Skip to main content
Erschienen in: Gut Pathogens 1/2016

Open Access 01.12.2016 | Genome Report

Comparative genomic analysis of Klebsiella pneumoniae subsp. pneumoniae KP617 and PittNDM01, NUHL24835, and ATCC BAA-2146 reveals unique evolutionary history of this strain

verfasst von: Taesoo Kwon, Young-Hee Jung, Sanghyun Lee, Mi-ran Yun, Won Kim, Dae-Won Kim

Erschienen in: Gut Pathogens | Ausgabe 1/2016

Abstract

Background

Klebsiella pneumoniae subsp. pneumoniae KP617 is a pathogenic strain that coproduces OXA-232 and NDM-1 carbapenemases. We sequenced the genome of KP617, which was isolated from the wound of a Korean burn patient, and performed a comparative genomic analysis with three additional strains: PittNDM01, NUHL24835 and ATCC BAA-2146.

Results

The complete genome of KP617 was obtained via multi-platform whole-genome sequencing. Phylogenetic analysis along with whole genome and multi-locus sequence typing of genes of the Klebsiella pneumoniae species showed that KP617 belongs to the WGLW2 group, which includes PittNDM01 and NUHL24835. Comparison of annotated genes showed that KP617 shares 98.3 % of its genes with PittNDM01. Nineteen antibiotic resistance genes were identified in the KP617 genome: bla OXA-1 and bla SHV-28 in the chromosome, bla NDM-1 in plasmid 1, and bla OXA-232 in plasmid 2 conferred resistance to beta-lactams; however, colistin- and tetracycline-resistance genes were not found. We identified 117 virulence factors in the KP617 genome, and discovered that the genes encoding these factors were also harbored by the reference strains; eight genes were lipopolysaccharide-related and four were capsular polysaccharide-related. A comparative analysis of phage-associated regions indicated that two phage regions are specific to the KP617 genome and that prophages did not act as a vehicle for transfer of antimicrobial resistance genes in this strain.

Conclusions

Whole-genome sequencing and bioinformatics analysis revealed similarity in the genome sequences and content, and differences in phage-related genes, plasmids and antimicrobial resistance genes between KP617 and the references. In order to elucidate the precise role of these factors in the pathogenicity of KP617, further studies are required.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13099-016-0117-1) contains supplementary material, which is available to authorized users.
Taesoo Kwon and Young-Hee Jung contributed equally to this work
Won Kim and Dae-Won Kim contributed equally to the work
Abkürzungen
BSR
BLAST score ratio
CDS
coding DNA sequences
HGT
horizontal gene transfer
MLST
multi-locus sequence typing
NDM-1
New Delhi metallo-β-lactamase 1
RAST
Rapid Annotation using Subsystem Technology
ST
sequence type
str
strain
substr
substrain

Background

Klebsiella pneumoniae is a Gram-negative, non-motile, encapsulated, facultative anaerobic bacterium, which belongs to the family Enterobacteriaceae. K. pneumoniae is found in the normal flora of the mouth, skin, and intestines; however, this bacterium may act as an opportunistic pathogen, causing severe nosocomial infections such as septicemia, pneumonia, and urinary tract infections in hospitalized and immune-comprised patients with chronic ailments [1, 2].
Beta-lactam antibiotics, used as therapeutic agents against a broad range of bacteria, bind to the penicillin-binding protein and inhibit biosynthesis of the bacterial cell membrane. However, the extended spectrum β-lactamases (ESBLs) and carbapenemases confer resistance to penicillin, cephalosporins, or carbapenem [3, 4]. The β-lactamases are divided into four classes on the basis of the Ambler scheme: class A (Klebsiella pneumoniae carbapenemase, KPC; imipenem-hydrolyzing β-lactamase, IMI; Serratia marcescens enzyme, SME; Serratia fonticola carbapenemase, SFC), class B (Verona integron-encoded metallo-β-lactamase, VIM; imipenem-resistant Pseudomonas, IMP; New Delhi metallo-β-lactamase, NDM), class C (AmpC-type β-lactamase, ACT; cephamycin-hydrolyzing β-lactamase, CMY), and class D (oxacillinase, OXA) [5] are composed of transposon, cassettes, and integrons and transferred within and between species by HGT (horizontal gene transfer). Numerous carbapenemase-producing bacteria similarly harbor drug resistance genes that are transferred to other strains by horizontal gene transfer [6, 7]; infections caused by such multi-drug-resistant bacteria are difficult to treat [8]. The emergence of the novel carbapenemase NDM-1 (the New Delhi metallo-β-lactamase) is of great concern, as no therapeutic agents are available to treat infections caused by NDM-1-producing bacterial strains [9]. NDM-1-producing K. pneumoniae strains were first isolated from a Swedish patient who had travelled to India in 2009 [10]. Since then, NDM-1 has been reported to be produced by various species of Enterobacteriaceae, such as K. pneumoniae, Escherichia coli, Enterobacter spp. and Acinetobacter spp., in numerous countries [11].
The carbapenem-hydrolyzing β-lactamase OXA-232, which was first reported in E. coli and two K. pneumoniae strains [12], belongs to the OXA-48-like family. Carbapenemase-producing Gram-negative bacteria are often multi-drug resistant [13]. K. pneumoniae isolates that coproduce OXA-48-like β-lactamase and NDM-1 have been isolated in numerous countries [1416]. Recently, K. pneumoniae isolates coproducing two carbapenemases, bla NDM-1 and bla OXA-232 , have been identified in several countries; of these, two isolates originating in India were recovered in the USA and Korea, in January 2013, and sequenced [16, 17] but not studied yet the characteristics in the context of genomic contents by comparing these isolates. In the present study, we performed a comparative analysis of the genomes of these isolates.

Methods

Isolation and serotyping of strains

In January 2013, a 32-year-old man was hospitalized in the Intensive Care Unit of a general hospital in Seoul, Korea, two days after suffering burns during a visit to India. K. pneumoniae was isolated from his wound and another patient in the same room became infected with the same strain [18]. The K. pneumoniae isolate was identified as the KP617 strain belonging to the sequence type (ST)14, and found to coproduce NDM-1 and OXA-232, which conferred resistance to ertapenem, doripenem, imipenem, and meropenem (MICs: >32 mg/L). The K. pneumoniae strains PittNDM01 [17], NUHL24835 [19], and ATCC BAA-2146 [20] were used as reference strains for comparative genomic analysis.

Library preparation and whole-genome sequencing

Whole-genome sequencing of KP617 was performed using three platforms: Illumina-HiSeq 2500, PacBio RS II, and Sanger sequencing (GnC Bio: Daejeon, Republic of Korea) [16]. Sanger sequencing was used for the construction of a physical map of the genome.

Genome assembly and annotation

A hybrid assembly was performed using the Celera Assembler (version 8.2) [21] and a fosmid paired-end sequencing map was used to confirm the assembly. The final assembly was revised using proovread (version 2.12) [22]. An initial annotation of the KP617 genome was generated using the RAST (Rapid Annotation using Subsystem Technology, version 4.0) server pipeline [23]. The genomes of three K. pneumoniae strains, PittNDM01, NUHL24835, and ATCC BAA-2146, were annotated using the RAST server pipeline. In order to compare the total coding sequences (CDSs) of KP617 with those of the three K. pneumoniae strains, the sequence-based comparison functionality of the RAST server was utilized.

