Skip to main content
Erschienen in: neurogenetics 1/2013

Open Access 01.02.2013 | Short Communication

Comprehensive cytogenomic profile of the in vitro neuronal model SH-SY5Y

verfasst von: Mohammed Yusuf, Kay Leung, Keith J. Morris, Emanuela V. Volpi

Erschienen in: Neurogenetics | Ausgabe 1/2013

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

The widely studied SH-SY5Y human neuroblastoma cell line provides a classic example of how a cancer cell line can be instrumental for discoveries of broad biological and clinical significance. An important feature of the SH-SY5Y cells is their ability to differentiate into a functionally mature neuronal phenotype. This property has conferred them the potential to be used as an in vitro model for studies of neurodegenerative and neurodevelopmental disorders. Here, we present a comprehensive assessment of the SH-SY5Y cytogenomic profile. Our results advocate for molecular cytogenetic data to inform the use of cancer cell lines in research.

Introduction

Cancer cell lines are extensively used as models to investigate the genetics and behaviour of specific tumours. More generally, they are an important resource for basic research on diverse aspects of cellular biology, differentiation and pathology. The widely studied SH-SY5Y human neuroblastoma cell line provides a classic example of how a cancer cell line can be instrumental for discoveries of broad biological and medical significance.
Neuroblastoma is a paediatric malignancy of neuroectodermal origin, characterised by genetic heterogeneity and variable clinical progression. The SH-SY5Y cell line is a third successive sub-clone of the SK-N-SH line, originally established from a bone marrow biopsy of a metastatic neuroblastoma patient [1]. The SK-N-SH parental line comprises at least two morphologically and biochemically distinct phenotypes: neuroblastic (N-type), that led to the sub-cloning of SH-SY5Y (neuroblast-like), and substrate adherent, non-neuronal form (S-type), that led to the sub-cloning of SH-EP (epithelial-like). Different theories have been postulated with regard to the possible biological phenomenon behind the co-existence of those two different cellular phenotypes. Trans-differentiation or the ability of neuroblastoma cells to interconvert bi-directionally, in vitro, from a neuroblast (N) to a non-neuronal (S) form was the initial explanation [2]. Later, “clonal expansion”, or the ability of one of the clones co-existing in the parental cell line to expand over the other, was advanced as an alternative explanation [3].
Unquestionably, the most important characteristic of the SH-SY5Y cells is their ability to differentiate into a functionally mature neuronal phenotype in the presence of various agents, for example sequential exposure to retinoic acid and brain-derived neurotrophic factor in serum-free medium [4], and when cultured three-dimensionally [5]. Upon differentiation, they stop proliferating and a constant cell number is subsequently maintained.
This property has conferred the SH-SY5Y cell line with the potential to provide an alternative to the experimental limitations caused by the inability of primary neurons to propagate in vitro. Consequently, the SH-SY5Y cell line has been extensively used as a neuronal model since the early 1980s in experimental neurological studies, including analysis of neuronal function, growth and damage in response to insult, degeneration and differentiation.
Differentiated and undifferentiated SH-SY5Y cells have become a popular in vitro cell model for Parkinson disease as they possess many characteristics of dopaminergic neurons [69]. Because upon differentiation the SH-SY5Y cells have been found to express mature tau isoforms, this cell line has also gained a status as an in vitro model for research into Alzheimer’s disease [10]. The repertoire of biological research that relies on the use of the SH-SY5Y cells has been rapidly expanding and has recently included investigations on autism-spectrum neurodevelopmental disorders [11, 12], studies of mitochondrial metabolism and antioxidant defences upon neuronal differentiation [13] and research of productive varicella-zoster virus infection of neuronal cells [14].
Neuroblastoma, like most human cancers, is characterised by non-random chromosomal abnormalities, to include large-scale chromosomal imbalances, with diagnostic and prognostic significance [1519]. The first cytogenetic analysis of the SH-SY5Y cell line was performed by Spengler and collaborators in 1983 [2] and a revised G-banded karyotype subsequently published by the same authors in 2002 [20]. Those first classical cytogenetic studies succeeded in describing with certain accuracy some, but obviously not all, of the chromosomal abnormalities that were subsequently to be identified in the SH-SY5Y cell line by means of higher-resolution molecular cytogenetic techniques. In 2001, Van Roy and collaborators published a detailed description of genetic alterations in 16 neuroblastoma cell lines, to include the SH-SY5Y parental cell line SK-N-SH [21]. In 2003, by applying fluorescence in situ hybridization (FISH) with gene- and chromosome-specific probes, to include a SKY multi-colour labelling kit for spectral karyotyping, Cohen and collaborators [3] published a comparative cytogenetic analysis of the parental SK-N-SH cell line and SH-EP and SH-SY5Y, highlighting karyotypic similarities and differences between the three lines. Further molecular cytogenetic insights specifically into the karyotype of the SH-SY5Y cell line were gained by Do and collaborators [22] by means of comparative genomic hybridization on a custom-designed 4000 bacterial artificial chromosomes microarray, covering the whole human genome. That study allowed the identification of unbalanced chromosomal changes—gains and losses—at a resolution of 1 Mb. More recently, Kryh and collaborators [23] published the first high-density single-nucleotide polymorphism (SNP) array study on the SH-SY5Y, revealing the presence of previously undetected allelic imbalances and copy-neutral loss of heterozygosity (LOH).
In the present study, by means of a comprehensive molecular cytogenetic approach, including single-probe FISH, multi-colour karyotyping by M-FISH and MCM-banding, and microarray analysis for copy number variants (CNV) and LOH, we carried out a detailed re-assessment of the chromosomal complement and genomic profile of the SH-SY5Y. Given the common use of this neuroblastoma cell line as an in vitro model for studies of neurodegenerative and neurodevelopmental disorders, our aims were to resolve previous inconsistencies and provide the definitive SH-SY5Y karyotype description.

