Skip to main content
Erschienen in: Pediatric Nephrology 12/2012

01.12.2012 | Review

Congenital nephrogenic diabetes insipidus: the current state of affairs

verfasst von: Daniel Wesche, Peter M. T. Deen, Nine V. A. M. Knoers

Erschienen in: Pediatric Nephrology | Ausgabe 12/2012

Einloggen, um Zugang zu erhalten

Abstract

The anti-diuretic hormone arginine vasopressin (AVP) is released from the pituitary upon hypovolemia or hypernatremia, and regulates water reabsorption in the renal collecting duct principal cells. Binding of AVP to the arginine vasopressin receptor type 2 (AVPR2) in the basolateral membrane leads to translocation of aquaporin 2 (AQP2) water channels to the apical membrane of the collecting duct principal cells, inducing water permeability of the membrane. This results in water reabsorption from the pro-urine into the medullary interstitium following an osmotic gradient. Congenital nephrogenic diabetes insipidus (NDI) is a disorder associated with mutations in either the AVPR2 or AQP2 gene, causing the inability of patients to concentrate their pro-urine, which leads to a high risk of dehydration. This review focuses on the current knowledge regarding the cell biological aspects of congenital X-linked, autosomal-recessive and autosomal-dominant NDI while specifically addressing the latest developments in the field. Based on deepened mechanistic understanding, new therapeutic strategies are currently being explored, which we also discuss here.
Literatur
1.
Zurück zum Zitat van Lieburg AF, Knoers NV, Monnens LA (1999) Clinical presentation and follow-up of 30 patients with congenital nephrogenic diabetes insipidus. J Am Soc Nephrol 10:1958–1964PubMed van Lieburg AF, Knoers NV, Monnens LA (1999) Clinical presentation and follow-up of 30 patients with congenital nephrogenic diabetes insipidus. J Am Soc Nephrol 10:1958–1964PubMed
2.
Zurück zum Zitat Forssman H (1955) Is hereditary diabetes insipidus of nephrogenic type associated with mental deficiency? Acta Psychiatr Neurol Scand 30:577–587PubMedCrossRef Forssman H (1955) Is hereditary diabetes insipidus of nephrogenic type associated with mental deficiency? Acta Psychiatr Neurol Scand 30:577–587PubMedCrossRef
3.
Zurück zum Zitat Macaulay D, Watson M (1967) Hypernatraemia in infants as a cause of brain damage. Arch Dis Child 42:485–491PubMedCrossRef Macaulay D, Watson M (1967) Hypernatraemia in infants as a cause of brain damage. Arch Dis Child 42:485–491PubMedCrossRef
4.
Zurück zum Zitat Kanzaki S, Omura T, Miyake M, Enomoto S, Miyata I, Ishimitsu H (1985) Intracranial calcification in nephrogenic diabetes insipidus. JAMA 254:3349–3350PubMedCrossRef Kanzaki S, Omura T, Miyake M, Enomoto S, Miyata I, Ishimitsu H (1985) Intracranial calcification in nephrogenic diabetes insipidus. JAMA 254:3349–3350PubMedCrossRef
5.
Zurück zum Zitat Schofer O, Beetz R, Kruse K, Rascher C, Schutz C, Bohl J (1990) Nephrogenic diabetes insipidus and intracerebral calcification. Arch Dis Child 65:885–887PubMedCrossRef Schofer O, Beetz R, Kruse K, Rascher C, Schutz C, Bohl J (1990) Nephrogenic diabetes insipidus and intracerebral calcification. Arch Dis Child 65:885–887PubMedCrossRef
6.
Zurück zum Zitat Hoekstra JA, van Lieburg AF, Monnens LA, Hulstijn-Dirkmaat GM, Knoers VV (1996) Cognitive and psychosocial functioning of patients with congenital nephrogenic diabetes insipidus. Am J Med Genet 61:81–88PubMedCrossRef Hoekstra JA, van Lieburg AF, Monnens LA, Hulstijn-Dirkmaat GM, Knoers VV (1996) Cognitive and psychosocial functioning of patients with congenital nephrogenic diabetes insipidus. Am J Med Genet 61:81–88PubMedCrossRef
7.