Phylogenetic analysis

Concatenated whole genomes of 44 K. pneumoniae strains, including KP617, and multi-locus sequence typing (MLST) of seven genes [24, 25] were used for the calculation of evolutionary distances. The seven genes used for MLST were as follows: gapA, infB, mdh, pgi, phoE, rpoB and tonB. Multiple sequence alignments were performed using Mugsy (version 1.2.3) [26]. The generalized time-reversible model [27] + CAT model [28] (FastTree Version 2.1.7) [29] was used to construct approximate maximum-likelihood phylogenetic trees. The resulting trees were visualized using FigTree (version 1.3.1) (http://​tree.​bio.​ed.​ac.​uk/​software/​figtree/​).

Comparison of genomic structure

The chromosome and plasmids of KP617 and the reference strains were compared using Easyfig (version 2.2.2) [30]. Whole-genome nucleotide alignments were generated using BLASTN to identify syntenic genes. The syntenic genes and genomic structures were visualized using Easyfig. A stand-alone BLAST algorithm was used to analyze the structure of the genes of interest, i.e. the OXA-232- and NDM-1 carbapenemase-encoding genes.

Identification of the antimicrobial resistance genes

We identified the antibiotic resistance genes using complete sequences of chromosomes and plasmids of four K. pneumoniae isolates: KP617, PittNDM01, NUHL24853 and ATCC BAA-2146 using ResFinder 2.1 (https://​cge.​cbs.​dtu.​dk/​services/​ResFinder/​) [31].

Analysis of virulence factors and phage-associated regions

The virulence factor-encoding genes were searched against the virulence factor database (VFDB) [32] using BLAST with an e-value threshold of 1e-5. Homologous virulence factor genes with a BLAST Score Ratio (BSR) of ≥0.4 were selected. The BSR score was calculated using our in-house scripts. Phage-associated regions in the genome sequences of the four K. pneumoniae strains were predicted using the PHAST server [33]. Three scenarios for the completeness of the predicted phage-associated regions were defined according to how many genes/proteins of a known phage the region contained: intact (≥90 %), questionable (90–60 %), and incomplete (≤60 %).

Quality assurance

Genomic DNA was purified from a pure culture of a single bacterial isolate of KP617. Potential contamination of the genomic library by other microorganisms was assessed using a BLAST search against the non-redundant database.

Results and discussion

General features

A total of 316,881,346 (32,005,015,946 bp) paired-end reads were generated using Illumina-HiSeq 2500. Using the PacBio RS II platform, 46,134 (421,257,386 bp) raw reads were produced. The complete genome of KP617 consists of a 5,416,282-bp circular chromosome and two plasmids of 273,628 bp and 6141 bp in size. The genomic features of KP617 and the reference strains are summarized in Table 1. Based on a RAST analysis, 5024 putative open reading frames (ORFs) and 110 RNA genes on the circular chromosome (Figs. 1, 2; Additional file 1: Table S1), 342 putative ORFs on plasmid 1, and 9 putative ORFs on plasmid 2 were identified.
Table 1
Genomic features of Klebsiella pneumoniae KP617 and other strains
Strain
KP617
PittNDM01
NUHL24835
ATCC BAA-2146
Genome (Mb)
5.69
5.81
5.53
5.78
% GC (chromosome)
57.4
57.5
57.4
57.3
Total open reading frames
5375
4940
5191
5883
Plasmids
2
4
2
4
Comparison of KP617 and the reference strains based on sequence similarity (percent identity ≤80) showed that 32 genes are unique for KP617, and that most of the functional genes of this strain are also conserved in the reference strains. The genes unique to the KP617 strain, such as the SOS-response repressor and protease LexA (EC 3.4.21.88), integrase, and phage-related protein were identified as belonging to the genome of the prophage Salmonella phage SEN4 (GenBank accession: NC_029015). When the KP617 genome was compared with that of the PittNDM01 strain, which represents the closest neighbor of the former strain on the phylogenetic tree (Figs. 3a, b), 94 genes showed a percent similarity of below 80; most of these were phage protein-encoding genes. These results indicate that the presence of prophage DNA is an important feature of the KP617 genome.

Phylogenetic analysis

The whole-genome phylogenetic analysis indicated that KP617 is evolutionarily close to PittNDM01 and NUHL24835, and that the strains belong to the WGLW2 group. However, KP617 was found to be evolutionarily distant from ATCC BAA-2146 (Fig. 3). Concordantly, MLST-based phylogenetic analysis revealed that while KP617, PittNDM01, and NUHL24835 belong to the same group [sequence type (ST)14], ATCC BAA-2146 belongs to the HS11286 group, ST 11 [20]. The only difference between the whole-genome phylogenetic tree and the MLST-based phylogenetic tree was the divergence time within the same group; MLST-based phylogeny did not reveal the minor details of genomic evolution such as the divergence between KP617, PittNDM01 and NUHL24835 in the whole-genome phylogeny. The difference was attributed to horizontal gene transfer in regions not covered by the MLST genes.

Comparison of genome structures

The comparison of genomic structures of the chromosome indicated the presence of highly conserved structures in the KP617, NUHL24835, and PittNDM01 strains (Fig. 4a). Interestingly, a 1-Mb region (233,805–1,517,597) of the KP617 chromosome was inverted relative to its arrangement in the chromosome of PittNDM01 (1,500,972–225,619). Despite this inversion, KP617 and PittNDM01 exhibited a lower substitution rate (score 20) than NUHL24835 (score 30) (Fig. 3). However, the chromosomal structure of the ATCC BAA-2146 strain, which consisted of two large inverted regions, was significantly different from that of the other strains. In addition, a 71 Kb inversion was found in the sequence of plasmid 1 of KP617 (18,633–90,686) relative to plasmid 1 of PittNDM01 (91,507–19,453); however, the two plasmids were highly homologous to each other (Fig. 4b).

Antimicrobial resistance genes

Nineteen antibiotic resistance genes were identified in the genome of KP617, 39 in the genome of PittNDM01, 29 in that of ATCC BAA-2146, and nine in that of the NUHL24385 strain (Table 2). The β-lactam resistance genes in the KP617 genome were bla OXA-1 and bla SHV-28 in the chromosome, bla NDM-1 in plasmid 1, and bla OXA-232 in plasmid 2; however, genes conferring resistance to colistin and tetracycline were not found (Table 2). Plasmid 2 of KP617, which includes the OXA-232-encoding gene, consists of a 6141-bp sequence; the sequence of this plasmid was identical to that of plasmid 4 of PittNDM01 (100 % coverage and similarity) and the plasmid of E. coli (coverage: 100 %, similarity: 99.9 %). Plasmid 2 of KP617, plasmid 4 of PittNDM01 and E. coli Mob gene cluster (GenBank accession: JX423831) [12] carried the OXA-232-encoding gene, and pKF-3 of K. pneumoniae carried the OXA-181-encoding gene. However, pKF-3 was identical to plasmid 2 of KP617, except in that the insertion sequence ISEcp1 was inserted upstream of OXA-181 and included in the transposon Tn2013 [12, 34].
Table 2
Antimicrobila resistance genes of KP617 and the reference strains
Antibiotics
Resistance gene
% identity
Query/HSP length
Predicted phenotype
Accession number
Positiona
KP617
PittNDM01
BAA-2146
NHUL24385
Aminoglycosides
aacA4
100
555/555
Aminoglycoside resistance
KM278199
  