Materials and methods

The SH-SY5Y cell line was purchased from the European Collection of Cell Cultures, a Health Protection Agency Culture Collection. Chromosome preparations were obtained from unsynchronised cultures of early passage cells upon receipt from the repository following standard procedures.
Karyotyping by multiplex fluorescence in situ hybridization (M-FISH) was performed as recommended by the 24XCyte mFISH probe kit manufacturer (MetaSystems, Germany, http://​www.​metasystems-international.​com). Directly labelled chromosome-specific probes used for validation FISH experiments were: Aquarius® Whole Chromosome Painting Probes for chromosome 17 (FITC) and chromosome 15 (Texas Red) (Cytocell), Poseidon™ Whole Chromosome 22 Probe (blue, Platinum Bright 415) (Kreatech), classical 1qh satellite (FITC) and classical D9Z3 satellite (Rhodamine) (Qbiogene). FISH and M-FISH experiments were analysed on a CytoVysion system (Genetix, UK, http://​www.​genetix.​com), consisting of an Olympus BX-51 epifluorescence microscope coupled to a JAI CVM4+ CCD camera.
Multi-colour mBand FISH imaging (MCM-banding) and analysis were performed as recommended by the XCyte1 mBand probe kit manufacturer (MetaSystems, Germany, http://​www.​metasystems-international.​com), utilizing a Carl Zeiss AxioImager.Z2 epifluorescence microscope coupled to a MetaSystems CoolCube camera and MetaSystems ISIS software.
Analysis of copy number (CN) changes and LOH was performed on Affymetrix Cytogenetics Whole-Genome 2.7 M Arrays. Genomic DNA from the SH-SY5Y cell line was extracted from unsynchronysed cultures of early passage number cells upon receipt from the repository (and in parallel with chromosome preparations) using a Qiagen Blood & Cell Culture DNA kit. After ethanol precipitation, the DNA was resuspended in TE buffer (10 mM Tris, pH 8.0, 1 mM EDTA) at a final concentration of 33 ng/μL. Whole genome amplification, fragmentation and labelling were performed following the array manufacturer instructions. Briefly, after incubation at 50 °C in a GeneChip Hybridization oven with rotation at 60 rpm for 19 h, the arrays were stained in the Gene Chip Fluidic Station 450 and scanned with Affymetrix Gene Chip Scanner 3000. For data analysis, the CEL files were imported into Chromosome Analysis Suite software v.1.2.2. Array quality was evaluated as per manufacturer’s instructions and only arrays with SNP-QC > 1.1 and MAPD < 0.27 were accepted for further data analysis. The analysis was based on the assembly hg19 of the human genome. Parameters were set at minimum filter values of 60Kb, 35 marker count and 0.85 confidence for both gains and losses, and minimum filter values of 100 Kb and 35 marker count for mosaicism. All copy number changes observed were compared to CNVs catalogued in the Database of Genomic Variants (DGV) (http://​projects.​tcag.​ca/​variation/​) and the UCSC genome browser (http://​genome.​ucsc.​edu/​).

