Skip to main content
Erschienen in: Clinical Pharmacokinetics 2/2004

01.02.2004 | Review Article

Clinical Pharmacokinetics of Everolimus

verfasst von: Dr Gabriele I. Kirchner, Ivo Meier-Wiedenbach, Michael P. Manns

Erschienen in: Clinical Pharmacokinetics | Ausgabe 2/2004

Einloggen, um Zugang zu erhalten

Abstract

Abstract Everolimus is an immunosuppressive macrolide bearing a stable 2-hydroxy-ethyl chain substitution at position 40 on the sirolimus (rapamycin) structure. Everolimus, which has greater polarity than sirolimus, was developed in an attempt to improve the pharmacokinetic characteristics of sirolimus, particularly to increase its oral bioavailability. Everolimus has a mechanism of action similar to that of sirolimus. It blocks growth-driven transduction signals in the T-cell response to alloantigen and thus acts at a later stage than the calcineurin inhibitors ciclosporin and tacrolimus. Everolimus and ciclosporin show synergism in immunosuppression both in vitro and in vivo and therefore the drugs are intended to be given in combination after solid organ transplantation. The synergistic effect allows a dosage reduction that decreases adverse effects.
For the quantification of the pharmacokinetics of everolimus, nine different assays using high performance liquid chromatography coupled to an electrospray mass spectrometer, and one enzyme-linked immunosorbent assay, have been developed.
Oral everolimus is absorbed rapidly, and reaches peak concentration after 1.3–1.8 hours. Steady state is reached within 7 days, and steady-state peak and trough concentrations, and area under the concentration-time curve (AUC), are proportional to dosage. In adults, everolimus pharmacokinetic characteristics do not differ according to age, weight or sex, but bodyweight-adjusted dosages are necessary in children.
The interindividual pharmacokinetic variability of everolimus can be explained by different activities of the drug efflux pump P-glycoprotein and of metabolism by cytochrome P450 (CYP) 3A4, 3A5 and 2C8. The critical role of the CYP3A4 system for everolimus biotransformation leads to drug-drug interactions with other drugs metabolised by this cytochrome system. In patients with hepatic impairment, the apparent clearance of everolimus is significantly lower than in healthy volunteers, and therefore the dosage of everolimus should be reduced by half in these patients.
The advantage of everolimus seems to be its lower nephrotoxicity in comparison with the standard immunosuppressants ciclosporin and tacrolimus. Observed adverse effects with everolimus include hypertriglyceridaemia, hypercholesterolaemia, opportunistic infections, thrombocytopenia and leucocytopenia.
Because of the variable oral bioavailability and narrow therapeutic index of everolimus, blood concentration monitoring seems to be important. The excellent correlation between steady-state trough concentration and AUC makes the former a simple and reliable index for monitoring everolimus exposure. The target trough concentration of everolimus should range between 3 and 15 µg/L in combination therapy with ciclosporin (trough concentration 100–300 µg/L) and prednisone.
Fußnoten
1
Use of tradenames is for product identification only and does not imply endorsement.
 
Literatur
1.
Zurück zum Zitat Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic: I. taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975; 28: 721–6CrossRef Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic: I. taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975; 28: 721–6CrossRef
2.
Zurück zum Zitat Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22.98), a new antifugal antibiotic: II. fermentation, isolation and characterization. J Antibiot (Tokyo) 1975; 28: 727–32CrossRef Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22.98), a new antifugal antibiotic: II. fermentation, isolation and characterization. J Antibiot (Tokyo) 1975; 28: 727–32CrossRef
3.
Zurück zum Zitat Calne RY, Kim S, Saaman A, et al. Rapamycin for immunosuppression in organ allografting. Lancet 1989; II: 227CrossRef Calne RY, Kim S, Saaman A, et al. Rapamycin for immunosuppression in organ allografting. Lancet 1989; II: 227CrossRef
4.
Zurück zum Zitat Boehler T, Waiser J, Budde K, et al. The in vivo effect of rapamycin derivative SDZ RAD on lymphocyte proliferation. Transplant Proc 1998; 30: 2195–7CrossRef Boehler T, Waiser J, Budde K, et al. The in vivo effect of rapamycin derivative SDZ RAD on lymphocyte proliferation. Transplant Proc 1998; 30: 2195–7CrossRef
5.
Zurück zum Zitat Schuler W, Sedrani R, Cottens S, et al. SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation 1997; 64: 36–42PubMedCrossRef Schuler W, Sedrani R, Cottens S, et al. SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation 1997; 64: 36–42PubMedCrossRef
6.