P3_115183..115737
 
aac(3)-IIa
99.77
861/861
X51534
  
P2_41114..41974
 
aac(3)-IId
99.88
861/861
EU022314
 
P3_64003..64863
  
aac(6′)-Ib
100
606/606
M21682
 
P3_2456..3061
P2_82742..83347
 
aadA1
100
789/789
JQ480156
 
P3_3131..3919
  
99.75
792/798
JQ414041
 
P3_44412..45203
  
aadA2
100
792/792
JQ364967
P1_261911..262702
P1_271654..272445
 
P1_53050..53841
100
780/780
X68227
  
C_2297697..2298476
 
aph(3′)-VIa
98.46
780/780
X07753
P1_4558..5337
P1_4558..5337
  
armA
100
774/774
AY220558
P1_267391..268164
P1_277134..277907
  
rmtC
100
 
AB194779
  
P3_120100..120945
 
strA
99.88
804/804
AF321551
 
P3_29207..30010
  
100
  
P2_53242..54045
 
strB
99.88
837/837
M96392
 
P3_30010..30846
  
100
  
P2_52406..53242
 
aac(6′)Ib-cr
100
600/600
Fluoroquinolone and aminoglycoside resistance
DQ303918
C_612688..613287
C_1122863..1123462
  
 
P1_136163..136762
P2_38111..38710
 
Beta-lactams
blaOXA-1
100
831/831
Beta-lactam resistance
J02967
C_613418..614248
C_1121902..1122732
  
 
P1_136893..137723
P2_38841..39671
 
blaOXA-9
100
840/840
JF703130
 
P3_3964..4803
  
blaOXA-232
100
798/798
JX423831
P2_3878..4675
P4_3878..4675
  
blaNDM-1
100
813/813
FN396876
P1_7770..8582
P1_7770..8582
P3_122191..123003
 
blaNDM-5
100
813/813
JN104597
   
P2_10716..11528
blaCTX-M-15
100
876/876
DQ302097
  
C_5407907..5408782
 
 
P3_68389..69264
P2_47128..48003
P1_47694..48569
blaTEM-1A
100
861/861
HM749966
 
P3_5503..6363
  
blaTEM-1B
100
861/861
JF910132
  
P2_50825..51685
 
595/861
   
P1_49351..49945
blaSHV-11
100
861/861
GQ407109
 
P3_57446..58306
C_2612965..2613825
 
99.88
  
P2_36311..37171
 
blaSHV-28
100
861/861
HM751101
   
C_1087615..1088475
99.88
C_1078475..1079335
C_656815..657675
  
blaCMY-6
100
1146/1146
AJ011293
  
P3_72203..73348
 
Fluoroquinolones
aac(6′)Ib-cr
100
600/600
Fluoroquinolone and aminoglycoside resistance
DQ303918
C_612688..613287
C_1122863..1123462
  
 
P1_136163..136762
P2_38111..38710
 
99.42
519/519
EF636461
 
P3_2543..3061
P2_82742..83260
 
99.61
  
P3_115219..115737
 
QnrB1
99.85
682/681
Quinolone resistance
EF682133
P1_130519..131200
P1_130247..130928
  
QnrB58
98.68
681/681
JX259319
  
P2_26062..26742
 
oqxA
100
1176/1176
EU370913
  
C_4169699..4170874
 
99.23
C_4847144..4848319
C_4793024..4794199
 
C_4849531..4850706
oqxB
98.83
3153/3153
EU370913
C_4843968..4847120
C_4789848..4793000
C_4170898..4174050
 
98.79
   
C_4846355..4849507
Fosfomycin
fosA
97.38
420/420
Fosfomycin resistance
NZ_AFBO01000747
C_2957629..2958048
C_2903507..2903926
 
C_2946180..2946599
97.14
  
C_667959..668378
 
MLS—macrolide, lincosamide and streptogramin B
ere(A)
95.11
1227/1227
Macrolide resistance
AF099140
 
P3_45289..46515
  
mph(A)
100
906/906
D16251
  
P1_16503..17408
 
mph(E)
99.89
885/885
EU294228
P1_271994..272878
P1_281737..282621
  
msr(E)
100
1476/1476
Macrolide, Lincosamide and Streptogramin B resistance
EU294228
P1_270463..271938
P1_280206..281681
  
Phenicol
catB3
100
442/633
Phenicol resistance
AJ009818
 
P1_137861..138302
P2_39809..40250
 
C_614386..614827
C_1121323..1121764
  
cmlA1
99.13
 
AB212941
 
P3_42931..44190
  
Rifampicin
ARR-2
100
453/453
Rifampicin resistance
HQ141279
 
P3_46791..47243
  
ARR-3
  
CP002151
  
C_2298894..2299820
 
Sulphonamides
sul1
100
927/927
Sulphonamide resistance
CP002151
P1_263120..264046
P1_272863..273789
P3_116160..117086
 
sul1
100
837/837
JN581942
 
P3_41559..42395
  
sul2
100
816/816
GQ421466
 
P3_28331..29146
  
Tetracyclines
tet(A)
100
1200/1200
Tetracycline resistance
AJ517790
  
P1_19168..20367
 
Trimethoprim
dfrA1
100
474/474
Trimethoprim resistance
X00926
C_3627607..3628080
C_3573485..3573958
  
dfrA12
100
498/498
AB571791
P1_261006..261503
P1_270749..271246
 
P1_52145..52642
dfrA14
99.59
483/483
DQ388123
 
P1_144525..145007
P2_8272..8754
 
KP617: C, CP012753.1; P1, CP012754.1; P2, CP012755.1
PittNDM01: C, CP006798.1; P1, CP006799.1; P2, CP006800.1; P3, CP006801.1; P4, CP006802.1
ATCC BAA-2146: C, CP006659.2; P1 (PCuAs), CP006663.1; P2 (PHg), CP006662.2; P3, CP006660.1; P4, CP006661.1
NUHL24385: C, CP014004.1; P1, CP014005.1; P2, CP014006.1
a C chromosome, P plasmid
The structure of plasmid 1 (273,628 bp in size) of the KP617 strain was similar to that of plasmid 1 (283,371 bp in size) of PittNDM01. A region of about 40 kb in size within plasmid 1 of the KP617 strain, which included the NDM-1-encoding gene, was composed of various resistance genes such as aadA2, armA, aac(3″)-VI, dfrA12, msrE, mphE, sul1 and qnrB1, and identical (coverage: 100 %, homology: 100 %) to a 40-kb sequence of plasmid 1 of PittNDM01 (Fig. 4b). Adjacent to the NDM-1-encoding gene, a region of about 70 kb in size was inverted in plasmid 1 of KP617 relative to plasmid 1 of PittNDM01. In addition, the OXA-1-encoding gene was identified in PittNDM01 but not in KP617. Transposases were found in a part of the NDM-1-encoding gene cluster (about 10 kb) in plasmid 1 of KP617. Gram-negative bacteria are known to possess a diverse range of transposases; moreover, the sequence of the NDM-1-encoding gene cluster includes a transposon [35, 36]. The partial, or complete, transfer of NDM-1-harboring plasmids between K. pneumoniae and E. coli, via conjugation, has been shown to result in the emergence of strains resistant to several antimicrobial agents [11, 32, 36, 37].
Following the initial identification of NDM-1 in a K. pneumoniae isolate from a patient who had travelled to India in 2008, most NDM-1-producing K. pneumoniae isolates have been recovered from patients associated with India; however, in some cases, these strains have been isolated from patients with no history of travelling abroad, or any association with India [38]. These observations suggest that the transfer of the NDM-1- and OXA-232-harboring plasmids between Gram-negative bacteria has resulted in the spread of carbapenem resistance and emergence of strong carbapenem-resistant strains outside the Indian subcontinent.