Results and discussion

We have applied an all-inclusive cytogenomic approach to re-evaluate the karyotypic profile of the SH-SY5Y, a neuroblastoma cell line widely used as an in vitro neuronal model. By combining FISH-based techniques, which retain information on a per cell basis, with high-resolution microarray-based techniques, we were able to report thus far unnoticed karyotypic features of the SH-SY5Y cell line. Our findings are summarised in Table 1 together with findings from previous investigations.
Table 1
SH-SY5Y: Summary of karyotypic findings
Authors, techniques
Chromosome 1
Chromosome 2
Chromosomes 4 and 5
Chromosome 7
Chromosomes 9 and 10
Chromosome 14
Chromosome 16
Chromosomes 15, 17 and 22
Spengler et al. [20], G-banding
der(1)(1pter → 1q25::1q25 → 1q11::1q44 → 1q25::1q25 → 1qter)
  
+ 7
der(9)(9pter → 9q34::7q22 → 7qter)
  
der(22)(22pter → 22q13::17q21 → 17qter)
Cohen et al. [3], G-banding and SKY
dup(1)(q12q25)
  
+7 t(7;8)(q34;q24.2)
der(9)t(2;9)(p15;q34)
  
der(22)t(17;22)(q21.3;q13)
Do et al. [22], Array-CGH ((4000) BAC clones)
1q12-1q44 Gain
2p25.3-2p16.3 Gain
 