Zurück zum Zitat Crowe A, Bruelisauer A, Duerr L, et al. Absorption and intestinal metabolism of SDZ-RAD and rapamycin in rats. Drug Metab Dispos 1999; 27: 627–32PubMed Crowe A, Bruelisauer A, Duerr L, et al. Absorption and intestinal metabolism of SDZ-RAD and rapamycin in rats. Drug Metab Dispos 1999; 27: 627–32PubMed
7.
Zurück zum Zitat Krönke M, Leonard WJ, Depper JM, et al. Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proc Natl Acad Sci U S A 1984; 81: 5214–8PubMedCrossRef Krönke M, Leonard WJ, Depper JM, et al. Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proc Natl Acad Sci U S A 1984; 81: 5214–8PubMedCrossRef
8.
Zurück zum Zitat Bierer BE, Holländer G, Frumann D, et al. Cyclosporin A and FK506: molecular mechanisms of immunosuppression and probes and transplantation biology. Curr Opin Immunol 1993; 5: 763–73PubMedCrossRef Bierer BE, Holländer G, Frumann D, et al. Cyclosporin A and FK506: molecular mechanisms of immunosuppression and probes and transplantation biology. Curr Opin Immunol 1993; 5: 763–73PubMedCrossRef
9.
Zurück zum Zitat Emmel EA, Verweij CL, Durand DB, et al. Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science 1989; 246: 1617–20PubMedCrossRef Emmel EA, Verweij CL, Durand DB, et al. Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science 1989; 246: 1617–20PubMedCrossRef
10.
Zurück zum Zitat Dumont FJ, Staruch MJ, Koprak SL, et al. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK506 and rapamycin. J Immunol 1990; 144: 251–8PubMed Dumont FJ, Staruch MJ, Koprak SL, et al. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK506 and rapamycin. J Immunol 1990; 144: 251–8PubMed
11.
Zurück zum Zitat Lorenz MC, Heitman J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem 1995; 270: 27531–7PubMedCrossRef Lorenz MC, Heitman J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem 1995; 270: 27531–7PubMedCrossRef
12.
Zurück zum Zitat Sehgal SN. Rapamune (sirolimus, rapamycin): an overview and mechanism of action. Ther Drug Monit 1995; 17: 660–5PubMedCrossRef Sehgal SN. Rapamune (sirolimus, rapamycin): an overview and mechanism of action. Ther Drug Monit 1995; 17: 660–5PubMedCrossRef
13.
Zurück zum Zitat Abraham RT. Mammalian target of rapamycin: immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling. Curr Opin Immunol 1998; 10: 330–6PubMedCrossRef Abraham RT. Mammalian target of rapamycin: immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling. Curr Opin Immunol 1998; 10: 330–6PubMedCrossRef
14.
Zurück zum Zitat Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin. Annu Rev Immunol 1996; 14: 483–510PubMedCrossRef Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin. Annu Rev Immunol 1996; 14: 483–510PubMedCrossRef
15.
Zurück zum Zitat Terada N, Lucas JJ, Szepesi A, et al. Rapamycin inhibits the phosphorylation of p70 S6 kinase in IL-2 and mitogen-activated human T cells. Biochem Biophys Res Commun 1992; 186: 1315–21PubMedCrossRef Terada N, Lucas JJ, Szepesi A, et al. Rapamycin inhibits the phosphorylation of p70 S6 kinase in IL-2 and mitogen-activated human T cells. Biochem Biophys Res Commun 1992; 186: 1315–21PubMedCrossRef
16.
Zurück zum Zitat Kuo CJ, Chung J, Fiorentino DF, et al. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 1992; 358: 70–3PubMedCrossRef Kuo CJ, Chung J, Fiorentino DF, et al. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 1992; 358: 70–3PubMedCrossRef
17.
Zurück zum Zitat Brazelton T, Morris RE. Molecular mechanisms of action of new xenobiotic immunosuppressive drugs: tacrolimus (FK506), sirolimus (rapamycin), mycophenolate mofetil and leflunomide. Curr Opin Immunol 1996; 8: 710–20PubMedCrossRef Brazelton T, Morris RE. Molecular mechanisms of action of new xenobiotic immunosuppressive drugs: tacrolimus (FK506), sirolimus (rapamycin), mycophenolate mofetil and leflunomide. Curr Opin Immunol 1996; 8: 710–20PubMedCrossRef
18.
Zurück zum Zitat Dumont FJ. Everolimus Novartis. Curr Opin Investig Drugs 2001; 2: 1220–34PubMed Dumont FJ. Everolimus Novartis. Curr Opin Investig Drugs 2001; 2: 1220–34PubMed
19.
Zurück zum Zitat Sedrani R, Cottens S, Kallen J, et al. Chemical modification of rapamycin: the discovery of SDZ RAD. Transplant Proc 1998; 30: 2192–4PubMedCrossRef Sedrani R, Cottens S, Kallen J, et al. Chemical modification of rapamycin: the discovery of SDZ RAD. Transplant Proc 1998; 30: 2192–4PubMedCrossRef
20.