Zurück zum Zitat Shalev H, Romanovsky I, Knoers NV, Lupa S, Landau D (2004) Bladder function impairment in aquaporin-2 defective nephrogenic diabetes insipidus. Nephrol Dial Transplant 19:608–613PubMedCrossRef Shalev H, Romanovsky I, Knoers NV, Lupa S, Landau D (2004) Bladder function impairment in aquaporin-2 defective nephrogenic diabetes insipidus. Nephrol Dial Transplant 19:608–613PubMedCrossRef
8.
Zurück zum Zitat Makaryus AN, McFarlane SI (2006) Diabetes insipidus: diagnosis and treatment of a complex disease. Cleve Clin J Med 73:65–71PubMedCrossRef Makaryus AN, McFarlane SI (2006) Diabetes insipidus: diagnosis and treatment of a complex disease. Cleve Clin J Med 73:65–71PubMedCrossRef
9.
Zurück zum Zitat Marples D, Christensen S, Christensen EI, Ottosen PD, Nielsen S (1995) Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest 95:1838–1845PubMedCrossRef Marples D, Christensen S, Christensen EI, Ottosen PD, Nielsen S (1995) Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest 95:1838–1845PubMedCrossRef
10.
Zurück zum Zitat Klein JD, Gunn RB, Roberts BR, Sands JM (2002) Down-regulation of urea transporters in the renal inner medulla of lithium-fed rats. Kidney Int 61:995–1002PubMedCrossRef Klein JD, Gunn RB, Roberts BR, Sands JM (2002) Down-regulation of urea transporters in the renal inner medulla of lithium-fed rats. Kidney Int 61:995–1002PubMedCrossRef
11.
Zurück zum Zitat Timmer RT, Sands JM (1999) Lithium intoxication. J Am Soc Nephrol 10:666–674PubMed Timmer RT, Sands JM (1999) Lithium intoxication. J Am Soc Nephrol 10:666–674PubMed
12.
Zurück zum Zitat Trepiccione F, Christensen BM (2010) Lithium-induced nephrogenic diabetes insipidus: new clinical and experimental findings. J Nephrol 23(Suppl 16):S43–S48PubMed Trepiccione F, Christensen BM (2010) Lithium-induced nephrogenic diabetes insipidus: new clinical and experimental findings. J Nephrol 23(Suppl 16):S43–S48PubMed
13.
Zurück zum Zitat Amlal H, Krane CM, Chen Q, Soleimani M (2000) Early polyuria and urinary concentrating defect in potassium deprivation. Am J Physiol Renal Physiol 279:F655–F663PubMed Amlal H, Krane CM, Chen Q, Soleimani M (2000) Early polyuria and urinary concentrating defect in potassium deprivation. Am J Physiol Renal Physiol 279:F655–F663PubMed
14.
Zurück zum Zitat Elkjaer M-L, Kwon T-H, Wang W, Nielsen J, Knepper MA, Frøkiaer J, Nielsen S (2002) Altered expression of NHE3, TSC, BSC-1, and ENaC subunits in potassium-depleted rats. Am J Physiol Renal Physiol 283:F1376–F1388PubMed Elkjaer M-L, Kwon T-H, Wang W, Nielsen J, Knepper MA, Frøkiaer J, Nielsen S (2002) Altered expression of NHE3, TSC, BSC-1, and ENaC subunits in potassium-depleted rats. Am J Physiol Renal Physiol 283:F1376–F1388PubMed
15.
Zurück zum Zitat Wang W, Li C, Kwon T-H, Miller RT, Knepper M, Frøkiaer J, Nielsen S (2004) Reduced expression of renal Na+ transporters in rates with PTH-induced hypercalcemia. Am J Physiol Renal Physiol 286:F535–F545 Wang W, Li C, Kwon T-H, Miller RT, Knepper M, Frøkiaer J, Nielsen S (2004) Reduced expression of renal Na+ transporters in rates with PTH-induced hypercalcemia. Am J Physiol Renal Physiol 286:F535–F545
16.