+7
 
14q21.1-14q21.3 Loss
 
17q21.32-17q25.3 Gain; 22q13.1-22q13.2 Loss
Kryh et al. [23], SNP-Array
1q12-1q44 Gain
2pter-2p16.3 Gain
5q34.1 Loss
+7
9p21.2-9p21.1 Gain
14q CN-LOH 14q Loss
16q22.2-16q22.3 Loss
17q Gain 22q CN-LOH
This studya, SNP-Array, MC-banding, FISH and M-FISH
1q12-1q44 der(1) (1q12→1q31::1q31 → 1q12::1q44 → 1q31::1q31 → 1q44)
2p25.3-2p16.3 Gain/Mosaic
4q28.3 Loss 5q34 Loss 5q14.3 Loss
+7 t(7;8)(q34;q24.2)
9p21.2-9p21.1 Gain; der(9)t(2;9)(p15;q34)/Mosaic; 10q26.13 Gain
14q13.3-14q21.3 Loss; 14q21.3-14q32.33 CN-LOH
16q22.2-16q22.3 Loss
17q21.33-17q25.3 Gain; 22q12.3 Loss ; 22q13.1-22q13.2 Loss; der(15)t(15;17;22); der (22)t(15;22)
CGH comparative genomic hybridization, BAC bacterial artificial chromosome
aAdditional information on CN data in Table 2
M-FISH analysis confirmed the presence of a set of previously reported chromosomal abnormalities that in combination define the cytogenetic identity of the SH-SY5Y cell line (Fig. 1), consisting of chromosome 7 trisomy, a duplication of the entire q arm of chromosome 1, a balanced translocation involving chromosomes 7 and 8, a derivative 9 t(2;9), and a derivative 22 believed to be the result a of a t(17;22). Another distinctive karyotypic trait of the SH-SY5Y is the lack of amplification of the N-myc proto-oncogene.
In our study, the derivative chromosome 9, resulting from a translocation of extra chromosome 2p material to chromosome 9, appeared in only 50 % of metaphases analysed by M-FISH and dual-colour FISH analysis with chromosome-specific probes (data not shown). This observation ties with the mosaic status of the detected imbalance (gain) on the short arm of chromosome 2 (2p25.3-2p16.3), as shown by our CNV microarray data (Table 2). A high incidence of unbalanced “jumping” translocations involving a gain of chromosome 2 short arm material with a minimum region of overlap 2pter-2p22 and various partner chromosomes had been previously observed in a panel of 18 neuroblastoma cell lines, including the parental SK-N-SH [21, 24]. Recent SNP array studies had indicated the gain on chromosome 2p to be an aberration shared by the SK-N-SH parental line and its neuroblast-like sub-clone SH-SY5Y, but not its epithelial sub-clone SH-EP [23]. Given that the three cell lines were found in general to be very similar, sharing many of the chromosome aberrations, it could be argued that most of the chromosomal alterations seen in the daughter cell lines were present in a mosaic form in the parental cell line (and perhaps also in the original tumour), and that the karyotypes of the daughter cell lines are the result of the combined effect of the initial sub-cloning and subsequent cell line evolution over time.
Table 2
SH-SY5Y: gains and losses identified in this study by microarray analysis
Chromosome
Type
CN state
Min
Max
Size (kbp)
Cytoband
Genes
Other
1
Gain
3
145,388.014
247,906.738
102,519
1q21.1-1q44
Large number
1q Trisomy
2
Gain
3
234.052
48,165.786
47,932
2p25.3-2p16.3
Large number
Mosaic
4
Loss
1
134,926.438
135,186.391
260
4q28.3
PABPC4L
DGV
5
Loss
1
168,029.695
168,226.333
197
5q34
SLIT3, MIR218-2
DGV/segm.dupl.
5
Loss
1
83,782.541
83,907.654
125
5q14.3
None
DGV/segm.dupl.
7
Gain
3
46.845
159,118.443
159,071
7p22.3-7q36.3
Large number
7 Trisomy
9
Gain
3
26,628.228
28,223.980
1,595
9p21.2-9p21.1
C9orf82, PLAA, IFT74, LRRC19, TEK, NCRNA00032, C9orf11, MOBKL2B, IFNK, C9orf72, LINGO2
DGV/segm.dupl.
10
Gain
3
123,334.116
123,541.044
207
10q26.13
FGFR2, ATE1
DGV
14
Loss
1
37,139.362
49,563.020
12,424
14q13.3-14q21.3
Large number
DGV/segm.dupl.
14
Copy-neutral LOH
2
48,216.230
107,242.027
59,026
14q21.3-14q32.33
Large number
14q CN-LOH
16
Loss
1
72,558.134
73,017.684
460
16q22.2-16q22.3
ZFHX3
DGV/segm.dupl
17
Gain
3
43,825.911
81,004.770
37,179
17q21.33-17q25.3
Large number
DGV/segm.dupl.
22
Loss
1
32,411.007
32,472.930
62
22q12.3
SLC5A1
no
22
Loss
1
38,337.611
44,222.693
5,885
22q13.1-22q13.31
Large number
DGV/segm.dupl
An intriguing finding emerging from our investigations was the nature of the rearrangement(s) involving chromosome 17 and 22, which were revealed to be more complex than previously reported. Structural abnormalities of chromosome 17 resulting in gain of material are the most frequent genetic abnormalities in neuroblastoma and powerful independent predictor of poor outcome, commonly found in primary tumours and cell lines. Our SNP array analysis showed in the SH-SY5Y cell line a gain on chromosome 17q (17q21.33-17q25.3) and two distinct losses on chromosome 22q (22q12.3 and 22q13.1-22q13.31). Differently from what reported previously, our M-FISH and validation FISH experiments with chromosome-specific probes revealed the derivative 22 to be the result of a translocation involving not chromosome 17, as initially thought, but chromosome 15. We also identified a der(15)t(15; 17; 22) (Figs. 1 and 2).