Zurück zum Zitat Schuurman H-J, Cottens S, Fuchs S, et al. SDZ RAD, a new rapamycin derivative. Transplantation 1997; 64: 32–5PubMedCrossRef Schuurman H-J, Cottens S, Fuchs S, et al. SDZ RAD, a new rapamycin derivative. Transplantation 1997; 64: 32–5PubMedCrossRef
21.
Zurück zum Zitat Schuurman H, Ringers J, Schuler W, et al. Oral efficacy of the macrolide immunosuppressant SDZ RAD and of cyclosporine microemulsion in cynomolgus monkey kidney allotransplantation. Transplantation 2000; 69: 737–42PubMedCrossRef Schuurman H, Ringers J, Schuler W, et al. Oral efficacy of the macrolide immunosuppressant SDZ RAD and of cyclosporine microemulsion in cynomolgus monkey kidney allotransplantation. Transplantation 2000; 69: 737–42PubMedCrossRef
22.
Zurück zum Zitat Stepkowski SM, Napoli KL, Wang ME, Qu X, et al. Effects of the pharmacokinetic interaction between orally administered sirolimus and cyclosporine on the synergistic prolongation of heart allograft survival in rats. Transplantation 1996; 62: 986–94PubMedCrossRef Stepkowski SM, Napoli KL, Wang ME, Qu X, et al. Effects of the pharmacokinetic interaction between orally administered sirolimus and cyclosporine on the synergistic prolongation of heart allograft survival in rats. Transplantation 1996; 62: 986–94PubMedCrossRef
23.
Zurück zum Zitat Hausen B, Ikonen T, Briffa N, et al. Combined immunosuppression with cyclosporine (Neoral) and SDZ RAD in nonhuman primate lung transplantation: systemic pharmacokinetic-based trials to improve efficacy and tolerability. Transplantation 2000; 69: 76–86PubMedCrossRef Hausen B, Ikonen T, Briffa N, et al. Combined immunosuppression with cyclosporine (Neoral) and SDZ RAD in nonhuman primate lung transplantation: systemic pharmacokinetic-based trials to improve efficacy and tolerability. Transplantation 2000; 69: 76–86PubMedCrossRef
24.
Zurück zum Zitat Hausen B, Boeke K, Berry G, et al. Suppression of acute rejection in allogenic rat lung transplantation: a study of the efficacy and pharmacokinetics of rapamycin derivative (SDZ RAD) used alone and in combination with a microemulsion formulation of cyclosporine. J Heart Lung Transplant 1999; 18: 150–9PubMedCrossRef Hausen B, Boeke K, Berry G, et al. Suppression of acute rejection in allogenic rat lung transplantation: a study of the efficacy and pharmacokinetics of rapamycin derivative (SDZ RAD) used alone and in combination with a microemulsion formulation of cyclosporine. J Heart Lung Transplant 1999; 18: 150–9PubMedCrossRef
25.
Zurück zum Zitat Kahan BD. The synergistic effects of cyclosporine and sirolimus. Transplantation 1997; 63: 170PubMedCrossRef Kahan BD. The synergistic effects of cyclosporine and sirolimus. Transplantation 1997; 63: 170PubMedCrossRef
26.
Zurück zum Zitat Kahan BD, Kaplan B, Lorber MI, et al. RAD in de novo renal transplantation: comparison of three doses on the incidence and severity of acute rejection. Transplantation 2001; 71: 1400–6PubMedCrossRef Kahan BD, Kaplan B, Lorber MI, et al. RAD in de novo renal transplantation: comparison of three doses on the incidence and severity of acute rejection. Transplantation 2001; 71: 1400–6PubMedCrossRef
27.
Zurück zum Zitat Schwarz C, Oberbauer R. The future role of target of rapamycin inhibitors in renal transplantation. Curr Opin Urol 2002; 12: 109–13PubMedCrossRef Schwarz C, Oberbauer R. The future role of target of rapamycin inhibitors in renal transplantation. Curr Opin Urol 2002; 12: 109–13PubMedCrossRef
28.
Zurück zum Zitat Dumont FJ, Kastner C, Iacovone Jr F, et al. Quantitative and temporal analysis of the cellular interaction of FK506 and rapamycin in T-lymphocytes. J Pharmacol Exp Ther 1994; 268: 32–41PubMed Dumont FJ, Kastner C, Iacovone Jr F, et al. Quantitative and temporal analysis of the cellular interaction of FK506 and rapamycin in T-lymphocytes. J Pharmacol Exp Ther 1994; 268: 32–41PubMed
29.