Zurück zum Zitat Earm JH, Christensen BM, Frokiaer J, Marples D, Han JS, Knepper MA, Nielsen S (1998) Decreased aquaporin-2 expression and apical plasma membrane delivery in kidney collecting ducts of polyuric hypercalcemic rats. J Am Soc Nephrol 9:2181–2193PubMed Earm JH, Christensen BM, Frokiaer J, Marples D, Han JS, Knepper MA, Nielsen S (1998) Decreased aquaporin-2 expression and apical plasma membrane delivery in kidney collecting ducts of polyuric hypercalcemic rats. J Am Soc Nephrol 9:2181–2193PubMed
17.
Zurück zum Zitat Sands JM, Naruse M, Jacobs JD, Wilcox JN, Klein JD (1996) Changes in aquaporin-2 protein contribute to the urine concentrating defect in rats fed a low-protein diet. J Clin Invest 97:2807–2814PubMedCrossRef Sands JM, Naruse M, Jacobs JD, Wilcox JN, Klein JD (1996) Changes in aquaporin-2 protein contribute to the urine concentrating defect in rats fed a low-protein diet. J Clin Invest 97:2807–2814PubMedCrossRef
18.
Zurück zum Zitat Frokiaer J, Li C, Shi Y, Jensen A, Praetorius H, Hansen H, Topcu O, Sardeli C, Wang W, Kwon TH, Nielsen S (2003) Renal aquaporins and sodium transporters with special focus on urinary tract obstruction. APMIS Suppl:71–79 Frokiaer J, Li C, Shi Y, Jensen A, Praetorius H, Hansen H, Topcu O, Sardeli C, Wang W, Kwon TH, Nielsen S (2003) Renal aquaporins and sodium transporters with special focus on urinary tract obstruction. APMIS Suppl:71–79
19.
Zurück zum Zitat Frokiaer J, Marples D, Knepper MA, Nielsen S (1996) Bilateral ureteral obstruction downregulates expression of vasopressin-sensitive AQP-2 water channel in rat kidney. Am J Physiol 270:F657–F668PubMed Frokiaer J, Marples D, Knepper MA, Nielsen S (1996) Bilateral ureteral obstruction downregulates expression of vasopressin-sensitive AQP-2 water channel in rat kidney. Am J Physiol 270:F657–F668PubMed
20.
Zurück zum Zitat Garofeanu CG, Weir M, Rosas-Arellano MP, Henson G, Garg AX, Clark WF (2005) Causes of reversible nephrogenic diabetes insipidus: a systematic review. Am J Kidney Dis 45:626–637PubMedCrossRef Garofeanu CG, Weir M, Rosas-Arellano MP, Henson G, Garg AX, Clark WF (2005) Causes of reversible nephrogenic diabetes insipidus: a systematic review. Am J Kidney Dis 45:626–637PubMedCrossRef
22.
Zurück zum Zitat Trachtman H (2009) Sodium and water. In: Avner ED, Harmon WE, Niaudet P, Yoshikawa N (eds) Pediatr nephrol, 6th edn. Springer, Berlin Heidelberg New York, pp 159–184 Trachtman H (2009) Sodium and water. In: Avner ED, Harmon WE, Niaudet P, Yoshikawa N (eds) Pediatr nephrol, 6th edn. Springer, Berlin Heidelberg New York, pp 159–184
23.
Zurück zum Zitat Sachs H, Takabatake Y (1964) Evidence for a precursor in vasopressin biosynthesis. Endocrinol 75:943–948CrossRef Sachs H, Takabatake Y (1964) Evidence for a precursor in vasopressin biosynthesis. Endocrinol 75:943–948CrossRef
24.