The Affymetrix Cytogenetics Whole-Genome 2.7 M Array used in this study provides high-density coverage across the genome, with 2.7 million markers, including 400,000 SNPs, spaced throughout at a median inter-marker distance of ∼1 kb. Indeed, multiple areas of LOH and copy number gain were identified in this analysis of the SH-SY5Y cell line (Table 2). Although most of the gains and losses overlap with polymorphic CNVs documented in the DGV, it is nevertheless interesting that the list of genes concerned by the imbalances includes a number of transcription factors involved with cancer and neuronal differentiation, like ZFHX3 on chromosome 16q, SLIT 3 on chromosome 5q and FGFR2 on chromosome 10q. Loci of neuro-biological interest, also mapping on structurally re-arranged chromosomal regions in the SH-SH5Y cell line, are the Parkinson’s-associated LINGO2 gene on chromosome 9p, the MAPT gene (encoding TAU) on chromosome 17q, PSEN1 gene on 14q, and the 15q11-13 chromosomal region.
Almost all of the regions of LOH resulted from copy number loss. However, we also observed extensive copy-neutral LOH on chromosome 14q (14q21.3-14q32.33). LOH on the long arm of chromosome 14—with a consensus region in 14q23-q32—has been consistently observed in primary neuroblastomas, suggesting the deletion of this region to be a common abnormality in these tumours [25]. UPD or LOH with neutral copy number of chromosome arm 14q was also reported in primary neuroblastoma tumours and derivative early-passage cell lines [26].
Our investigations by high-resolution multi-colour chromosome banding on the long arm of chromosome 1 suggest a complex rearrangement arising from a duplication of the entire chromosome arm—as confirmed by our SNP-array analysis—followed by a paracentric inversion, resulting in a der(1)(1q12 → 1q31::1q31 → 1q12::1q44 → 1q31::1q31 → 1q44) (Fig. 3). Duplication of the juxtacentromeric heterochromatic area was confirmed by FISH analysis with a D1Z1 probe for the classical satellite DNA (data not shown).
In the light of what previously published and confirmed by us, and what newly identified by us, we would like to suggest an updated karyotypic description for the SH-SY5Y cell line to imply the existence of two cytogenetically related subclones (stemline and sideline), as follows: 47,XX, der(1)(1q12 → 1q31::1q31 → 1q12::1q44 → 1q31::1q31 → 1q44), +7, der(7)t(7 ;8)(q34 ;q24.2), der(8)t(7 ;8)(q34 ;q24.2), der(15)t(15;17;22), der(22)t(15;22)[54]/47, idem, der(9)t(2;9)[46]. The number of cells for each sub-clone in our sample is given in square brackets. Additional CN variation array data are summarised in Table 2. M-FISH observations on SH-SY5Y cells at a higher passage number (data not shown) would suggest the sideline karyotype to become prevalent, with most of the metaphases analysed presenting the der(9)t(2;9) as well as new chromosomal aberrations resulting from the extended culture.
Given the importance acquired by the SH-SY5Y cell line as a neuronal in vitro model, a thorough understanding of its genetic background is of paramount importance. We believe that information on the SH-SY5 cytogenomic profile should be factored in when designing experimental studies based on these cells. In particular, the interpretation of the results should be passage number- and karyotype-informed, especially with regard to gene expression data and genome architecture of genetic loci linked to cancer or neurological diseases which coincidentally map to chromosomal regions that are highly re-arranged in this cell line. For instance, biomedical research relying on the use of the SH-SY5Y cells for highly topical diseases like Parkinson and Alzheimer’s and autism-spectrum developmental disorders, should take into account possible dosage effects or position effects on loci like the Parkinson’s-associated LINGO2 gene on chromosome 9p, the MAPT gene (encoding TAU) on chromosome 17q, PSEN1 gene on 14q, and the 15q11-13 chromosomal region.
Our results demonstrate the impact of an integrated molecular cytogenetic approach on the ability to resolve complex karyotypes and underline the importance for the cytogenomic profiling of cancer cell lines to inform their use in research.

