OATP)-mediated transport of coproporphyrins I and III. Xenobiotica. 2016;46(5):457–66.CrossRef
12.
Zurück zum Zitat Lai Y, Mandlekar S, Shen H, Holenarsipur VK, Langish R, Rajanna P, et al. Coproporphyrins in plasma and urine can be appropriate clinical biomarkers to recapitulate drug–drug interactions mediated by organic anion transporting polypeptide inhibition. J Pharmacol Exp Ther. 2016;358(3):397–404.CrossRef Lai Y, Mandlekar S, Shen H, Holenarsipur VK, Langish R, Rajanna P, et al. Coproporphyrins in plasma and urine can be appropriate clinical biomarkers to recapitulate drug–drug interactions mediated by organic anion transporting polypeptide inhibition. J Pharmacol Exp Ther. 2016;358(3):397–404.CrossRef
13.
Zurück zum Zitat Shen H, Chen W, Drexler DM, Mandlekar S, Holenarsipur VK, Shields EE, et al. Comparative evaluation of plasma bile acids, dehydroepiandrosterone sulfate, hexadecanedioate, and tetradecanedioate with coproporphyrins I and III as markers of OATP inhibition in healthy subjects. Drug Metab Dispos. 2017;45(8):908–19.CrossRef Shen H, Chen W, Drexler DM, Mandlekar S, Holenarsipur VK, Shields EE, et al. Comparative evaluation of plasma bile acids, dehydroepiandrosterone sulfate, hexadecanedioate, and tetradecanedioate with coproporphyrins I and III as markers of OATP inhibition in healthy subjects. Drug Metab Dispos. 2017;45(8):908–19.CrossRef
14.
Zurück zum Zitat Shen H, Dai J, Liu T, Cheng Y, Chen W, Freeden C, et al. Coproporphyrins I and III as functional markers of OATP1B activity. In vitro and in vivo evaluation in preclinical species. J Pharmacol Exp Ther. 2016;357(2):382–93.CrossRef Shen H, Dai J, Liu T, Cheng Y, Chen W, Freeden C, et al. Coproporphyrins I and III as functional markers of OATP1B activity. In vitro and in vivo evaluation in preclinical species. J Pharmacol Exp Ther. 2016;357(2):382–93.CrossRef
15.
Zurück zum Zitat Kaplowitz N, Javitt N, Kappas A. Coproporphyrin I and 3 excretion in bile and urine. J Clin Investig. 1972;51(11):2895–9.CrossRef Kaplowitz N, Javitt N, Kappas A. Coproporphyrin I and 3 excretion in bile and urine. J Clin Investig. 1972;51(11):2895–9.CrossRef
16.
Zurück zum Zitat Shimizu Y, Naruto H, Ida S, Kohakura M. Urinary coproporphyrin isomers in Rotor’s syndrome: a study in eight families. Hepatology. 1981;1(2):173–8.CrossRef Shimizu Y, Naruto H, Ida S, Kohakura M. Urinary coproporphyrin isomers in Rotor’s syndrome: a study in eight families. Hepatology. 1981;1(2):173–8.CrossRef
17.
Zurück zum Zitat Gilibili RR, Chatterjee S, Bagul P, Mosure KW, Murali BV, Mariappan TT, et al. Coproporphyrin-I: a fluorescent, endogenous optimal probe substrate for ABCC2 (MRP2) suitable for vesicle-based MRP2 inhibition assay. Drug Metab Dispos. 2017;45(6):604–11.CrossRef Gilibili RR, Chatterjee S, Bagul P, Mosure KW, Murali BV, Mariappan TT, et al. Coproporphyrin-I: a fluorescent, endogenous optimal probe substrate for ABCC2 (MRP2) suitable for vesicle-based MRP2 inhibition assay. Drug Metab Dispos. 2017;45(6):604–11.CrossRef
19.
Zurück zum Zitat Cui Y, Konig J, Keppler D. Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol. 2001;60(5):934–43.CrossRef Cui Y, Konig J, Keppler D. Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol. 2001;60(5):934–43.CrossRef
20.
Zurück zum Zitat Lau YY, Okochi H, Huang Y, Benet LZ. Multiple transporters affect the disposition of atorvastatin and its two active hydroxy metabolites: application of in vitro and ex situ systems. J Pharmacol Exp Ther. 2006;316(2):762–71.CrossRef Lau YY, Okochi H, Huang Y, Benet LZ. Multiple transporters affect the disposition of atorvastatin and its two active hydroxy metabolites: application of in vitro and ex situ systems. J Pharmacol Exp Ther. 2006;316(2):762–71.CrossRef
21.