Virulence factors

Klebsiella pneumoniae, a significant pathogen of human hosts, causes urinary tract infections, pneumonia, septicemia, and soft tissue infections [1]. The clinical features of K. pneumoniae infections depend on the virulence factors expressed by the infecting strain [39]. Therefore, we investigated the virulence factors of the present strain and compared these with those of KP617 and the reference strains. A BLAST search was performed against VFDB to identify 117 virulence factors harbored by the KP617 strain (Table 3). All 117 virulence genes of KP617 were also harbored by the reference strains; KP617 did not possess any unique virulence factors. The PittNDM01 strain was also found to possess no unique virulence factors; however, NUHL24835 and ATCC BAA-2146 possessed 3 and 7 unique virulence factors, respectively. The 117 virulence genes of KP617 were classified into 31 the following categories: Iron uptake (30 genes), Immune evasion (12 genes), Endotoxin (11 genes), Adherence (10 genes), Fimbrial adherence determinants (8 genes), Toxin (7 genes), Antiphagocytosis (6 genes), Regulation (5 genes), Acid resistance (3 genes), Anaerobic respiration (2 genes), Cell surface components (2 genes) and Secretion system (2 genes). Among the 117 virulence genes identified, 8 genes were lipopolysaccharide [40]-related genes and 4 genes were capsular polysaccharide [41]-related.
Table 3
Virulence genes of KP617 and the reference strains
Strains
Category
Subcategory
Name
KP617, PittNDM01, NUHL24385 and ATCC BAA-2146
Acid resistance
Urease
ureA, ureB, ureF, ureG, ureH
Adherence
Cell wall associated fibronectin binding protein
ebh
Adherence
CFA/I fimbriae
ibeB
Adherence
Flagella
fleN, fleR, fleS
Adherence
Hsp60
htpB
Adherence
Intercellular adhesin
icaA, icaR
Adherence
Listeria adhesion protein
lap
Adherence
OapA
oapA
Adherence
Omp89
omp89
Adherence
P fimbriae
papX
Adherence
PEB1/CBF1
pebA
Adherence
Phosphoethanolamine modification
lptA
Adherence
Type I fimbriae
fimB, fimE, fimG
Adherence
Type IV pili
comE/pilQ
Adherence
Type IV pili biosynthesis
pilM, pilW
Adherence
Type IV pili twitching motility related proteins
chpD, chpE
Adhesin
Laminin-binding protein
lmb
Adhesin
Streptococcal lipoprotein rotamase A
slrA
Adhesin
Streptococcal plasmin receptor/GAPDH
plr/gapA
Adhesin
Type IV pili
pilD, pilN, pilR, pilR, pilS, pilT
Amino acid and purine metabolism
Glutamine synthesis
glnA1
Amino acid and purine metabolism
Leucine synthesis
leuD
Amino acid and purine metabolism
Lysine synthesis
lysA
Amino acid and purine metabolism
Proline synthesis
proC
Amino acid and purine metabolism
Purine synthesis
purC
Amino acid and purine metabolism
Tryptophan synthesis
trpD
Anaerobic respiration
Nitrate reductase
narG, narH, narI, narJ
Anaerobic respiration
Nitrate/nitrite transporter
narK2
Anti-apoptosis factor
NuoG
nuoG
Antimicrobial activity
Phenazines biosynthesis
phzE1, phzF1, phzG1phzS
Antiphagocytosis
Alginate regulation
algQ, algR, algU, algW, algZ, mucB, mucC, mucD, mucP
Antiphagocytosis
Capsular polysaccharide
cpsB, wbfT, wbfV/wcvB, wbjD/wecB, wza, wzc
Antiphagocytosis
Capsule
cpsF
Antiphagocytosis
Capsule I
gmhA, wcbN, wcbP, wcbR, wcbT, wzt2
Cell surface components
GPL locus
fadE5, fmt, rmlB
Cell surface components
MymA operon
adhD, fadD13, sadH, tgs4
Cell surface components
PDIM (phthiocerol dimycocerosate) and PGL (phenolic glycolipid) biosynthesis and transport
ddrA, mas, ppsC, ppsE
Cell surface components
Potassium/proton antiporter
kefB
Cell surface components
Proximal cyclopropane synthase of alpha mycolates
pcaA
Cell surface components
Trehalose-recycling ABC transporter
lpqY, sugA, sugB, sugC
Chemotaxis and motility
Flagella
flrA, flrB
Efflux pump
FarAB
farA, farB
Efflux pump
MtrCDE
mtrC, mtrD
Endotoxin
LOS
gmhA/lpcA, kdtA, kpsF, lgtF, licA, lpxH, msbA, opsX/rfaC, orfM, rfaD, rfaE, rfaF, wecA, yhbX
Endotoxin
LPS
bplA, bplC, bplF, wbmE, wbmI
Endotoxin
LPS-modifying enzyme
pagP
Exoenzyme
Cysteine protease
sspB
Exoenzyme
Streptococcal enolase
eno
Fimbrial adherence determinants
Agf/Csg
csgD
Fimbrial adherence determinants
Fim
fimA, fimC, fimD, fimF, fimH, fimI
Fimbrial adherence determinants
Lpf
lpfB, lpfC
Fimbrial adherence determinants
Stg
stgA
Fimbrial adherence determinants
Sth
sthA, sthB, sthC, sthD, sthE
Fimbrial adherence determinants
Sti
stiB
Glycosylation system
N-linked protein glycosylation
pglJ
Host immune evasion
Exopolysaccharide
galE, galU, manA, mrsA/glmM, pgi
Host immune evasion
LPS glucosylation
gtrB
Host immune evasion
Polyglutamic acid capsule
capD
Immune evasion
LPS
acpXL, htrB, kdsA, lpxA, lpxB, lpxC, lpxD, lpxK, pgm, wbkC
Intracellular survival
LigA
ligA
Intracellular survival
Lipoate protein ligase A1
lplA1
Intracellular survival
Mip
mip
Intracellular survival
Oligopeptide-binding protein
oppA
Intracellular survival
Post-translocation chaperone
prsA2
Intracellular survival
Sugar-uptake system
hpt
Invasion
Ail
ail
Invasion
Cell wall hydrolase
iap/cwhA
Iron acquisition
Cytochrome c muturation (ccm) locus
ccmA, ccmB, ccmC, ccmE, ccmF
Iron acquisition
Ferrous iron transport
feoA, feoB
Iron acquisition
Iron acquisition/assimilation locus
iraB
Iron and heme acquisition