Acknowledgments

The authors would like to thank Tom Quick of Carl Zeiss Ltd for help with the imaging and analysis of the mBand experiments and Geoff Scopes at Affymetrix UK Limited for continued support and expert advice on microarray analysis. The Authors would also like to thank Dr. Marta Jeison (Pediatric Hematology Oncology Department, Schneider Children’s Medical Center of Israel) for critical reading of the manuscript. Kay Leung is indebted to Dr. John Runions, her former supervisor at Brookes University, for all his support during completion of her MSc project. This work was supported by The Wellcome Trust [Wellcome Trust Core Award Grant Number 090532/Z/09/Z].

Conflicts of interest

The authors declare that they have no conflict of interest.
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Biedler JL, Spengler BA (1976) A novel chromosome abnormality in human neuroblastoma and antifolate-resistant Chinese hamster cell lives in culture. J Natl Cancer Inst 57(3):683–695PubMed Biedler JL, Spengler BA (1976) A novel chromosome abnormality in human neuroblastoma and antifolate-resistant Chinese hamster cell lives in culture. J Natl Cancer Inst 57(3):683–695PubMed
2.
Zurück zum Zitat Ross RA, Spengler BA, Biedler JL (1983) Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 71(4):741–747PubMed Ross RA, Spengler BA, Biedler JL (1983) Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 71(4):741–747PubMed
3.
Zurück zum Zitat Cohen N et al (2003) Clonal expansion and not cell interconversion is the basis for the neuroblast and nonneuronal types of the SK-N-SH neuroblastoma cell line. Cancer Genet Cytogenet 143(1):80–84PubMedCrossRef Cohen N et al (2003) Clonal expansion and not cell interconversion is the basis for the neuroblast and nonneuronal types of the SK-N-SH neuroblastoma cell line. Cancer Genet Cytogenet 143(1):80–84PubMedCrossRef
4.
Zurück zum Zitat Encinas M et al (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75(3):991–1003PubMedCrossRef Encinas M et al (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75(3):991–1003PubMedCrossRef
5.
Zurück zum Zitat Myers TA et al (2008) Closing the phenotypic gap between transformed neuronal cell lines in culture and untransformed neurons. J Neurosci Methods 174(1):31–41PubMedCrossRef Myers TA et al (2008) Closing the phenotypic gap between transformed neuronal cell lines in culture and untransformed neurons. J Neurosci Methods 174(1):31–41PubMedCrossRef
6.
Zurück zum Zitat Constantinescu R et al (2007) Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. J Neural Transm Suppl 72:17–28PubMedCrossRef Constantinescu R et al (2007) Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. J Neural Transm Suppl 72:17–28PubMedCrossRef
7.
Zurück zum Zitat Habig K et al (2008) RNA interference of LRRK2-microarray expression analysis of a Parkinson’s disease key player. Neurogenetics 9(2):83–94PubMedCrossRef Habig K et al (2008) RNA interference of LRRK2-microarray expression analysis of a Parkinson’s disease key player. Neurogenetics 9(2):83–94PubMedCrossRef
8.
Zurück zum Zitat Klinkenberg M et al (2012) Restriction of trophic factors and nutrients induces PARKIN expression. Neurogenetics 13:9–21PubMedCrossRef Klinkenberg M et al (2012) Restriction of trophic factors and nutrients induces PARKIN expression. Neurogenetics 13:9–21PubMedCrossRef
9.