Zurück zum Zitat Nossent AY, Robben JH, Deen PM, Vos HL, Rosendaal FR, Doggen CJ, Hansen JL, Sheikh SP, Bertina RM, Eikenboom JC (2010) Functional variation in the arginine vasopressin 2 receptor as a modifier of human plasma von Willebrand factor levels. J Thromb Haemost 8:1547–1554PubMedCrossRef Nossent AY, Robben JH, Deen PM, Vos HL, Rosendaal FR, Doggen CJ, Hansen JL, Sheikh SP, Bertina RM, Eikenboom JC (2010) Functional variation in the arginine vasopressin 2 receptor as a modifier of human plasma von Willebrand factor levels. J Thromb Haemost 8:1547–1554PubMedCrossRef
25.
Zurück zum Zitat Loonen AJ, Knoers NV, van Os CH, Deen PM (2008) Aquaporin 2 mutations in nephrogenic diabetes insipidus. Semin Nephrol 28:252–265PubMedCrossRef Loonen AJ, Knoers NV, van Os CH, Deen PM (2008) Aquaporin 2 mutations in nephrogenic diabetes insipidus. Semin Nephrol 28:252–265PubMedCrossRef
26.
Zurück zum Zitat Hendriks G, Koudijs M, van Balkom BW, Oorschot V, Klumperman J, Deen PM, van der Sluijs P (2004) Glycosylation is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum. J Biol Chem 279:2975–2983PubMedCrossRef Hendriks G, Koudijs M, van Balkom BW, Oorschot V, Klumperman J, Deen PM, van der Sluijs P (2004) Glycosylation is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum. J Biol Chem 279:2975–2983PubMedCrossRef
27.
Zurück zum Zitat Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW (1993) Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci USA 90:11663–11667PubMedCrossRef Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW (1993) Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci USA 90:11663–11667PubMedCrossRef
28.
Zurück zum Zitat Kamsteeg EJ, Heijnen I, van Os CH, Deen PM (2000) The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol 151:919–930PubMedCrossRef Kamsteeg EJ, Heijnen I, van Os CH, Deen PM (2000) The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol 151:919–930PubMedCrossRef
29.
Zurück zum Zitat Mandon B, Chou CL, Nielsen S, Knepper MA (1996) Syntaxin-4 is localized to the apical plasma membrane of rat renal collecting duct cells: possible role in aquaporin-2 trafficking. J Clin Invest 98:906–913PubMedCrossRef Mandon B, Chou CL, Nielsen S, Knepper MA (1996) Syntaxin-4 is localized to the apical plasma membrane of rat renal collecting duct cells: possible role in aquaporin-2 trafficking. J Clin Invest 98:906–913PubMedCrossRef
30.
Zurück zum Zitat Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMedCrossRef Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMedCrossRef
31.
Zurück zum Zitat Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357PubMedCrossRef Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357PubMedCrossRef
32.
Zurück zum Zitat Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360PubMedCrossRef Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360PubMedCrossRef
33.
Zurück zum Zitat Teng FY, Wang Y, Tang BL (2001) The syntaxins. Genome Biol 2:REVIEWS3012 Teng FY, Wang Y, Tang BL (2001) The syntaxins. Genome Biol 2:REVIEWS3012
34.
Zurück zum Zitat Nielsen S, Marples D, Birn H, Mohtashami M, Dalby NO, Trimble M, Knepper M (1995) Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels. J Clin Invest 96:1834–1844PubMedCrossRef Nielsen S, Marples D, Birn H, Mohtashami M, Dalby NO, Trimble M, Knepper M (1995) Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels. J Clin Invest 96:1834–1844PubMedCrossRef
36.
Zurück zum Zitat Lee YJ, Kwon TH (2009) Ubiquitination of aquaporin-2 in the kidney. Electrolyte Blood Press 7:1–4PubMedCrossRef Lee YJ, Kwon TH (2009) Ubiquitination of aquaporin-2 in the kidney. Electrolyte Blood Press 7:1–4PubMedCrossRef
37.