Haemophilus iron transport locus
hitA, hitB, hitC
Iron and heme acquisition
Heme biosynthesis
hemA, hemB, hemC, hemD, hemE, hemG, hemH, hemL, hemM, hemN, hemX, hemY
Iron uptake
ABC transporter
fagD
Iron uptake
ABC-type heme transporter
hmuT, hmuU, hmuV
Iron uptake
Achromobactin biosynthesis and transport
acsB, cbrB, cbrD
Iron uptake
Aerobactin transport
iutA
Iron uptake
ciu iron uptake and siderophore biosynthesis system
ciuD
Iron uptake
Enterobactin receptors
irgA
Iron uptake
Enterobactin synthesis
entE, entF
Iron uptake
Enterobactin transport
fepA, fepB, fepC, fepD, fepG
Iron uptake
Heme transport
shuV
Iron uptake
Hemin uptake
chuS, chuT, chuY
Iron uptake
Iron-regulated element
ireA
Iron uptake
Iron/managanease transport
sitA, sitB, sitC, sitD
Iron uptake
Periplasmic binding protein-dependent ABC transport systems
viuC
Iron uptake
Pyochelin
pchA, pchB, pchR
Iron uptake
Pyoverdine
pvdE, pvdH, pvdJ, pvdM, pvdN, pvdO
Iron uptake
Salmochelin synthesis and transport
iroE, iroN
Iron uptake
Vibriobactin biosynthesis
vibB
Iron uptake
Vibriobactin utilization
viuB
Iron uptake
Yersiniabactin siderophore
ybtA, ybtP
Iron uptake systems
Ton system
exbB, exbD
Lipid and fatty acid metabolism
FAS-II
kasB
Lipid and fatty acid metabolism
Isocitrate lyase
icl
Lipid and fatty acid metabolism
Pantothenate synthesis
panC, panD
Lipid and fatty acid metabolism
Phospholipases C
plcD
Macrophage inducible genes
Mig-5
mig-5
Magnesium uptake
Mg2+ transport
mgtB
Mammalian cell entry (mce) operons
Mce3
mce3B
Metal exporters
Copper exporter
ctpV
Metal uptake
ABC transporter
irtB
Metal uptake
Exochelin (smegmatis)
fxbA
Metal uptake
Heme uptake
mmpL11
Metal uptake
Magnesium transport
mgtC
Metal uptake
Mycobactin
fadE14, mbtH, mbtI
Motility and export apparatus
Flagella
flhF, flhG, fliY
Nonfimbrial adherence determinants
SinH
sinH
Other adhesion-related proteins
EF-Tu
tuf
Other adhesion-related proteins
PDH-B
pdhB
Others
MsbB2
msbB2
Others
Nuclease
nuc
Others
VirK
virK
Phagosome arresting
Nucleoside diphosphate kinase
ndk
Protease
Trigger factor
tig/ropA
Proteases
Proteasome-associated proteins
mpa
Quorum sensing
Autoinducer-2
luxS
Quorum sensing systems
Acylhomoserine lactone synthase
hdtS
Quorum sensing systems
N-(butanoyl)-l-homoserine lactone QS system
rhlR
Regulation
Alternative sigma factor RpoS
rpoS
Regulation
AtxA
atxA
Regulation
BvrRS
bvrR
Regulation
Carbon storage regulator A
csrA
Regulation
DevR/S
devR/dosR
Regulation
GacS/GacA two-component system
gacA, gacS
Regulation
LetA/LetS two component
letA
Regulation
LisR/LisK
lisK
Regulation
MprA/B
mprA, mprB
Regulation
PhoP/R
phoR
Regulation
RegX3
regX3
Regulation
RelA
relA
Regulation
SenX3
senX3
Regulation
Sigma A
sigA/rpoV
Regulation
Two-component system
bvgA, bvgS
Secreted proteins
Antigen 85 complex
fbpB, fbpC
Secretion system
Accessory secretion factor
secA2
Secretion system
Bsa T3SS
bprC
Secretion system
Flagella (cluster I)
fliZ
Secretion system
Mxi-Spa TTSS effectors controlled by MxiE
ipaH, ipaH2.5
Secretion system
P. aeruginosa TTSS
exsA
Secretion system
P. syringae TTSS
hrcN
Secretion system
P. syringae TTSS effectors
hopAJ2, hopAN1, hopI1
Secretion system
TTSS secreted proteins
bopD
Secretion system
Type III secretion system
bscS
Secretion system
Type VII secretion system
essC
Secretion system
VirB/VirD4 type IV secretion system & translocated effector Beps
bepA
Serum resistance
BrkAB system
brkB
Stress adaptation
AhpC
ahpC
Stress adaptation
Catalase-peroxidase
katG
Stress adaptation
Pore-forming protein
ompA
Stress protein
Catalase
katA
Stress protein
Manganese transport system
mntA, mntB, mntC
Stress protein
Recombinational repair protein
recN
Stress protein
SodCI
sodCI
Surface protein anchoring
Lipoprotein diacylglyceryl transferase
lgt
Surface protein anchoring
Lipoprotein-specific signal peptidase II
lspA
Toxin
Beta-hemolysin/cytolysin
cylG
Toxin
Enterotoxin
entA, entB, entC, entD
Toxin
Hydrogen cyanide production
hcnC
Toxin
Phytotoxin phaseolotoxin
argD, argK, cysC1
Toxin
Streptolysin S
sagA
Toxins
Alpha-hemolysin
hlyA
Toxins
Enterotoxin SenB/TieB
senB
Two-component system
PhoPQ
phoP, phoQ
Type I secretion system
ABC transporter for dispersin
aatC
KP617, PittNDM01 and NUHL24385
Antiphagocytosis
Capsular polysaccharide
cpsA
Cell surface components
GPL locus
pks
Cell surface components
Mycolic acid trans-cyclopropane synthetase
cmaA2
Endotoxin
LOS
lgtA
Iron uptake
Pyoverdine receptors
fpvA
Iron uptake
Vibriobactin biosynthesis
vibA
Iron uptake
Yersiniabactin siderophore
irp1, irp2, ybtE, ybtQ, ybtS, ybtT, ybtU, ybtX
Secretion system
EPS type II secretion system
epsG
Secretion system
Trw type IV secretion system
trwE
Secretion system
VirB/VirD4 type IV secretion system & translocated effector Beps
virB11, virB4, virB9
Toxin
RTX toxin
rtxB, rtxD
KP617 and PittNDM01
Adhesin
Streptococcal collagen-like proteins
sclB
Chemotaxis and motility
Flagella
flrC
Iron uptake
Yersiniabactin siderophore
fyuA
KP617 and PittNDM01 were found to possess two virulence factors that were not present in the other two strains: invasion (encoded by ail, attachment invasion locus protein) [42] and Iron uptake (encoded by fyuA, Yersiniabactin siderophore) [43].