Zurück zum Zitat Curtis J, Nashan B, Ponticelli C, et al. One year results of a multicenter, open-label trial on safety and efficacy of Certican™ (RAD) used in combination with Simulect, corticosteroids, and full or reduced dose Neoral in renal transplantation [abstract 1335]. Am J Transplant 2001; 1 Suppl.: 474 Curtis J, Nashan B, Ponticelli C, et al. One year results of a multicenter, open-label trial on safety and efficacy of Certican™ (RAD) used in combination with Simulect, corticosteroids, and full or reduced dose Neoral in renal transplantation [abstract 1335]. Am J Transplant 2001; 1 Suppl.: 474
30.
Zurück zum Zitat Wilkinson A. Progress in the clinical application of immunosuppressive drugs in renal transplantation. Curr Opin Nephrol Hypertens 2001; 10: 763–70PubMedCrossRef Wilkinson A. Progress in the clinical application of immunosuppressive drugs in renal transplantation. Curr Opin Nephrol Hypertens 2001; 10: 763–70PubMedCrossRef
31.
Zurück zum Zitat Segarra I, Brazelton TR, Guterman N, et al. Development of a high-performance liquid chromatographic-electrospray mass spectrometric assay for the specific and sensitive quantification of the novel immunosuppressive macrolide 40-O-(2-hydroxyethyl)rapamycin. J Chromatogr B Biomed Sci Appl 1998; 720: 179–87PubMedCrossRef Segarra I, Brazelton TR, Guterman N, et al. Development of a high-performance liquid chromatographic-electrospray mass spectrometric assay for the specific and sensitive quantification of the novel immunosuppressive macrolide 40-O-(2-hydroxyethyl)rapamycin. J Chromatogr B Biomed Sci Appl 1998; 720: 179–87PubMedCrossRef
32.
Zurück zum Zitat Salm P, Taylor PJ, Lynch SV, et al. Quantification and stability of everolimus (SDZ RAD) in human blood by high-performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci J Chromatogr B 2002; 772: 283–90CrossRef Salm P, Taylor PJ, Lynch SV, et al. Quantification and stability of everolimus (SDZ RAD) in human blood by high-performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci J Chromatogr B 2002; 772: 283–90CrossRef
33.
Zurück zum Zitat Vidal C, Kirchner GI, Wünsch G, et al. Automated simultaneous quantification of the immunosuppressants 40-O-(2-hydroxyethyl)rapamycin and cyclosporine in blood with electrospray-mass spectrometric detection. Clin Chem 1998; 44: 1275–82PubMed Vidal C, Kirchner GI, Wünsch G, et al. Automated simultaneous quantification of the immunosuppressants 40-O-(2-hydroxyethyl)rapamycin and cyclosporine in blood with electrospray-mass spectrometric detection. Clin Chem 1998; 44: 1275–82PubMed
34.
Zurück zum Zitat Kovarik JM, Kahan BD, Kaplan B, et al. Longitudinal assessment of everolimus in de novo renal transplant recipients over the first post-transplant year: pharmacokinetics, exposure-response relationships, and influence on cyclosporin. Clin Pharmacol Ther 2001; 69: 48–56PubMedCrossRef Kovarik JM, Kahan BD, Kaplan B, et al. Longitudinal assessment of everolimus in de novo renal transplant recipients over the first post-transplant year: pharmacokinetics, exposure-response relationships, and influence on cyclosporin. Clin Pharmacol Ther 2001; 69: 48–56PubMedCrossRef
35.
Zurück zum Zitat Kirchner GI, Vidal C, Winkler M, et al. LC/ESI-MS allows simultaneous and specific quantification of SDZ RAD and ciclosporin including their metabolites in human blood. Ther Drug Monit 1999; 21: 116–22PubMedCrossRef Kirchner GI, Vidal C, Winkler M, et al. LC/ESI-MS allows simultaneous and specific quantification of SDZ RAD and ciclosporin including their metabolites in human blood. Ther Drug Monit 1999; 21: 116–22PubMedCrossRef
36.
Zurück zum Zitat Christians U, Jacobsen W, Serkova N, et al. Automated, fast and sensitive quantification of drugs in blood by liquid chromatography-mass spectrometry with on-line extraction: immunosuppressants. J Chromatogr B Biomed Sci Appl 2000; 748: 41–53PubMedCrossRef Christians U, Jacobsen W, Serkova N, et al. Automated, fast and sensitive quantification of drugs in blood by liquid chromatography-mass spectrometry with on-line extraction: immunosuppressants. J Chromatogr B Biomed Sci Appl 2000; 748: 41–53PubMedCrossRef
37.
