Skip to main content
Erschienen in: Journal of Cardiothoracic Surgery 1/2023

Open Access 01.12.2023 | Case Report

Combined large cell neuroendocrine carcinoma, lung adenocarcinoma, and squamous cell carcinoma: a case report and review of the literature

verfasst von: Zirui Zhu, You Liu, Hengliang Xu, Haoyong Ning, Yanmin Xia, Leilei Shen

Erschienen in: Journal of Cardiothoracic Surgery | Ausgabe 1/2023

Abstract

Background

Combined large cell neuroendocrine carcinoma (C-LCNEC) has a poor prognosis and there is no consensus about the treatment regimen for both LCNEC and C-LCNEC patients.

Case presentation

The patient was a 47-year-old female who received surgical resection. The postoperative histology and staging of the tumor suggested C-LCNEC with adenocarcinoma and squamous cell carcinoma and T2aN0M0 stage IB. Next-generation sequencing test showed KIF5B/RET fusion mutation without EGFR, ALK, RB1, and TP53 alterations. Adjuvant chemotherapy with 4-cycle docetaxel plus carboplatin was given and brain metastasis occurred after 10 months.

Conclusions

C-LCNEC with adenocarcinoma and squamous cell carcinoma is rare and highly aggressive cancer. Surgical resection and adjuvant chemotherapy with SCLC regimen may improve the disease-free survival and overall survival. The accumulation of similar cases will clarify the profile and management of the disease.
Hinweise
Zirui Zhu and You Liu contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

The 2021 World Health Organization (WHO) classification of lung tumors states that lung combined tumors generally occur in the setting of high-grade carcinomas and not in the carcinoid [1]. Combined large cell neuroendocrine carcinoma (C-LCNEC) consists of LCNEC and adenocarcinoma (ADC), squamous cell carcinoma (SCC) or small cell lung cancer (SCLC), which accounting for more than 10% of LCNEC patients. To our knowledge, LCNEC accounts for approximately 3% of all lung cancers and possesses aggressive trait [2]. Previous studies have demonstrated that C-LCNEC was more aggressive than LCNEC [3]. LCNEC/ADC and LCNEC/SCC are relatively common in prior studies and the comparison of their clinicopathological features and prognosis have been reported [28]. Here, we present an interesting patient with combined large cell neuroendocrine carcinoma, lung adenocarcinoma, and squamous cell carcinoma to improve our understanding of the diversity of the disease.