Zurück zum Zitat Prueksaritanont T, Chu X, Evers R, Klopfer SO, Caro L, Kothare PA, et al. Pitavastatin is a more sensitive and selective organic anion-transporting polypeptide 1B clinical probe than rosuvastatin. Br J Clin Pharmacol. 2014;78(3):587–98.CrossRef Prueksaritanont T, Chu X, Evers R, Klopfer SO, Caro L, Kothare PA, et al. Pitavastatin is a more sensitive and selective organic anion-transporting polypeptide 1B clinical probe than rosuvastatin. Br J Clin Pharmacol. 2014;78(3):587–98.CrossRef
22.
Zurück zum Zitat Shingaki T, Takashima T, Ijuin R, Zhang X, Onoue T, Katayama Y, et al. Evaluation of Oatp and Mrp2 activities in hepatobiliary excretion using newly developed positron emission tomography tracer [11C]dehydropravastatin in rats. J Pharmacol Exp Ther. 2013;347(1):193–202.CrossRef Shingaki T, Takashima T, Ijuin R, Zhang X, Onoue T, Katayama Y, et al. Evaluation of Oatp and Mrp2 activities in hepatobiliary excretion using newly developed positron emission tomography tracer [11C]dehydropravastatin in rats. J Pharmacol Exp Ther. 2013;347(1):193–202.CrossRef
23.
Zurück zum Zitat Takashima T, Kitamura S, Wada Y, Tanaka M, Shigihara Y, Ishii H, et al. PET imaging-based evaluation of hepatobiliary transport in humans with (15R)-11C-TIC-Me. J Nucl Med. 2012;53(5):741–8.CrossRef Takashima T, Kitamura S, Wada Y, Tanaka M, Shigihara Y, Ishii H, et al. PET imaging-based evaluation of hepatobiliary transport in humans with (15R)-11C-TIC-Me. J Nucl Med. 2012;53(5):741–8.CrossRef
25.
Zurück zum Zitat Akamine Y, Miura M, Yasui-Furukori N, Kojima M, Uno T. Carbamazepine differentially affects the pharmacokinetics of fexofenadine enantiomers. Br J Clin Pharmacol. 2012;73(3):478–81.CrossRef Akamine Y, Miura M, Yasui-Furukori N, Kojima M, Uno T. Carbamazepine differentially affects the pharmacokinetics of fexofenadine enantiomers. Br J Clin Pharmacol. 2012;73(3):478–81.CrossRef
26.
Zurück zum Zitat Backman JT, Olkkola KT, Neuvonen PJ. Rifampin drastically reduces plasma concentrations and effects of oral midazolam. Clin Pharmacol Ther. 1996;59(1):7–13.CrossRef Backman JT, Olkkola KT, Neuvonen PJ. Rifampin drastically reduces plasma concentrations and effects of oral midazolam. Clin Pharmacol Ther. 1996;59(1):7–13.CrossRef
27.
Zurück zum Zitat Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Investig. 1999;104(2):147–53.CrossRef Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Investig. 1999;104(2):147–53.CrossRef
28.
Zurück zum Zitat Hamman MA, Bruce MA, Haehner-Daniels BD, Hall SD. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther. 2001;69(3):114–21.CrossRef Hamman MA, Bruce MA, Haehner-Daniels BD, Hall SD. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther. 2001;69(3):114–21.CrossRef
29.
Zurück zum Zitat Kusuhara H, Miura M, Yasui-Furukori N, Yoshida K, Akamine Y, Yokochi M, et al. Effect of coadministration of single and multiple doses of rifampicin on the pharmacokinetics of fexofenadine enantiomers in healthy subjects. Drug Metab Dispos. 2013;41(1):206–13.CrossRef Kusuhara H, Miura M, Yasui-Furukori N, Yoshida K, Akamine Y, Yokochi M, et al. Effect of coadministration of single and multiple doses of rifampicin on the pharmacokinetics of fexofenadine enantiomers in healthy subjects. Drug Metab Dispos. 2013;41(1):206–13.CrossRef
30.
Zurück zum Zitat Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivisto KT. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet. 2003;42(9):819–50.CrossRef Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivisto KT. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet. 2003;42(9):819–50.CrossRef
31.
Zurück zum Zitat Dixit V, Hariparsad N, Li F, Desai P, Thummel KE, Unadkat JD. Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Drug Metab Dispos. 2007;35(10):1853–9.CrossRef Dixit V, Hariparsad N, Li F, Desai P, Thummel KE, Unadkat JD. Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Drug Metab Dispos. 2007;35(10):1853–9.CrossRef
32.
Zurück zum Zitat Fromm MF, Kauffmann HM, Fritz P, Burk O, Kroemer HK, Warzok RW, et al. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol. 2000;157(5):1575–80.CrossRef Fromm MF, Kauffmann HM, Fritz P, Burk O, Kroemer HK, Warzok RW, et al. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol. 2000;157(5):1575–80.CrossRef
33.