Zurück zum Zitat Xie HR, Hu LS, Li GY (2010) SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J (Engl) 123(8):1086–1092 Xie HR, Hu LS, Li GY (2010) SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J (Engl) 123(8):1086–1092
10.
Zurück zum Zitat Agholme L et al (2010) An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis 20(4):1069–1082PubMed Agholme L et al (2010) An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis 20(4):1069–1082PubMed
11.
Zurück zum Zitat Schroeder DI et al (2011) Large-scale methylation domains mark a functional subset of neuronally expressed genes. Genome Res 21(10):1583–1591PubMedCrossRef Schroeder DI et al (2011) Large-scale methylation domains mark a functional subset of neuronally expressed genes. Genome Res 21(10):1583–1591PubMedCrossRef
12.
Zurück zum Zitat Yasui DH et al (2011) 15q11.2-13.3 chromatin analysis reveals epigenetic regulation of CHRNA7 with deficiencies in Rett and autism brain. Hum Mol Genet 20(22):4311–4323PubMedCrossRef Yasui DH et al (2011) 15q11.2-13.3 chromatin analysis reveals epigenetic regulation of CHRNA7 with deficiencies in Rett and autism brain. Hum Mol Genet 20(22):4311–4323PubMedCrossRef
13.
Zurück zum Zitat Schneider L et al (2011) Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic Biol Med 51(11):2007–2017PubMedCrossRef Schneider L et al (2011) Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic Biol Med 51(11):2007–2017PubMedCrossRef
14.
Zurück zum Zitat Christensen J et al (2011) Differentiated neuroblastoma cells provide a highly efficient model for studies of productive varicella-zoster virus infection of neuronal cells. J Virol 85(16):8436–8442PubMedCrossRef Christensen J et al (2011) Differentiated neuroblastoma cells provide a highly efficient model for studies of productive varicella-zoster virus infection of neuronal cells. J Virol 85(16):8436–8442PubMedCrossRef
15.
Zurück zum Zitat Ambros PF et al (2009) International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer 100(9):1471–1482PubMedCrossRef Ambros PF et al (2009) International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer 100(9):1471–1482PubMedCrossRef
16.
Zurück zum Zitat George RE et al (2007) Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS One 2(2):e255PubMedCrossRef George RE et al (2007) Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS One 2(2):e255PubMedCrossRef
17.
Zurück zum Zitat Schleiermacher G et al (2010) Accumulation of segmental alterations determines progression in neuroblastoma. J Clin Oncol 28(19):3122–3130PubMedCrossRef Schleiermacher G et al (2010) Accumulation of segmental alterations determines progression in neuroblastoma. J Clin Oncol 28(19):3122–3130PubMedCrossRef
18.
Zurück zum Zitat Schleiermacher G et al (2011) Segmental chromosomal alterations lead to a higher risk of relapse in infants with MYCN-non-amplified localised unresectable/disseminated neuroblastoma (a SIOPEN collaborative study). Br J Cancer 105(12):1940–1948PubMedCrossRef Schleiermacher G et al (2011) Segmental chromosomal alterations lead to a higher risk of relapse in infants with MYCN-non-amplified localised unresectable/disseminated neuroblastoma (a SIOPEN collaborative study). Br J Cancer 105(12):1940–1948PubMedCrossRef
19.