Case presentation

A 47-year-old woman found abnormality of carcinoembryonic antigen (CEA) 14.18 ug/L without positive gastrointestinal endoscope findings in October 2020. Chest plain computed tomography (CT) was conducted until 3 months later with double-check high CEA (17.18ug/L), and the CT revealed a 26.7 mm plus 24.1 mm solid nodule in the right upper lobe. She had no smoking history and family history of lung cancer. The patient received CT examination on June 7th 2021 after anti-infective therapy, which showed a 36.7 mm plus 34.1 mm mass with irregular shape, lobalation, spiculation, pleural indentation, and vessel convergence (Fig. 1). Enhanced contrast CT elucidated that station 4R lymph node was slightly enlarged with 10 mm short axis (Fig. 2). The CEA was 26.96 ug/L, squamous cell carcinoma antigen was 1.98 ng/mL, CYFRA 21 − 1 was 3.12 ng/mL, and pro-gastric releasing peptide was 65 ng/L. Following positron emission tomography-computed tomography (PET-CT) suggested that the 40 mm*39mm*34mm mass was highly suspected of lung cancer with standard uptake value (SUV) 14.6 (Fig. 3). And the swollen mediastinal lymph node 3 A and 4R had a high uptake (SUV max = 4.5) (Fig. 3). Brain magnetic resonance imaging (MRI) and bone scan had negative results. The CT guided pulmonary biopsy was performed and the pathology suggested poor cell differentiated lung adenocarcinoma with neuroendocrinization. The patient received right upper lobectomy with systemic lymph node dissection. Postoperative pathological analysis confirmed the diagnosis of combined LCNEC, ADC, and SCC. Grossly, the tumor was solid, gray-white, with a moderate hardness texture and vague boundaries. The size was 40 mm*35mm*25mmwithout visceral pleural invasion. The lymph nodes including station 2, 3, 4, 7, 10, and 11 were all negative. Histology showed that the tumor consisted of 40% acinar adenocarcinoma (Fig. 4A), 10% mucinous adenocarcinoma, 40% LCNEC (Fig. 4B), and 10% poor cell differentiated SCC (Fig. 4C). The immunohistochemical profile revealed that ADC cells were positive for napsin-A and thyroid transcription factor 1(TTF-1) (Fig. 5A), LCNEC cells was positive for synaptophysin (Fig. 5B), and SCC cells was positive for p63 and p40 (Fig. 5C). The patient was diagnosed with pathological T2aN0M0 stage IB, and next-generation sequencing (NGS) test showed that KIF5B/RET fusion mutation was observed in the entire paraffin section with LCNEC, SCC, and ADC components. Meanwile, EGFR, ALK, ROS1, KRAS, BRAF-V600E, ERBB2, MET, NTRK, RB1and TP53 alterations were not detected. Four cycles (21 days per cycle) of docetaxel (100 mg) plus carboplatin (500 mg) were conducted without obvious grade>3 adverse events. No relapse or metastatic signs were observed after 4 cycles in October 2021. Regular follow-up was requested until on May 9th 2022 the brain MRI found that multiple abnormal signals in the right frontal lobe (Fig. 6A), which were considered as metastatic tumors. Bone scan and CT of chest and abdominal revealed no positive findings and tumor biomarkers including CEA, squamous cell carcinoma antigen (SCC), and neuron specific enolase (NSE) were normal. The patient had a recurrence and was staged as advanced. The patient received brain radiotherapy (40 Gy/10F) through HyperArc without targeted therapy or chemotherapy and multiple small metastases in the brain has decreased than before on October 27th (Fig. 6B), which was evaluated as stable disease.
Effective markers for each cancer type in immunohistochemistry
Cancer type
Effective marker
NET
CgA, Syn, CD56
SCC
P40, p63, CK5/6
ADC
TTF−1, Napsin A, CK7
Abbreviations: NET, neuroendocrine tumor; SCC, squamous cell carcinoma; ADC, adenocarcinoma; CgA, chromogramin A; Syn, synaptophysin; TTF-1, thyroid tran