Zurück zum Zitat McMahon LM, Luo S, Hayes M, et al. High-throughput analysis of everolimus (RAD001) and cyclosporin A (CsA) in whole blood by liquid chromatography/mass spectrometry using a semi-automated 96-well solid-phase extraction system. Rapid Commun Mass Spectrom 2000; 14: 1965–71PubMedCrossRef McMahon LM, Luo S, Hayes M, et al. High-throughput analysis of everolimus (RAD001) and cyclosporin A (CsA) in whole blood by liquid chromatography/mass spectrometry using a semi-automated 96-well solid-phase extraction system. Rapid Commun Mass Spectrom 2000; 14: 1965–71PubMedCrossRef
38.
Zurück zum Zitat Brignol N, McMahon LM, Luo S, et al. High-throughput semi-automated 96-well liquid/liquid extraction and liquid chromatography/mass spectrometric analysis of everolimus (RAD 001) and cyclosporin A (CsA) in whole blood. Rapid Commun Mass Spectrom 2001; 15: 898–907PubMedCrossRef Brignol N, McMahon LM, Luo S, et al. High-throughput semi-automated 96-well liquid/liquid extraction and liquid chromatography/mass spectrometric analysis of everolimus (RAD 001) and cyclosporin A (CsA) in whole blood. Rapid Commun Mass Spectrom 2001; 15: 898–907PubMedCrossRef
39.
Zurück zum Zitat Streit F, Armstrong VW, Oellerich M. Rapid liquid chromatography-tandem mass spectrometry routine method for simultaneous determination of sirolimus, everolimus, tacrolimus, and cyclosporin A in whole blood. Clin Chem 2002; 48: 955–8PubMed Streit F, Armstrong VW, Oellerich M. Rapid liquid chromatography-tandem mass spectrometry routine method for simultaneous determination of sirolimus, everolimus, tacrolimus, and cyclosporin A in whole blood. Clin Chem 2002; 48: 955–8PubMed
40.
Zurück zum Zitat Deters M, Kirchner G, Resch K, et al. Simultaneous quantification of sirolimus, everolimus, tacrolimus and cyclosporine by liquid chromatography-mass spectrometry (LC-MS). Clin Chem Lab Med 2002; 40: 285–92PubMedCrossRef Deters M, Kirchner G, Resch K, et al. Simultaneous quantification of sirolimus, everolimus, tacrolimus and cyclosporine by liquid chromatography-mass spectrometry (LC-MS). Clin Chem Lab Med 2002; 40: 285–92PubMedCrossRef
41.
Zurück zum Zitat Kovarik JM, Hartmann S, Figueiredo J, et al. Effect of rifampin on apparent clearance of everolimus. Ann Pharmacother 2002; 36: 981–5PubMedCrossRef Kovarik JM, Hartmann S, Figueiredo J, et al. Effect of rifampin on apparent clearance of everolimus. Ann Pharmacother 2002; 36: 981–5PubMedCrossRef
42.
Zurück zum Zitat Neumayer HH, Paradis K, Korn A, et al. Entry-into-human study with the novel immunosuppressant SDZ RAD in stable renal transplant recipients. Br J Clin Pharmacol 1999; 48: 694–703PubMedCrossRef Neumayer HH, Paradis K, Korn A, et al. Entry-into-human study with the novel immunosuppressant SDZ RAD in stable renal transplant recipients. Br J Clin Pharmacol 1999; 48: 694–703PubMedCrossRef
43.
Zurück zum Zitat Kahan BD, Wong RL, Carter C, et al. A phase I study of a 4-week course of SDZ RAD (RAD) in quiescent cyclosporin-prednisone-treated renal transplant recipients. Transplantation 1999; 68: 1100–6PubMedCrossRef Kahan BD, Wong RL, Carter C, et al. A phase I study of a 4-week course of SDZ RAD (RAD) in quiescent cyclosporin-prednisone-treated renal transplant recipients. Transplantation 1999; 68: 1100–6PubMedCrossRef
44.
Zurück zum Zitat Levy GA, Grant D, Paradis K, et al. Pharmacokinetics and tolerability of 40-O-[2-hydroxyethyl]rapamycin in de novo liver transplant recipients. Transplantation 2001; 71: 160–3PubMedCrossRef Levy GA, Grant D, Paradis K, et al. Pharmacokinetics and tolerability of 40-O-[2-hydroxyethyl]rapamycin in de novo liver transplant recipients. Transplantation 2001; 71: 160–3PubMedCrossRef
45.
Zurück zum Zitat Doyle RL, Hertz MI, Dunitz JM, et al. RAD in stable lung and heart/lung transplant recipients; safety, tolerability, pharmacokinetics, and impact of cystic fibrosis. J Heart Lung Transplant 2001; 20: 330–9PubMedCrossRef Doyle RL, Hertz MI, Dunitz JM, et al. RAD in stable lung and heart/lung transplant recipients; safety, tolerability, pharmacokinetics, and impact of cystic fibrosis. J Heart Lung Transplant 2001; 20: 330–9PubMedCrossRef
46.