Zurück zum Zitat Vossenkamper A, Nedvetsky PI, Wiesner B, Furkert J, Rosenthal W, Klussmann E (2007) Microtubules are needed for the perinuclear positioning of aquaporin-2 after its endocytic retrieval in renal principal cells. Am J Physiol Cell Physiol 293:C1129–C1138PubMedCrossRef Vossenkamper A, Nedvetsky PI, Wiesner B, Furkert J, Rosenthal W, Klussmann E (2007) Microtubules are needed for the perinuclear positioning of aquaporin-2 after its endocytic retrieval in renal principal cells. Am J Physiol Cell Physiol 293:C1129–C1138PubMedCrossRef
38.
Zurück zum Zitat Marples D, Schroer TA, Ahrens N, Taylor A, Knepper MA, Nielsen S (1998) Dynein and dynactin colocalize with AQP2 water channels in intracellular vesicles from kidney collecting duct. Am J Physiol 274:F384–F394PubMed Marples D, Schroer TA, Ahrens N, Taylor A, Knepper MA, Nielsen S (1998) Dynein and dynactin colocalize with AQP2 water channels in intracellular vesicles from kidney collecting duct. Am J Physiol 274:F384–F394PubMed
39.
Zurück zum Zitat Palamidessi A, Frittoli E, Garre M, Faretta M, Mione M, Testa I, Diaspro A, Lanzetti L, Scita G, Di Fiore PP (2008) Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134:135–147PubMedCrossRef Palamidessi A, Frittoli E, Garre M, Faretta M, Mione M, Testa I, Diaspro A, Lanzetti L, Scita G, Di Fiore PP (2008) Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134:135–147PubMedCrossRef
40.
Zurück zum Zitat Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525PubMedCrossRef Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525PubMedCrossRef
41.
Zurück zum Zitat Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, van der Sluijs P, Klumperman J, Deen PM (2006) Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci USA 103:18344–18349PubMedCrossRef Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, van der Sluijs P, Klumperman J, Deen PM (2006) Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci USA 103:18344–18349PubMedCrossRef
42.
Zurück zum Zitat Klussmann E, Tamma G, Lorenz D, Wiesner B, Maric K, Hofmann F, Aktories K, Valenti G, Rosenthal W (2001) An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 276:20451–20457PubMedCrossRef Klussmann E, Tamma G, Lorenz D, Wiesner B, Maric K, Hofmann F, Aktories K, Valenti G, Rosenthal W (2001) An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 276:20451–20457PubMedCrossRef
43.
Zurück zum Zitat Tajika Y, Matsuzaki T, Suzuki T, Ablimit A, Aoki T, Hagiwara H, Kuwahara M, Sasaki S, Takata K (2005) Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem Cell Biol 124:1–12PubMedCrossRef Tajika Y, Matsuzaki T, Suzuki T, Ablimit A, Aoki T, Hagiwara H, Kuwahara M, Sasaki S, Takata K (2005) Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem Cell Biol 124:1–12PubMedCrossRef
44.
Zurück zum Zitat Yasui M, Zelenin SM, Celsi G, Aperia A (1997) Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements. Am J Physiol 272:F443–F450PubMed Yasui M, Zelenin SM, Celsi G, Aperia A (1997) Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements. Am J Physiol 272:F443–F450PubMed
45.
Zurück zum Zitat Nielsen S, Kwon TH, Christensen BM, Promeneur D, Frokiaer J, Marples D (1999) Physiology and pathophysiology of renal aquaporins. J Am Soc Nephrol 10:647–663PubMed Nielsen S, Kwon TH, Christensen BM, Promeneur D, Frokiaer J, Marples D (1999) Physiology and pathophysiology of renal aquaporins. J Am Soc Nephrol 10:647–663PubMed
46.
Zurück zum Zitat Blanchard A, Frank M, Wuerzner G, Peyrard S, Bankir L, Jeunemaitre X, Azizi M (2011) Antinatriuretic effect of vasopressin in humans is amiloride-sensitive, thus ENaC dependent. Clin J Am Soc Nephrol 6:753–759PubMedCrossRef Blanchard A, Frank M, Wuerzner G, Peyrard S, Bankir L, Jeunemaitre X, Azizi M (2011) Antinatriuretic effect of vasopressin in humans is amiloride-sensitive, thus ENaC dependent. Clin J Am Soc Nephrol 6:753–759PubMedCrossRef
47.