Discussion

It is well-known that pulmonary LCNEC is a highly aggressive and rare form of cancer with high relapse rate and poor prognosis. Prior publications had reported that the proportion of C-LCNEC varied between 10% and 49%, and LCNEC/ADC was the frequent type [4, 7, 8]. Yang ZY et al. reported 74% (71/96) of LCNEC/ADC in their 96 patients’ cohort study, and LCNEC/SCC was more likely to occur in male, elderly, heavy smoker [4]. In Zhang JT et al.’s cohort study, there were 21 LCNEC/ADC patients out of 30 LCNEC patients [3], and LCNEC/ADC accounted for 56% (28/50) in Grand B et al.’s study [8].
The diagnostic criterion of LCNEC was first reported in 1991 by Travis et al. [9] and was classified into neuroendocrine tumors category in the 1999 edition WHO classification and subsequent 2004, 2015, and 2021 edition. However, whether LCNEC should be treated as small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC) remains controversial. Several studies failed to draw consistent conclusions due to the relatively small sample size and retrospective nature [24, 6, 8, 10, 11]. In this case, patient was assessed stage IB preoperative, and surgical resection with LND was obviously the most effective treatment [4]. The postoperative strategy is debatable and nonuniform. Prior studies have demonstrated that sage II or higher LCNEC patients could benefit from adjuvant chemotherapy, whereas stage I patients showed indistinctive benefit [4, 12]. Some other studies draw the opposite conclusions that even early-stage I patients could benefit from postoperative chemotherapy [13, 14]. As described before, C-LCNEC has poorer survival than pure LCNEC and may benefit more from adjuvant chemotherapy or other treatments. However, in Yang ZY et al.’s cohort study, stage I patients with C-LCNEC could not benefit from chemotherapy regardless of LCNEC/ADC or LCNEC/SCC, while obvious benefit was observed in stage II-III patients [4]. The case reported here received 4-cycle adjuvant chemotherapy and the DFS was 10 months. The neuroendocrine nature of the tumor and preoperatively positive CEA may contribute to the final relapse. As we all acknowledge that positive CEA is associated with poor DFS and OS in LCNEC [6]. She could have consulted further at the first time when her serum CEA was abnormal.
The regimen of postoperative chemotherapy is another controversy. Prior publications have suggested that RB1 + TP53 alterations are effective biomarkers for subclassification of LCNEC and may guide precise adjuvant chemotherapy for different subgroup patients [1517]. Two studies classified LCNEC into 2 major subgroups: SCLC-like LCNEC patients were those with RB1 and TP53 mutations or copy-number loss, and NSCLC-like LCNEC patients had no co-alterations of RB1 + TP53 [15, 16]. Zhuo M et al. demonstrated that SCLC-like LCNEC patients treated with pemetrexed-platinum and gemcitabine/taxane-platinum had lower objective response rate (0% vs. 75%, P = 0.02), progression-free survival (2.4 months vs. 8.3months, P = 0.002) and overall survival (4.1 months vs. 9.7 months, P = 0.600) compared to etoposide-platinum regimens, whereas NSCLC-like LCNEC patients treated with etoposide-platinum or pemetrexed-platinum was associated with superior overall survival (19.6 months vs. 9.4 months, P = 0.07) compared to gemcitabine/taxane-platinum doublets [15]. Shen YC et al. also presented that etoposide-platinum