Zurück zum Zitat Stallings RL (2007) Origin and functional significance of large-scale chromosomal imbalances in neuroblastoma. Cytogenet Genome Res 118(2–4):110–115PubMedCrossRef Stallings RL (2007) Origin and functional significance of large-scale chromosomal imbalances in neuroblastoma. Cytogenet Genome Res 118(2–4):110–115PubMedCrossRef
20.
Zurück zum Zitat Spengler BA, Biedler JL, Ross RA (2002) A corrected karyotype for the SH-SY5Y human neuroblastoma cell line. Cancer Genet Cytogenet 138(2):177–178PubMedCrossRef Spengler BA, Biedler JL, Ross RA (2002) A corrected karyotype for the SH-SY5Y human neuroblastoma cell line. Cancer Genet Cytogenet 138(2):177–178PubMedCrossRef
21.
Zurück zum Zitat Van Roy N et al (2001) Combined M-FISH and CGH analysis allows comprehensive description of genetic alterations in neuroblastoma cell lines. Genes Chromosomes Cancer 32(2):126–135PubMedCrossRef Van Roy N et al (2001) Combined M-FISH and CGH analysis allows comprehensive description of genetic alterations in neuroblastoma cell lines. Genes Chromosomes Cancer 32(2):126–135PubMedCrossRef
22.
Zurück zum Zitat Do JH et al (2007) Genome-wide examination of chromosomal aberrations in neuroblastoma SH-SY5Y cells by array-based comparative genomic hybridization. Mol Cells 24(1):105–112PubMed Do JH et al (2007) Genome-wide examination of chromosomal aberrations in neuroblastoma SH-SY5Y cells by array-based comparative genomic hybridization. Mol Cells 24(1):105–112PubMed
23.
Zurück zum Zitat Kryh H et al (2011) Comprehensive SNP array study of frequently used neuroblastoma cell lines; copy neutral loss of heterozygosity is common in the cell lines but uncommon in primary tumors. BMC Genomics 12:443PubMedCrossRef Kryh H et al (2011) Comprehensive SNP array study of frequently used neuroblastoma cell lines; copy neutral loss of heterozygosity is common in the cell lines but uncommon in primary tumors. BMC Genomics 12:443PubMedCrossRef
24.
Zurück zum Zitat Van Roy N et al (2000) Chromosome 2 short arm translocations revealed by M-FISH analysis of neuroblastoma cell lines. Med Pediatr Oncol 35(6):538–540PubMedCrossRef Van Roy N et al (2000) Chromosome 2 short arm translocations revealed by M-FISH analysis of neuroblastoma cell lines. Med Pediatr Oncol 35(6):538–540PubMedCrossRef
25.
Zurück zum Zitat Thompson PM et al (2001) Loss of heterozygosity for chromosome 14q in neuroblastoma. Med Pediatr Oncol 36(1):28–31PubMedCrossRef Thompson PM et al (2001) Loss of heterozygosity for chromosome 14q in neuroblastoma. Med Pediatr Oncol 36(1):28–31PubMedCrossRef
26.
Zurück zum Zitat Volchenboum SL et al (2009) Comparison of primary neuroblastoma tumors and derivative early-passage cell lines using genome-wide single nucleotide polymorphism array analysis. Cancer Res 69(10):4143–4149PubMedCrossRef Volchenboum SL et al (2009) Comparison of primary neuroblastoma tumors and derivative early-passage cell lines using genome-wide single nucleotide polymorphism array analysis. Cancer Res 69(10):4143–4149PubMedCrossRef
Metadaten
Titel
Comprehensive cytogenomic profile of the in vitro neuronal model SH-SY5Y
verfasst von
Mohammed Yusuf
Kay Leung
Keith J. Morris
Emanuela V. Volpi
Publikationsdatum
01.02.2013
Verlag
Springer-Verlag
Erschienen in
Neurogenetics / Ausgabe 1/2013
Print ISSN: 1364-6745
Elektronische ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-012-0350-9

Weitere Artikel der Ausgabe 1/2013

neurogenetics 1/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.