Zurück zum Zitat Yacyshyn BR, Bowen-Yacyshyn MB, Pilarski LM. Inhibition by rapamycin of P-glycoprotein 170-mediated export from normal lymphocytes. Scand J Immunol 1996; 43: 449–55PubMedCrossRef Yacyshyn BR, Bowen-Yacyshyn MB, Pilarski LM. Inhibition by rapamycin of P-glycoprotein 170-mediated export from normal lymphocytes. Scand J Immunol 1996; 43: 449–55PubMedCrossRef
47.
Zurück zum Zitat Crowe A, Lemaire M. In vitro and in situ absorption of SDZ-RAD using a human intestinal cell line (Caco-2) and a single pass perfusion model in rats: comparison with rapamycin. Pharm Res 1998; 15: 1666–72PubMedCrossRef Crowe A, Lemaire M. In vitro and in situ absorption of SDZ-RAD using a human intestinal cell line (Caco-2) and a single pass perfusion model in rats: comparison with rapamycin. Pharm Res 1998; 15: 1666–72PubMedCrossRef
48.
Zurück zum Zitat Lampen A, Zhang Y, Hackbarth I, et al. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther 1998; 285: 1104–12PubMed Lampen A, Zhang Y, Hackbarth I, et al. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther 1998; 285: 1104–12PubMed
49.
Zurück zum Zitat Kovarik JM, Hsu CH, McMahon L, et al. Population pharmacokinetics of everolimus in de novo renal transplant patients: impact of ethnicity and comedications. Clin Pharmacol Ther 2001; 70: 247–54PubMedCrossRef Kovarik JM, Hsu CH, McMahon L, et al. Population pharmacokinetics of everolimus in de novo renal transplant patients: impact of ethnicity and comedications. Clin Pharmacol Ther 2001; 70: 247–54PubMedCrossRef
50.
Zurück zum Zitat Tan KKC, Hue KL, Strickland SE, et al. Altered pharmacokinetics of cyclosporin in heart-lung transplant recipients with cystic fibrosis. Ther Drug Monit 1990; 12: 520–4PubMedCrossRef Tan KKC, Hue KL, Strickland SE, et al. Altered pharmacokinetics of cyclosporin in heart-lung transplant recipients with cystic fibrosis. Ther Drug Monit 1990; 12: 520–4PubMedCrossRef
51.
Zurück zum Zitat Kovarik JM, Sabia HD, Figueiredo J, et al. Influence of hepatic impairment on everolimus pharmacokinetics: implications for dose adjustment. Clin Pharmacol Ther 2001; 70: 425–30PubMed Kovarik JM, Sabia HD, Figueiredo J, et al. Influence of hepatic impairment on everolimus pharmacokinetics: implications for dose adjustment. Clin Pharmacol Ther 2001; 70: 425–30PubMed
52.
Zurück zum Zitat Serkova N, Hausen B, Berry GJ, et al. Tissue distribution and clinical monitoring of the novel macrolide immunosuppressant SDZ-RAD and its metabolites in monkey lung transplant recipients: interaction with cyclosporine. J Pharmacol Exp Ther 2000; 294: 323–32PubMed Serkova N, Hausen B, Berry GJ, et al. Tissue distribution and clinical monitoring of the novel macrolide immunosuppressant SDZ-RAD and its metabolites in monkey lung transplant recipients: interaction with cyclosporine. J Pharmacol Exp Ther 2000; 294: 323–32PubMed
53.
Zurück zum Zitat Jacobsen W, Serkova N, Hausen B, et al. Comparison of the in vitro metabolism of the macrolide immunosuppressants sirolimus and RAD. Transplant Proc 2001; 33: 514–5PubMedCrossRef Jacobsen W, Serkova N, Hausen B, et al. Comparison of the in vitro metabolism of the macrolide immunosuppressants sirolimus and RAD. Transplant Proc 2001; 33: 514–5PubMedCrossRef
54.
Zurück zum Zitat Kahan BD, Koch SM. Current immunosuppressant regimens: considerations for critical care. Curr Opin Crit Care 2001; 7: 242–50PubMedCrossRef Kahan BD, Koch SM. Current immunosuppressant regimens: considerations for critical care. Curr Opin Crit Care 2001; 7: 242–50PubMedCrossRef
55.
Zurück zum Zitat Zimmerman J, Kahan BD. Pharmacokinetics of sirolimus in stable renal transplant patients after multiple oral dose administration. J Clin Pharmacol 1997; 37: 405–15PubMed Zimmerman J, Kahan BD. Pharmacokinetics of sirolimus in stable renal transplant patients after multiple oral dose administration. J Clin Pharmacol 1997; 37: 405–15PubMed
56.