doublets acted as an independent prognostic factor for OS [6]. Rekhtman et al. suggested that both NSCLC-like and SCLC-like LCNEC patients may be sensitive to PD-1/PD-L1 immune checkpoint inhibitors [16]. Patient in our case was categorized into NSCLC-like group for lack of RB1 and TP53 mutations, whereas KIF5B/RET fusion mutation was detected. Recent study confirmed the findings that patients who received SCLC regimen had better DFS and OS than patients who received NSCLC regimen in both pure LCNEC (P = 0.015 and P = 0.033, respectively) and C-LCNEC patients (P = 0.011 and P = 0.010, respectively) [4]. Meanwhile, differences regarding DFS and OS between the LCNEC/ADC group and the LCNEC/SCC group were not significant. Though without consensus about what treatment should be given to patients with C-LCNEC, this publication has suggested that C-LCNEC patients should follow neuroendocrine carcinoma’s strategy. Combined LCNEC/ADC /SCC was first reported in 2015 by Tenjin et al. [18]. Four cycles of adjuvant regimen with cisplatin and irinotecan were given the pathological T1N1M0 stage IIA patient, and one-year DFS was achieved. To the best of our knowledge, the case we presented was the second study and docetaxel plus carboplatin was given, which achieved a 10-month DFS time and was shorter than the first reported study [19]. This might verify the finding that patients who received SCLC regimen had better DFS than patients who received NSCLC regimen again.
Few studies also discovered the scarce EGFR mutations and ALK rearrangement rates in some C-LCNEC patients (8.33%, and 5.77%, respectively) [6]. Application of targeted therapy in both LCNEC and C-LCNEC patients is disputable for lack of evidence. KIF5B/RET fusion mutation was observed in our report and pralsetinib is an alternative. Back to the histopathology of this case, TTF-1 and P40 are immunohistochemical markers of the first choice to detect adenocarcinomatous and squamous cell differentiation. Though with the coexistence of LCNEC and SCC, the tumor is basically adenocarcinoma with KIF5B/RET fusion. However, the studies about the prognosis and therapy were few.
In summary, combined large cell neuroendocrine carcinoma with adenocarcinoma and squamous cell carcinoma is rare and highly aggressive cancer with poor prognosis. Surgical resection and adjuvant chemotherapy with SCLC regimen may improve the DFS and OS. The accumulation of similar cases will clarify the profile and management of the disease.
Authors
Year of publication
Groups
Treatment
Results
Yang ZY, et al. [4]
2022; Article
LCNEC/AD (71); LCNEC/SCC (25)
NSCLC-regimen (43) vs.
SCLC-regimen (35)
SCLC regimen had longer DFS and OS (P = 0.011 and P = 0.010).
Zhang JT, et al. [3]
2020; Article
Pure LCNEC (220); combined LCNEC (30)
NSCLC-regimen vs.
SCLC-regimen
No significance between different treatments for adjuvant modality (P = 0.112).
Oda Risa, et al. [20]
2020; Case report
Combined LCNEC/SCC
Surgery alone
8 months DFS.
Zhuo ML, et al. [15]
2020; Article
SCLC -like LCNEC (15); NSCLC-like LCNEC (48)
SCLC-regimen vs. NSCLC-regimen
SCLC regimen had higher disease control rate (P = 0.007), response rate (P = 0.02), and longer PFS (P = 0.002).
Shen YC, et al. [6]
2020; Article
LCNEC
etoposide–platinum regimen (21); pemetrexed/cisplatin (26); gemcitabine/vinorelbine/paclitaxel-platinum (28)
etoposide–platinum regimen had longer median DFS.