48.
49.
Zurück zum Zitat Brown D, Katsura T, Gustafson CE (1998) Cellular mechanisms of aquaporin trafficking. Am J Physiol 275:F328–F331PubMed Brown D, Katsura T, Gustafson CE (1998) Cellular mechanisms of aquaporin trafficking. Am J Physiol 275:F328–F331PubMed
50.
Zurück zum Zitat Sands JM, Bichet DG (2006) Nephrogenic diabetes insipidus. Ann Intern Med 144:186–194PubMed Sands JM, Bichet DG (2006) Nephrogenic diabetes insipidus. Ann Intern Med 144:186–194PubMed
51.
Zurück zum Zitat Birnbaumer M (2001) The V2 vasopressin receptor mutations and fluid homeostasis. Cardiovasc Res 51:409–415PubMedCrossRef Birnbaumer M (2001) The V2 vasopressin receptor mutations and fluid homeostasis. Cardiovasc Res 51:409–415PubMedCrossRef
52.
Zurück zum Zitat van den Ouweland AM, Dreesen JC, Verdijk M, Knoers NV, Monnens LA, Rocchi M, van Oost BA (1992) Mutations in the vasopressin type 2 receptor gene (AVPR2) associated with nephrogenic diabetes insipidus. Nat Genet 2:99–102PubMedCrossRef van den Ouweland AM, Dreesen JC, Verdijk M, Knoers NV, Monnens LA, Rocchi M, van Oost BA (1992) Mutations in the vasopressin type 2 receptor gene (AVPR2) associated with nephrogenic diabetes insipidus. Nat Genet 2:99–102PubMedCrossRef
53.
Zurück zum Zitat Bichet DG (2008) Vasopressin receptor mutations in nephrogenic diabetes insipidus. Semin Nephrol 28:245–251PubMedCrossRef Bichet DG (2008) Vasopressin receptor mutations in nephrogenic diabetes insipidus. Semin Nephrol 28:245–251PubMedCrossRef
54.
Zurück zum Zitat Nomura Y, Onigata K, Nagashima T, Yutani S, Mochizuki H, Nagashima K, Morikawa A (1997) Detection of skewed X-inactivation in two female carriers of vasopressin type 2 receptor gene mutation. J Clin Endocrinol Metab 82:3434–3437PubMedCrossRef Nomura Y, Onigata K, Nagashima T, Yutani S, Mochizuki H, Nagashima K, Morikawa A (1997) Detection of skewed X-inactivation in two female carriers of vasopressin type 2 receptor gene mutation. J Clin Endocrinol Metab 82:3434–3437PubMedCrossRef
55.
Zurück zum Zitat Faerch M, Corydon TJ, Rittig S, Christensen JH, Hertz JM, Jendle J (2010) Skewed X-chromosome inactivation causing diagnostic misinterpretation in congenital nephrogenic diabetes insipidus. Scand J Urol Nephrol 44:324–330PubMedCrossRef Faerch M, Corydon TJ, Rittig S, Christensen JH, Hertz JM, Jendle J (2010) Skewed X-chromosome inactivation causing diagnostic misinterpretation in congenital nephrogenic diabetes insipidus. Scand J Urol Nephrol 44:324–330PubMedCrossRef
56.
Zurück zum Zitat Firsov D, Mandon B, Morel A, Merot J, Le Maout S, Bellanger AC, de Rouffignac C, Elalouf JM, Buhler JM (1994) Molecular analysis of vasopressin receptors in the rat nephron. Evidence for alternative splicing of the V2 receptor. Pflug Arch 429:79–89CrossRef Firsov D, Mandon B, Morel A, Merot J, Le Maout S, Bellanger AC, de Rouffignac C, Elalouf JM, Buhler JM (1994) Molecular analysis of vasopressin receptors in the rat nephron. Evidence for alternative splicing of the V2 receptor. Pflug Arch 429:79–89CrossRef
57.