Phage-associated regions

Prophages contribute to the genetic and phenotypic plasticity of their bacterial hosts [44] and act as vehicles for the transfer of antimicrobial resistance genes [45] or virulence factors [46]. Six phage-associated regions (KC1–KC5) of the KP617 chromosome and one phage-associated region (KP1) in plasmid 1 of the KP617 strain were identified using the PHAST algorithm (Table 4). With regard to the reference strains, six phage-associated regions were identified in the PittNDM01 strain, six in NUHL24835, and 12 in ATCC BAA-2146.
Table 4
Phage-associated regions of KP617 and the reference strains
Strain
Chromosome/plasmid
Region
Region_length (Kb)
Completeness
Score
#CDS
Region_position
Possible phage
GC_percentage (%)
ATCC BAA-2146
Chromosome
AC1
23.3
Questionable
75
14
596765–620097
Entero_P4
43.01
Chromosome
AC2
52
Intact
100
70
1293924–1345940
Cronob_ENT47670
53.06
Chromosome
AC3
37.5
Intact
150
48
1785522–1823022
Entero_Fels_2 
51.11
Chromosome
AC4
25.7
Incomplete
50
31
2283748–2309524
Entero_mEpX1
52.98
Chromosome
AC5
45.6
Intact
110
62
2342458–2388075
Salmon_SEN34
51.79
Chromosome
AC6
7
Incomplete
30
7
3543581–3550658
Shigel_SfIV
48.73
Chromosome
AC7
45.1
Intact
106
57
3969834–4015015
Salmon_SPN1S
54.61
Chromosome
AC8
24.7
Intact
150
31
4128565–4153295
Salmon_RE_2010
56.56
Chromosome
AC9
25.7
Questionable
90
26
4910621–4936374
Salmon_ST64B
52.32
Plasmid1
AP1-1
16
Questionable
70
13
5385–21439
Staphy_SPbeta_like
57.65
Plasmid2
AP2-1
46
Intact
130
38
3924–49935
Stx2_converting_1717
51.29
Plasmid2
AP2-2
18.1
Questionable
70
23
37308–55427
Staphy_SPbeta_like
50.68
Plasmid2
AP2-3
18.7
Incomplete
30
21
66337–85097
Entero_P1
51.85
KP617
Chromosome
KC1
59.4
Intact
140
78
187337–246765
Salmon_E1
53.99
Chromosome
KC2
52.2
Intact
150
51
1148902–1201105
Entero_HK140
54.02
Chromosome
KC3
37.3
Intact
150
39
1524848–1562220
Salmon_SEN4
50.97
Chromosome
KC4
43.1
Questionable
90
52
4912300–4955407
Escher_HK639
52.40
Chromosome
KC5
20
Incomplete
30
17
5015118–5035178
Entero_phiP27
51.93
Plasmid1
KP1-1
20.7
Incomplete
50
25
123005–143753
Escher_Av_05.
0.4718
NUHL24835
Chromosome
NC1
41.6
Intact
140
47
132925–174606
Entero_HK140
50.75
Chromosome
NC2
12.8
Incomplete
30
14
1481474–1494341
Thermu_phiYS40
58.36
Chromosome
NC3
34.7
Intact
150
32
1524859–1559640
Entero_c_1
52.15
Chromosome
NC4
41.9
Intact
150
52
4283813–4325722
Entero_Fels_2
53.26
Chromosome
NC5
38.7
Intact
150
45
5082826–5121566
Entero_mEp235
50.24
Plasmid1
NP1-1
21.4
Incomplete
30
6
65638–87083
Entero_P1
49.29
PittNDM01
Chromosome
PC1
50.8
Intact
130
63
209103–259953
Vibrio_pYD38_A
53.35
Chromosome
PC2
49.9
Intact
120
65
4847596–4897574
Salmon_SPN3UB
51.59
Chromosome
PC3
20
Incomplete
30
19
4961006–4981067
Entero_P4
51.92
Plasmid1
PP1-1
30.8
Questionable
70
22
124082–154939
Vibrio_pYD38_A
48.18
Plasmid2
PP2-1
34.3
Questionable
70
27
556–34952
Entero_P1
52.30
Plasmid3
PP3-1
50.3
Intact
150
56
8885–59236
Entero_P1
53.90
Three of the six phages, KC1, KC2 and KC3, in the KP617 strain were intact, whereas the remaining prophages were incomplete (KC5 and KP1) or questionable (KC4) and had a low PHAST score of below 90. Based on the sequence similarity of their genomes, KP617 and PittNDM01 were found to have high similarity to each other (Figs. 2, 3a, b). Concordantly, the profile of prophage DNA in their genomes, as determined via a BLAST search, was similar, and the two strains shared four of the six prophages, whereas two phage regions, KC2 (Entero_HK140) and KC3 (Salmon_SEN4), were specific to the KP617 genome. Furthermore, it was found that one phage-associated region of KP617, namely KC2 (Entero_HK140), exhibited a high similarity to the phage-associated region of the NUHL24835 strain, NC1, with 60 % query coverage and 99 % identity. It should be noted that the strains compared in the present study, i.e. KP617 and the reference strain, ATCC BAA-2146, had no prophages in common.
Investigation of the antimicrobial resistance genes harbored by the strains, which was performed using ResFinder, and comparison with the prophage-associated region, as predicted using PHAST, did not reveal the presence of a prophage-delivered beta-lactamase-encoding gene in the KP617 genome, indicating that prophages did not act as a vehicle for the transfer of antimicrobial resistance genes in this strain. This finding is consistent with previous observations that beta-lactamase-encoding genes are borne by transposons [35, 36]. Bacteriophages are applicable to phage therapy. In particular, bacteriophages have been used as a potential therapeutic agent to treat patients infected with multidrug resistant bacteria [47] and have been used for serological typing for diagnostic and epidemiological typing in K. pneumoniae [48]. However, because we did not characterize the phages in KP617, we are not sure whether or not they are active.

Future directions

Klebsiella pneumoniae subsp. pneumoniae KP617, which is strongly pathogenic, is known to cause severe nosocomial infections. This strain, as well as the PittNDM01 and NUHL24835 strains in the WGLW2 group, belongs to the sequence type ST14. In this study, we investigated specific antimicrobial resistance genes, virulence factors, and prophages related to pathogenicity and drug resistance in K. pneumoniae subsp. pneumoniae KP617 via a comparative analysis of the genome of this strain and those of PittNDM01, NUHL24835, and ATCC BAA-2146. Significant homology was observed in terms of the genomic structure, gene content, antimicrobial resistance genes and virulence factors between KP617 and the reference strains; phylogenetic analysis indicated that KP617 is next to PittNDM01, despite the presence of large inversions. Moreover, KP617 shares 98.3 % of its genes with PittNDM01. Despite the similarity in genome sequences and content, there were differences in phage-related genes, plasmids, and plasmid-harbored antimicrobial resistance genes. PittNDM01 harbors two more plasmids and 21 more antimicrobial resistance genes than KP617. In order to elucidate the precise role of these factors in the pathogenicity of KP617, further studies are required.

Availability of supporting data

Nucleotide sequence accession numbers The complete genome sequence of K. pneumoniae KP617 has been deposited in DDBJ/EMBL/GenBank under the accession numbers CP012753, CP012754, and CP012755 [49].

Authors’ contributions

DWK and WK designed and led the project and contributed to the interpretation of the results. DWK drafted the manuscript. YHJ and TK interpreted the results. YHJ, SHL, MRY, and TK performed the gene annotation and bioinformatics analysis. TK and YHJ wrote the manuscript. All authors read and approved the final manuscript before submission.