Zurück zum Zitat Martin P, Riley R, Back DJ, Owen A. Comparison of the induction profile for drug disposition proteins by typical nuclear receptor activators in human hepatic and intestinal cells. Br J Pharmacol. 2008;153(4):805–19.CrossRef Martin P, Riley R, Back DJ, Owen A. Comparison of the induction profile for drug disposition proteins by typical nuclear receptor activators in human hepatic and intestinal cells. Br J Pharmacol. 2008;153(4):805–19.CrossRef
34.
Zurück zum Zitat Williamson B, Dooley KE, Zhang Y, Back DJ, Owen A. Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine. Antimicrob Agents Chemother. 2013;57(12):6366–9.CrossRef Williamson B, Dooley KE, Zhang Y, Back DJ, Owen A. Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine. Antimicrob Agents Chemother. 2013;57(12):6366–9.CrossRef
35.
Zurück zum Zitat Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978;3(2):108–27.CrossRef Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978;3(2):108–27.CrossRef
36.
Zurück zum Zitat Maeda K, Ikeda Y, Fujita T, Yoshida K, Azuma Y, Haruyama Y, et al. Identification of the rate-determining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study. Clin Pharmacol Ther. 2011;90(4):575–81.CrossRef Maeda K, Ikeda Y, Fujita T, Yoshida K, Azuma Y, Haruyama Y, et al. Identification of the rate-determining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study. Clin Pharmacol Ther. 2011;90(4):575–81.CrossRef
37.
Zurück zum Zitat Barnett S, Ogungbenro K, Menochet K, Shen H, Lai Y, Humphreys WG, et al. Gaining mechanistic insight into coproporphyrin I as endogenous biomarker for OATP1B-mediated drug–drug interactions using population pharmacokinetic modeling and simulation. Clin Pharmacol Ther. 2017. https://doi.org/10.1002/cpt.983 (Epub 15 Dec 2017).CrossRef Barnett S, Ogungbenro K, Menochet K, Shen H, Lai Y, Humphreys WG, et al. Gaining mechanistic insight into coproporphyrin I as endogenous biomarker for OATP1B-mediated drug–drug interactions using population pharmacokinetic modeling and simulation. Clin Pharmacol Ther. 2017. https://​doi.​org/​10.​1002/​cpt.​983 (Epub 15 Dec 2017).CrossRef
38.
Zurück zum Zitat Annaert P, Ye ZW, Stieger B, Augustijns P. Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica. 2010;40(3):163–76.CrossRef Annaert P, Ye ZW, Stieger B, Augustijns P. Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica. 2010;40(3):163–76.CrossRef
39.
Zurück zum Zitat Ouwerkerk-Mahadevan S, Snoeys J, Peeters M, Beumont-Mauviel M, Simion A. Drug–drug interactions with the NS3/4A protease inhibitor simeprevir. Clin Pharmacokinet. 2016;55(2):197–208.CrossRef Ouwerkerk-Mahadevan S, Snoeys J, Peeters M, Beumont-Mauviel M, Simion A. Drug–drug interactions with the NS3/4A protease inhibitor simeprevir. Clin Pharmacokinet. 2016;55(2):197–208.CrossRef
40.
Zurück zum Zitat Morrissey KM, Wen CC, Johns SJ, Zhang L, Huang SM, Giacomini KM. The UCSF-FDA TransPortal: a public drug transporter database. Clin Pharmacol Ther. 2012;92(5):545–6.CrossRef Morrissey KM, Wen CC, Johns SJ, Zhang L, Huang SM, Giacomini KM. The UCSF-FDA TransPortal: a public drug transporter database. Clin Pharmacol Ther. 2012;92(5):545–6.CrossRef
41.
Zurück zum Zitat Huisman MT, Snoeys J, Monbaliu J, Martens M, Sekar V, Raoof A. In vitro studies investigating the mechanism of interaction between TMC435 and hepatic transporters [poster]. In: Presented at the 61st annual meeting of the American Association for the Study of Liver Disease (AASLD); 29 Oct–2 Nov 2010, San Francisco, CA. Huisman MT, Snoeys J, Monbaliu J, Martens M, Sekar V, Raoof A. In vitro studies investigating the mechanism of interaction between TMC435 and hepatic transporters [poster]. In: Presented at the 61st annual meeting of the American Association for the Study of Liver Disease (AASLD); 29 Oct–2 Nov 2010, San Francisco, CA.
Metadaten
Titel
Clinical Investigation of Coproporphyrins as Sensitive Biomarkers to Predict Mild to Strong OATP1B-Mediated Drug–Drug Interactions
verfasst von
Annett Kunze
Emmanuel Njumbe Ediage
Lieve Dillen
Mario Monshouwer
Jan Snoeys
Publikationsdatum
16.04.2018
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 12/2018
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-018-0648-3

Weitere Artikel der Ausgabe 12/2018

Clinical Pharmacokinetics 12/2018 Zur Ausgabe

Acknowledgement to Referees

Acknowledgement to Referees