Acknowledgements

None.

Declarations

Competing interests

The authors declare no competing interests.
Not applicable.
Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Nicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO classification of lung tumors: imapct of advance since 2015. J Thorc Oncol. 2021;17(3):362–87.CrossRef Nicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO classification of lung tumors: imapct of advance since 2015. J Thorc Oncol. 2021;17(3):362–87.CrossRef
2.
Zurück zum Zitat Fasano M, Della Corte CM, Papaccio F, et al. Pulmonary large-cell neuroendocrine carcinoma: from epidemiology to therapy. J Thorac Oncol. 2015;10(8):1133–41.CrossRefPubMedPubMedCentral Fasano M, Della Corte CM, Papaccio F, et al. Pulmonary large-cell neuroendocrine carcinoma: from epidemiology to therapy. J Thorac Oncol. 2015;10(8):1133–41.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Zhang JT, Li Y, Yan LX, et al. Disparity in clinical outcomes between pure and combined pulmonary large-cell neuroendocrine carcinoma: a multi-center retrospective study. Lung Cancer. 2020;139:118–23.CrossRefPubMed Zhang JT, Li Y, Yan LX, et al. Disparity in clinical outcomes between pure and combined pulmonary large-cell neuroendocrine carcinoma: a multi-center retrospective study. Lung Cancer. 2020;139:118–23.CrossRefPubMed
4.
Zurück zum Zitat Yang ZY, WangYN, Chen Y, et al. Combined large cell neuroendocrine carcinoma: clinical characteristics, prognosis and postoperative management. Eur J Cardiothorac Surg. 2022;62(2):ezac069.CrossRefPubMed Yang ZY, WangYN, Chen Y, et al. Combined large cell neuroendocrine carcinoma: clinical characteristics, prognosis and postoperative management. Eur J Cardiothorac Surg. 2022;62(2):ezac069.CrossRefPubMed
5.
Zurück zum Zitat Miyoshi T, Umemura S, Matsumura Y, et al. Genomic profiling of large-cell neuroendocrine carcinoma of the lung. Clin Cancer Res. 2017;23(3):757–65.CrossRefPubMed Miyoshi T, Umemura S, Matsumura Y, et al. Genomic profiling of large-cell neuroendocrine carcinoma of the lung. Clin Cancer Res. 2017;23(3):757–65.CrossRefPubMed
6.
Zurück zum Zitat Shen Y, Hu F, Li C, et al. Clinical features and outcomes analysis of surgical resected pulmonary large-cell neuroendocrine carcinoma with adjuvant chemotherapy. Front Oncol. 2020;10:556194.CrossRefPubMedPubMedCentral Shen Y, Hu F, Li C, et al. Clinical features and outcomes analysis of surgical resected pulmonary large-cell neuroendocrine carcinoma with adjuvant chemotherapy. Front Oncol. 2020;10:556194.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Battafarano RJ, Fernandez FG, Ritter J, et al. Large cell neuroendocrine carcinoma: an aggressive form of non-small cell lung cancer. J Thorac Cardiovasc Surg. 2005;130(1):166–72.CrossRefPubMed Battafarano RJ, Fernandez FG, Ritter J, et al. Large cell neuroendocrine carcinoma: an aggressive form of non-small cell lung cancer. J Thorac Cardiovasc Surg. 2005;130(1):166–72.CrossRefPubMed
8.
Zurück zum Zitat Grand B, Cazes A, Mordant P, et al. High grade neuroendocrine lung tumors: pathological characteristics, surgical management and prognostic implications. Lung Cancer. 2013;81(3):404–9.CrossRefPubMed Grand B, Cazes A, Mordant P, et al. High grade neuroendocrine lung tumors: pathological characteristics, surgical management and prognostic implications. Lung Cancer. 2013;81(3):404–9.CrossRefPubMed
9.
Zurück zum Zitat Travis WD, Linnoila RI, Tsokos MG, et al. Neuroendocrine tumors of the lung with proposed criteria for large-cell neuroendocrine carcinoma. An ultrastructural, immunohistochemical, and flow cytometric study of 35 cases. Am J Surg Pathol. 1991;15(6):529–53.CrossRefPubMed Travis WD, Linnoila RI, Tsokos MG, et al. Neuroendocrine tumors of the lung with proposed criteria for large-cell neuroendocrine carcinoma. An ultrastructural, immunohistochemical, and flow cytometric study of 35 cases. Am J Surg Pathol. 1991;15(6):529–53.CrossRefPubMed
10.
Zurück zum Zitat Niho S, Kenmotsu H, Sekine I, et al. Combination chemotherapy with irinotecan and cisplatin for large-cell neuroendocrine carcinoma of the lung: a multicenter phase II study. J Thorac Oncol. 2013;8(7):980–4.CrossRefPubMed Niho S, Kenmotsu H, Sekine I, et al. Combination chemotherapy with irinotecan and cisplatin for large-cell neuroendocrine carcinoma of the lung: a multicenter phase II study. J Thorac Oncol. 2013;8(7):980–4.CrossRefPubMed
11.
Zurück zum Zitat Le Treut J, Sault MC, Lena H, et al. Multicentre phase II study of cisplatin-etoposide chemotherapy for advanced large-cell neuroendocrine lung carcinoma: the GFPC 0302 study. Ann Oncol. 2013;24(6):1548–52.CrossRefPubMed Le Treut J, Sault MC, Lena H, et al. Multicentre phase II study of cisplatin-etoposide chemotherapy for advanced large-cell neuroendocrine lung carcinoma: the GFPC 0302 study. Ann Oncol. 2013;24(6):1548–52.CrossRefPubMed