Zurück zum Zitat Kirchner GI, Winkler M, Mueller L, et al. Pharmacokinetics of SDZ RAD and cyclosporin including their metabolites in seven kidney graft patients after the first dose of SDZ RAD. Br J Clin Pharmacol 2000; 50: 449–54PubMedCrossRef Kirchner GI, Winkler M, Mueller L, et al. Pharmacokinetics of SDZ RAD and cyclosporin including their metabolites in seven kidney graft patients after the first dose of SDZ RAD. Br J Clin Pharmacol 2000; 50: 449–54PubMedCrossRef
57.
Zurück zum Zitat Kirchner GI, Mueller L, Winkler M, et al. Long-term pharmacokinetics of the metabolites of everolimus (SDZ RAD) and cyclosporine in renal transplant recipients. Transplant Proc 2002; 34: 2233–4PubMedCrossRef Kirchner GI, Mueller L, Winkler M, et al. Long-term pharmacokinetics of the metabolites of everolimus (SDZ RAD) and cyclosporine in renal transplant recipients. Transplant Proc 2002; 34: 2233–4PubMedCrossRef
58.
Zurück zum Zitat Kovarik JM, Kalbag J, Figueiredo J, et al. Differential influence of two cyclosporine formulations on everolimus pharmacokinetics: a clinically relevant pharmacokinetic interaction. J Clin Pharmacol 2002; 42: 95–9PubMedCrossRef Kovarik JM, Kalbag J, Figueiredo J, et al. Differential influence of two cyclosporine formulations on everolimus pharmacokinetics: a clinically relevant pharmacokinetic interaction. J Clin Pharmacol 2002; 42: 95–9PubMedCrossRef
59.
Zurück zum Zitat Vidal C, Kirchner GI, Sewing KF. Structural elucidation by electrospray mass spectrometry: an approach to the in vitro metabolism of the macrolide immuno-suppressant SDZ RAD. J Am Soc Mass Spectrom 1998; 9: 1267–74PubMedCrossRef Vidal C, Kirchner GI, Sewing KF. Structural elucidation by electrospray mass spectrometry: an approach to the in vitro metabolism of the macrolide immuno-suppressant SDZ RAD. J Am Soc Mass Spectrom 1998; 9: 1267–74PubMedCrossRef
60.
Zurück zum Zitat Hallensleben K, Raida M, Habermehl G. Identification of a new metabolite of macrolide immunosuppressant, like rapamycin and SDZ RAD, using high performance liquid chromatography and electrospray tandem mass spectrometry. J Am Soc Mass Spectrom 2000; 11: 516–25PubMedCrossRef Hallensleben K, Raida M, Habermehl G. Identification of a new metabolite of macrolide immunosuppressant, like rapamycin and SDZ RAD, using high performance liquid chromatography and electrospray tandem mass spectrometry. J Am Soc Mass Spectrom 2000; 11: 516–25PubMedCrossRef
61.
Zurück zum Zitat Lhoest GJ, Gougnard TY, Verbeeck RK, et al. Isolation from pig liver microsomes, identification by tandem mass spectrometry and in vitro immunosuppressive activity of an SDZ-RAD 17,18,19,20,21,22-tris-epoxide. J Mass Spectrom 2000; 35: 454–60PubMedCrossRef Lhoest GJ, Gougnard TY, Verbeeck RK, et al. Isolation from pig liver microsomes, identification by tandem mass spectrometry and in vitro immunosuppressive activity of an SDZ-RAD 17,18,19,20,21,22-tris-epoxide. J Mass Spectrom 2000; 35: 454–60PubMedCrossRef
62.
Zurück zum Zitat Lhoest G, Hertsens R, Verbeeck RK, et al. In vitro immunosuppressive activity of tacrolimus dihydrodiol precursors obtained by chemical oxidation and identification of a new metabolite of SDZ-RAD by electrospray and electrospray-linked scan mass spectrometry. J Mass Spectrom 2001; 36: 889–901PubMedCrossRef Lhoest G, Hertsens R, Verbeeck RK, et al. In vitro immunosuppressive activity of tacrolimus dihydrodiol precursors obtained by chemical oxidation and identification of a new metabolite of SDZ-RAD by electrospray and electrospray-linked scan mass spectrometry. J Mass Spectrom 2001; 36: 889–901PubMedCrossRef
63.