Acknowledgements

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by a grant from the Marine Biotechnology Program (Genome Analysis of Marine Organisms and Development of Functional Applications) funded by the Ministry of Oceans and Fisheries.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589–603.PubMedPubMedCentral Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589–603.PubMedPubMedCentral
2.
Zurück zum Zitat Yinnon AM, Butnaru A, Raveh D, Jerassy Z, Rudensky B. Klebsiella bacteraemia: community versus nosocomial infection. QJM. 1996;89(12):933–41.CrossRefPubMed Yinnon AM, Butnaru A, Raveh D, Jerassy Z, Rudensky B. Klebsiella bacteraemia: community versus nosocomial infection. QJM. 1996;89(12):933–41.CrossRefPubMed
3.
Zurück zum Zitat Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53(1):60–7.CrossRefPubMed Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53(1):60–7.CrossRefPubMed
4.
Zurück zum Zitat Poirel L, Heritier C, Tolun V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48(1):15–22.CrossRefPubMedPubMedCentral Poirel L, Heritier C, Tolun V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48(1):15–22.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Rogers BA, Sidjabat HE, Silvey A, Anderson TL, Perera S, Li J, Paterson DL. Treatment options for New Delhi metallo-beta-lactamase-harboring enterobacteriaceae. Microb Drug Resist. 2013;19(2):100–3.CrossRefPubMed Rogers BA, Sidjabat HE, Silvey A, Anderson TL, Perera S, Li J, Paterson DL. Treatment options for New Delhi metallo-beta-lactamase-harboring enterobacteriaceae. Microb Drug Resist. 2013;19(2):100–3.CrossRefPubMed
7.
Zurück zum Zitat Gyles C, Boerlin P. Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. Vet Pathol. 2014;51(2):328–40.CrossRefPubMed Gyles C, Boerlin P. Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. Vet Pathol. 2014;51(2):328–40.CrossRefPubMed
8.
Zurück zum Zitat Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014;20(9):821–30.CrossRefPubMed Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014;20(9):821–30.CrossRefPubMed
10.
Zurück zum Zitat Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–54.CrossRefPubMedPubMedCentral Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–54.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Qu H, Wang X, Ni Y, Liu J, Tan R, Huang J, Li L, Sun J. NDM-1-producing Enterobacteriaceae in a teaching hospital in Shanghai, China: IncX3-type plasmids may contribute to the dissemination of blaNDM-1. Int J Infect Dis. 2015;34:8–13.CrossRefPubMed Qu H, Wang X, Ni Y, Liu J, Tan R, Huang J, Li L, Sun J. NDM-1-producing Enterobacteriaceae in a teaching hospital in Shanghai, China: IncX3-type plasmids may contribute to the dissemination of blaNDM-1. Int J Infect Dis. 2015;34:8–13.CrossRefPubMed
12.
Zurück zum Zitat Potron A, Rondinaud E, Poirel L, Belmonte O, Boyer S, Camiade S, Nordmann P. Genetic and biochemical characterisation of OXA-232, a carbapenem-hydrolysing class D beta-lactamase from Enterobacteriaceae. Int J Antimicrob Agents. 2013;41(4):325–9.CrossRefPubMed Potron A, Rondinaud E, Poirel L, Belmonte O, Boyer S, Camiade S, Nordmann P. Genetic and biochemical characterisation of OXA-232, a carbapenem-hydrolysing class D beta-lactamase from Enterobacteriaceae. Int J Antimicrob Agents. 2013;41(4):325–9.CrossRefPubMed
14.
Zurück zum Zitat Balm MN, La MV, Krishnan P, Jureen R, Lin RT, Teo JW. Emergence of Klebsiella pneumoniae co-producing NDM-type and OXA-181 carbapenemases. Clin Microbiol Infect. 2013;19(9):E421–3.CrossRefPubMed Balm MN, La MV, Krishnan P, Jureen R, Lin RT, Teo JW. Emergence of Klebsiella pneumoniae co-producing NDM-type and OXA-181 carbapenemases. Clin Microbiol Infect. 2013;19(9):E421–3.CrossRefPubMed
15.
Zurück zum Zitat Doi Y, O’Hara JA, Lando JF, Querry AM, Townsend BM, Pasculle AW, Muto CA. Co-production of NDM-1 and OXA-232 by Klebsiella pneumoniae. Emerg Infect Dis. 2014;20(1):163–5.CrossRefPubMedPubMedCentral Doi Y, O’Hara JA, Lando JF, Querry AM, Townsend BM, Pasculle AW, Muto CA. Co-production of NDM-1 and OXA-232 by Klebsiella pneumoniae. Emerg Infect Dis. 2014;20(1):163–5.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Kwon T, Yang JW, Lee S, Yun MR, Yoo WG, Kim HS, Cha JO, Kim DW. Complete genome sequence of Klebsiella pneumoniae subsp. pneumoniae KP617, Coproducing OXA-232 and NDM-1 Carbapenemases, isolated in South Korea. Genome Announc. 2016;4(1):e01550–15.CrossRefPubMedPubMedCentral Kwon T, Yang JW, Lee S, Yun MR, Yoo WG, Kim HS, Cha JO, Kim DW. Complete genome sequence of Klebsiella pneumoniae subsp. pneumoniae KP617, Coproducing OXA-232 and NDM-1 Carbapenemases, isolated in South Korea. Genome Announc. 2016;4(1):e01550–15.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Doi Y, Hazen TH, Boitano M, Tsai YC, Clark TA, Korlach J, Rasko DA. Whole-genome assembly of Klebsiella pneumoniae coproducing NDM-1 and OXA-232 carbapenemases using single-molecule, real-time sequencing. Antimicrob Agents Chemother. 2014;58(10):5947–53.CrossRefPubMedPubMedCentral Doi Y, Hazen TH, Boitano M, Tsai YC, Clark TA, Korlach J, Rasko DA. Whole-genome assembly of Klebsiella pneumoniae coproducing NDM-1 and OXA-232 carbapenemases using single-molecule, real-time sequencing. Antimicrob Agents Chemother. 2014;58(10):5947–53.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat (KCDC) KCfDCaP. Epidemic investigation report for imported CRE outbreak in Korea. Public Health Wkly Rep KCDC. 2013;6(31):617–9. (KCDC) KCfDCaP. Epidemic investigation report for imported CRE outbreak in Korea. Public Health Wkly Rep KCDC. 2013;6(31):617–9.
19.
Zurück zum Zitat Liu PP, Liu Y, Wang LH, Wei DD, Wan LG. Draft genome sequence of an NDM-5-producing Klebsiella pneumoniae sequence type 14 strain of serotype K2. Genome Announc 2016; 4(2):e01610–15.CrossRefPubMedPubMedCentral Liu PP, Liu Y, Wang LH, Wei DD, Wan LG. Draft genome sequence of an NDM-5-producing Klebsiella pneumoniae sequence type 14 strain of serotype K2. Genome Announc 2016; 4(2):e01610–15.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Hudson CM, Bent ZW, Meagher RJ, Williams KP. Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain. PLoS One. 2014;9(6):e99209.CrossRefPubMedPubMedCentral Hudson CM, Bent ZW, Meagher RJ, Williams KP. Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain. PLoS One. 2014;9(6):e99209.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA, et al. A whole-genome assembly of Drosophila. Science. 2000;287(5461):2196–204.CrossRefPubMed Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA, et al. A whole-genome assembly of Drosophila. Science. 2000;287(5461):2196–204.CrossRefPubMed
22.
Zurück zum Zitat Hackl T, Hedrich R, Schultz J, Forster F. proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics. 2014;30(21):3004–11.CrossRefPubMedPubMedCentral Hackl T, Hedrich R, Schultz J, Forster F. proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics. 2014;30(21):3004–11.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 2008;9:75.CrossRef Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 2008;9:75.CrossRef
24.
Zurück zum Zitat Khan NH, Ahsan M, Yoshizawa S, Hosoya S, Yokota A, Kogure K. Multilocus sequence typing and phylogenetic analyses of Pseudomonas aeruginosa isolates from the ocean. Appl Environ Microbiol. 2008;74(20):6194–205.CrossRefPubMedPubMedCentral Khan NH, Ahsan M, Yoshizawa S, Hosoya S, Yokota A, Kogure K. Multilocus sequence typing and phylogenetic analyses of Pseudomonas aeruginosa isolates from the ocean. Appl Environ Microbiol. 2008;74(20):6194–205.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Glaeser SP, Kampfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol. 2015;38(4):237–45.CrossRefPubMed Glaeser SP, Kampfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol. 2015;38(4):237–45.CrossRefPubMed
26.
Zurück zum Zitat Angiuoli SV, Salzberg SL. Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics. 2011;27(3):334–42.CrossRefPubMed Angiuoli SV, Salzberg SL. Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics. 2011;27(3):334–42.CrossRefPubMed
27.
Zurück zum Zitat Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci. 1986;17:57–86. Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci. 1986;17:57–86.
28.