12.
Zurück zum Zitat Kim KW, Kim HK, Kim J, et al. Outcomes of curative-intent surgery and adjuvant treatment for pulmonary large cell neuroendocrine carcinoma. World J Surg. 2017;41(7):1820–7.CrossRefPubMed Kim KW, Kim HK, Kim J, et al. Outcomes of curative-intent surgery and adjuvant treatment for pulmonary large cell neuroendocrine carcinoma. World J Surg. 2017;41(7):1820–7.CrossRefPubMed
13.
Zurück zum Zitat Kujtan L, Muthukumar V, Kennedy KF, et al. The role of systemic therapy in the management of stage I large cell neuroendocrine carcinoma of the lung. J Thorac Oncol. 2018;13(5):707–14.CrossRefPubMed Kujtan L, Muthukumar V, Kennedy KF, et al. The role of systemic therapy in the management of stage I large cell neuroendocrine carcinoma of the lung. J Thorac Oncol. 2018;13(5):707–14.CrossRefPubMed
14.
Zurück zum Zitat Yilmaz A, Duyar SS, Cakir E, et al. Clinical impact of visceral pleural, lymphovascular and perineural invasion in completely resected non-small cell lung cancer. Eur J Cardiothorac Surg. 2011;40(3):664–70.PubMed Yilmaz A, Duyar SS, Cakir E, et al. Clinical impact of visceral pleural, lymphovascular and perineural invasion in completely resected non-small cell lung cancer. Eur J Cardiothorac Surg. 2011;40(3):664–70.PubMed
15.
Zurück zum Zitat Zhuo M, Guan Y, Yang X, et al. The prognostic and therapeutic role of genomic subtyping by sequencing tumor or cell-free DNA in Pulmonary large-cell neuroendocrine carcinoma. Clin Cancer Res. 2020;26(4):892–901.CrossRefPubMed Zhuo M, Guan Y, Yang X, et al. The prognostic and therapeutic role of genomic subtyping by sequencing tumor or cell-free DNA in Pulmonary large-cell neuroendocrine carcinoma. Clin Cancer Res. 2020;26(4):892–901.CrossRefPubMed
16.
Zurück zum Zitat Rekhtman N, Pietanza MC, Hellmann MD, et al. Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clin Cancer Res. 2016;22(14):3618–329.CrossRefPubMedPubMedCentral Rekhtman N, Pietanza MC, Hellmann MD, et al. Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clin Cancer Res. 2016;22(14):3618–329.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat George J, Walter V, Peifer M, et al. Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat Commun. 2018;9(1):1048.CrossRefPubMedPubMedCentral George J, Walter V, Peifer M, et al. Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat Commun. 2018;9(1):1048.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Tenjin Y, Uramoto H, Kobayasi H, et al. Combined large cell neuroendocrine carcinoma with both adenocarcinoma and squamous cell carcinoma. JJLC. 2015;55:89–92.CrossRef Tenjin Y, Uramoto H, Kobayasi H, et al. Combined large cell neuroendocrine carcinoma with both adenocarcinoma and squamous cell carcinoma. JJLC. 2015;55:89–92.CrossRef
19.
Zurück zum Zitat Derks JL, Leblay N, Thunnissen E, et al. Molecular Subtypes of Pulmonary large-cell neuroendocrine carcinoma predict Chemotherapy Treatment Outcome. Clin Cancer Res. 2018;24(1):33–42.CrossRefPubMed Derks JL, Leblay N, Thunnissen E, et al. Molecular Subtypes of Pulmonary large-cell neuroendocrine carcinoma predict Chemotherapy Treatment Outcome. Clin Cancer Res. 2018;24(1):33–42.CrossRefPubMed
20.
Zurück zum Zitat Oda R, Okuda K, Yamashita Y, et al. Long-term survivor of pulmonary combined large cell neuroendocrine carcinoma treated with nivolumab. Thorac Cancer. 2020;11(7):2036–9.CrossRefPubMedPubMedCentral Oda R, Okuda K, Yamashita Y, et al. Long-term survivor of pulmonary combined large cell neuroendocrine carcinoma treated with nivolumab. Thorac Cancer. 2020;11(7):2036–9.CrossRefPubMedPubMedCentral
Metadaten
Titel
Combined large cell neuroendocrine carcinoma, lung adenocarcinoma, and squamous cell carcinoma: a case report and review of the literature
verfasst von
Zirui Zhu
You Liu
Hengliang Xu
Haoyong Ning
Yanmin Xia
Leilei Shen
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Journal of Cardiothoracic Surgery / Ausgabe 1/2023
Elektronische ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-023-02349-4

Weitere Artikel der Ausgabe 1/2023

Journal of Cardiothoracic Surgery 1/2023 Zur Ausgabe

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

Real-World-Daten sprechen eher für Dupilumab als für Op.

14.05.2024 Rhinosinusitis Nachrichten

Zur Behandlung schwerer Formen der chronischen Rhinosinusitis mit Nasenpolypen (CRSwNP) stehen seit Kurzem verschiedene Behandlungsmethoden zur Verfügung, darunter Biologika, wie Dupilumab, und die endoskopische Sinuschirurgie (ESS). Beim Vergleich der beiden Therapieoptionen war Dupilumab leicht im Vorteil.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.