Zurück zum Zitat Van Damme-Lombaerts R, Webb NAY, Hoyer PF, et al. Single-dose pharmacokinetics and tolerability of everolimus in stable pediatric renal transplant patients. Pediatr Transplant 2002; 6: 147–52PubMedCrossRef Van Damme-Lombaerts R, Webb NAY, Hoyer PF, et al. Single-dose pharmacokinetics and tolerability of everolimus in stable pediatric renal transplant patients. Pediatr Transplant 2002; 6: 147–52PubMedCrossRef
64.
Zurück zum Zitat Ettenger RB, Grimm EM. Safety and efficacy of TOR inhibitors in pediatric renal transplant recipients. Am J Kidney Dis 2001; 38(4 Suppl. 2): S22–8PubMedCrossRef Ettenger RB, Grimm EM. Safety and efficacy of TOR inhibitors in pediatric renal transplant recipients. Am J Kidney Dis 2001; 38(4 Suppl. 2): S22–8PubMedCrossRef
65.
Zurück zum Zitat Hoyer PF, Ettenger R, Kovarik JM, et al. Everolimus in pediatric de novo renal transplant patients. Transplantation 2003; 75: 2082–5PubMedCrossRef Hoyer PF, Ettenger R, Kovarik JM, et al. Everolimus in pediatric de novo renal transplant patients. Transplantation 2003; 75: 2082–5PubMedCrossRef
66.
Zurück zum Zitat Kovarik JM, Noe A, Berthier S, et al. Clinical development of an everolimus pediatric formulation: relative bioavailability, food effect, and steady-state pharmacokinetics. J Clin Pharmacol 2003; 43: 141–7PubMedCrossRef Kovarik JM, Noe A, Berthier S, et al. Clinical development of an everolimus pediatric formulation: relative bioavailability, food effect, and steady-state pharmacokinetics. J Clin Pharmacol 2003; 43: 141–7PubMedCrossRef
67.
Zurück zum Zitat Kovarik JM, Hartmann S, Hubert M, et al. Pharmacokinetic and pharmacodynamic assessments of HMG-CoA reductase inhibitors when coadministered with everolimus. J Clin Pharmacol 2002; 42: 222–8PubMedCrossRef Kovarik JM, Hartmann S, Hubert M, et al. Pharmacokinetic and pharmacodynamic assessments of HMG-CoA reductase inhibitors when coadministered with everolimus. J Clin Pharmacol 2002; 42: 222–8PubMedCrossRef
68.
Zurück zum Zitat Kovarik JM, Hartmann S, Figueiredo J, et al. Effect of food on everolimus absorption: quantification in healthy subjects and a confirmatory screening in patients with renal transplants. Pharmacotherapy 2002; 22: 154–9PubMedCrossRef Kovarik JM, Hartmann S, Figueiredo J, et al. Effect of food on everolimus absorption: quantification in healthy subjects and a confirmatory screening in patients with renal transplants. Pharmacotherapy 2002; 22: 154–9PubMedCrossRef
69.
Zurück zum Zitat Kovarik JM, Kaplan B, Tedesco Silva H, et al. Exposure-response relationships for everolimus in de novo kidney transplantation: defining a therapeutic range. Transplantation 2002; 73: 920–5PubMedCrossRef Kovarik JM, Kaplan B, Tedesco Silva H, et al. Exposure-response relationships for everolimus in de novo kidney transplantation: defining a therapeutic range. Transplantation 2002; 73: 920–5PubMedCrossRef
70.
Zurück zum Zitat Nashan B. Early clinical experience with a novel rapamycin derivative. Ther Drug Monit 2002; 24: 53–8PubMedCrossRef Nashan B. Early clinical experience with a novel rapamycin derivative. Ther Drug Monit 2002; 24: 53–8PubMedCrossRef
71.
Zurück zum Zitat Nashan B. The role of Certican (Everolimus, RAD) in the many pathways of chronic rejection. Transplant Proc 2001; 33: 3215–20PubMedCrossRef Nashan B. The role of Certican (Everolimus, RAD) in the many pathways of chronic rejection. Transplant Proc 2001; 33: 3215–20PubMedCrossRef
72.
Zurück zum Zitat Lorber MI, Basadonna GP, Friedman AL, et al. The evolving role of TOR inhibitors for individualizing posttransplant immunosuppression. Transplant Proc 2001; 33: 3075–7PubMedCrossRef Lorber MI, Basadonna GP, Friedman AL, et al. The evolving role of TOR inhibitors for individualizing posttransplant immunosuppression. Transplant Proc 2001; 33: 3075–7PubMedCrossRef
Metadaten
Titel
Clinical Pharmacokinetics of Everolimus
verfasst von
Dr Gabriele I. Kirchner
Ivo Meier-Wiedenbach
Michael P. Manns
Publikationsdatum
01.02.2004
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 2/2004
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200443020-00002

Weitere Artikel der Ausgabe 2/2004

Clinical Pharmacokinetics 2/2004 Zur Ausgabe