Zurück zum Zitat Stamatakis A. Phylogenetic models of rate heterogeneity: a high performance computing perspective. In: Parallel and distributed processing symposium, 2006 IPDPS 2006 20th international. 2006. Stamatakis A. Phylogenetic models of rate heterogeneity: a high performance computing perspective. In: Parallel and distributed processing symposium, 2006 IPDPS 2006 20th international. 2006.
29.
Zurück zum Zitat Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26(7):1641–50.CrossRefPubMedPubMedCentral Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26(7):1641–50.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–4.CrossRefPubMedPubMedCentral Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–4.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 2005;33(Database issue):D325–8.PubMed Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 2005;33(Database issue):D325–8.PubMed
33.
34.
Zurück zum Zitat Rayamajhi N, Kang SG, Lee DY, Kang ML, Lee SI, Park KY, Lee HS, Yoo HS. Characterization of TEM-, SHV- and AmpC-type beta-lactamases from cephalosporin-resistant Enterobacteriaceae isolated from swine. Int J Food Microbiol. 2008;124(2):183–7.CrossRefPubMed Rayamajhi N, Kang SG, Lee DY, Kang ML, Lee SI, Park KY, Lee HS, Yoo HS. Characterization of TEM-, SHV- and AmpC-type beta-lactamases from cephalosporin-resistant Enterobacteriaceae isolated from swine. Int J Food Microbiol. 2008;124(2):183–7.CrossRefPubMed
35.
Zurück zum Zitat Brovedan M, Marchiaro PM, Moran-Barrio J, Cameranesi M, Cera G, Rinaudo M, Viale AM, Limansky AS. Complete sequence of a bla(NDM-1)-harboring plasmid in an Acinetobacter bereziniae clinical strain isolated in Argentina. Antimicrob Agents Chemother. 2015;59(10):6667–9.CrossRefPubMedPubMedCentral Brovedan M, Marchiaro PM, Moran-Barrio J, Cameranesi M, Cera G, Rinaudo M, Viale AM, Limansky AS. Complete sequence of a bla(NDM-1)-harboring plasmid in an Acinetobacter bereziniae clinical strain isolated in Argentina. Antimicrob Agents Chemother. 2015;59(10):6667–9.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Kim SY, Rhee JY, Shin SY, Ko KS. Characteristics of community-onset NDM-1-producing Klebsiella pneumoniae isolates. J Med Microbiol. 2014;63(Pt 1):86–9.CrossRefPubMed Kim SY, Rhee JY, Shin SY, Ko KS. Characteristics of community-onset NDM-1-producing Klebsiella pneumoniae isolates. J Med Microbiol. 2014;63(Pt 1):86–9.CrossRefPubMed
37.
Zurück zum Zitat Campos JC, da Silva MJ, dos Santos PR, Barros EM, Pereira Mde O, Seco BM, Magagnin CM, Leiroz LK, de Oliveira TG, de Faria-Junior C, et al. Characterization of Tn3000, a transposon responsible for blaNDM-1 dissemination among Enterobacteriaceae in Brazil, Nepal, Morocco, and India. Antimicrob Agents Chemother. 2015;59(12):7387–95.CrossRefPubMedPubMedCentral Campos JC, da Silva MJ, dos Santos PR, Barros EM, Pereira Mde O, Seco BM, Magagnin CM, Leiroz LK, de Oliveira TG, de Faria-Junior C, et al. Characterization of Tn3000, a transposon responsible for blaNDM-1 dissemination among Enterobacteriaceae in Brazil, Nepal, Morocco, and India. Antimicrob Agents Chemother. 2015;59(12):7387–95.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Kim MN, Yong D, An D, Chung HS, Woo JH, Lee K, Chong Y. Nosocomial clustering of NDM-1-producing Klebsiella pneumoniae sequence type 340 strains in four patients at a South Korean tertiary care hospital. J Clin Microbiol. 2012;50(4):1433–6.CrossRefPubMedPubMedCentral Kim MN, Yong D, An D, Chung HS, Woo JH, Lee K, Chong Y. Nosocomial clustering of NDM-1-producing Klebsiella pneumoniae sequence type 340 strains in four patients at a South Korean tertiary care hospital. J Clin Microbiol. 2012;50(4):1433–6.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Yu VL, Hansen DS, Ko WC, Sagnimeni A, Klugman KP, von Gottberg A, Goossens H, Wagener MM, Benedi VJ, International Klebseilla Study AG. Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections. Emerg Infect Dis. 2007;13(7):986–93.CrossRefPubMedPubMedCentral Yu VL, Hansen DS, Ko WC, Sagnimeni A, Klugman KP, von Gottberg A, Goossens H, Wagener MM, Benedi VJ, International Klebseilla Study AG. Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections. Emerg Infect Dis. 2007;13(7):986–93.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zahringer U, Seydel U, Di Padova F, et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994;8(2):217–25.PubMed Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zahringer U, Seydel U, Di Padova F, et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994;8(2):217–25.PubMed
41.
Zurück zum Zitat Shu HY, Fung CP, Liu YM, Wu KM, Chen YT, Li LH, Liu TT, Kirby R, Tsai SF. Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates. Microbiology. 2009;155(Pt 12):4170–83.CrossRefPubMed Shu HY, Fung CP, Liu YM, Wu KM, Chen YT, Li LH, Liu TT, Kirby R, Tsai SF. Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates. Microbiology. 2009;155(Pt 12):4170–83.CrossRefPubMed
42.
Zurück zum Zitat Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MT, Prentice MB, Sebaihia M, James KD, Churcher C, Mungall KL, et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature. 2001;413(6855):523–7.CrossRefPubMed Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MT, Prentice MB, Sebaihia M, James KD, Churcher C, Mungall KL, et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature. 2001;413(6855):523–7.CrossRefPubMed
43.
Zurück zum Zitat Jacobi CA, Gregor S, Rakin A, Heesemann J. Expression analysis of the yersiniabactin receptor gene fyuA and the heme receptor hemR of Yersinia enterocolitica in vitro and in vivo using the reporter genes for green fluorescent protein and luciferase. Infect Immun. 2001;69(12):7772–82.CrossRefPubMedPubMedCentral Jacobi CA, Gregor S, Rakin A, Heesemann J. Expression analysis of the yersiniabactin receptor gene fyuA and the heme receptor hemR of Yersinia enterocolitica in vitro and in vivo using the reporter genes for green fluorescent protein and luciferase. Infect Immun. 2001;69(12):7772–82.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Colomer-Lluch M, Imamovic L, Jofre J, Muniesa M. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry. Antimicrob Agents Chemother. 2011;55(10):4908–11.CrossRefPubMedPubMedCentral Colomer-Lluch M, Imamovic L, Jofre J, Muniesa M. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry. Antimicrob Agents Chemother. 2011;55(10):4908–11.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat O’Brien AD, Newland JW, Miller SF, Holmes RK, Smith HW, Formal SB. Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science. 1984;226(4675):694–6.CrossRefPubMed O’Brien AD, Newland JW, Miller SF, Holmes RK, Smith HW, Formal SB. Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science. 1984;226(4675):694–6.CrossRefPubMed
47.
Zurück zum Zitat Kutateladze M, Adamia R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 2010;28(12):591–5.CrossRefPubMed Kutateladze M, Adamia R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 2010;28(12):591–5.CrossRefPubMed
48.
Zurück zum Zitat Hsu CR, Lin TL, Pan YJ, Hsieh PF, Wang JT. Isolation of a bacteriophage specific for a new capsular type of Klebsiella pneumoniae and characterization of its polysaccharide depolymerase. PLoS One. 2013;8(8):e70092.CrossRefPubMedPubMedCentral Hsu CR, Lin TL, Pan YJ, Hsieh PF, Wang JT. Isolation of a bacteriophage specific for a new capsular type of Klebsiella pneumoniae and characterization of its polysaccharide depolymerase. PLoS One. 2013;8(8):e70092.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Kwon T, Cho SH. Draft genome sequence of Enterohemorrhagic Escherichia coli O157 NCCP15739, isolated in the Republic of Korea. Genome Announc. 2015; 3(3):e00522–15.CrossRefPubMedPubMedCentral Kwon T, Cho SH. Draft genome sequence of Enterohemorrhagic Escherichia coli O157 NCCP15739, isolated in the Republic of Korea. Genome Announc. 2015; 3(3):e00522–15.CrossRefPubMedPubMedCentral
Metadaten
Titel
Comparative genomic analysis of Klebsiella pneumoniae subsp. pneumoniae KP617 and PittNDM01, NUHL24835, and ATCC BAA-2146 reveals unique evolutionary history of this strain
verfasst von
Taesoo Kwon
Young-Hee Jung
Sanghyun Lee
Mi-ran Yun
Won Kim
Dae-Won Kim
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Gut Pathogens / Ausgabe 1/2016
Elektronische ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-016-0117-1

Weitere Artikel der Ausgabe 1/2016

Gut Pathogens 1/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.