Zurück zum Zitat Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370PubMedCrossRef Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370PubMedCrossRef
58.
Zurück zum Zitat Brown CA, Black SD (1989) Membrane topology of mammalian cytochromes P-450 from liver endoplasmic reticulum. Determination by trypsinolysis of phenobarbital-treated microsomes. J Biol Chem 264:4442–4449PubMed Brown CA, Black SD (1989) Membrane topology of mammalian cytochromes P-450 from liver endoplasmic reticulum. Determination by trypsinolysis of phenobarbital-treated microsomes. J Biol Chem 264:4442–4449PubMed
59.
Zurück zum Zitat Hartmann E, Rapoport TA, Lodish HF (1989) Predicting the orientation of eukaryotic membrane-spanning proteins. Proc Natl Acad Sci USA 86:5786–5790PubMedCrossRef Hartmann E, Rapoport TA, Lodish HF (1989) Predicting the orientation of eukaryotic membrane-spanning proteins. Proc Natl Acad Sci USA 86:5786–5790PubMedCrossRef
60.
Zurück zum Zitat Conner M, Hawtin SR, Simms J, Wootten D, Lawson Z, Conner AC, Parslow RA, Wheatley M (2007) Systematic analysis of the entire second extracellular loop of the V(1a) vasopressin receptor: key residues, conserved throughout a G-protein-coupled receptor family, identified. J Biol Chem 282:17405–17412PubMedCrossRef Conner M, Hawtin SR, Simms J, Wootten D, Lawson Z, Conner AC, Parslow RA, Wheatley M (2007) Systematic analysis of the entire second extracellular loop of the V(1a) vasopressin receptor: key residues, conserved throughout a G-protein-coupled receptor family, identified. J Biol Chem 282:17405–17412PubMedCrossRef
61.
Zurück zum Zitat Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739–745PubMedCrossRef Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739–745PubMedCrossRef
62.
Zurück zum Zitat Sangkuhl K, Rompler H, Busch W, Karges B, Schoneberg T (2005) Nephrogenic diabetes insipidus caused by mutation of Tyr205: a key residue of V2 vasopressin receptor function. Hum Mutat 25:505PubMedCrossRef Sangkuhl K, Rompler H, Busch W, Karges B, Schoneberg T (2005) Nephrogenic diabetes insipidus caused by mutation of Tyr205: a key residue of V2 vasopressin receptor function. Hum Mutat 25:505PubMedCrossRef
63.
Zurück zum Zitat Oksche A, Schulein R, Rutz C, Liebenhoff U, Dickson J, Muller H, Birnbaumer M, Rosenthal W (1996) Vasopressin V2 receptor mutants that cause X-linked nephrogenic diabetes insipidus: analysis of expression, processing, and function. Mol Pharmacol 50:820–828PubMed Oksche A, Schulein R, Rutz C, Liebenhoff U, Dickson J, Muller H, Birnbaumer M, Rosenthal W (1996) Vasopressin V2 receptor mutants that cause X-linked nephrogenic diabetes insipidus: analysis of expression, processing, and function. Mol Pharmacol 50:820–828PubMed
64.
Zurück zum Zitat Sadeghi H, Birnbaumer M (1999) O-Glycosylation of the V2 vasopressin receptor. Glycobiology 9:731–737PubMedCrossRef Sadeghi H, Birnbaumer M (1999) O-Glycosylation of the V2 vasopressin receptor. Glycobiology 9:731–737PubMedCrossRef
65.
Zurück zum Zitat Robben JH, Knoers NV, Deen PM (2004) Regulation of the vasopressin V2 receptor by vasopressin in polarized renal collecting duct cells. Mol Biol Cell 15:5693–5699PubMedCrossRef Robben JH, Knoers NV, Deen PM (2004) Regulation of the vasopressin V2 receptor by vasopressin in polarized renal collecting duct cells. Mol Biol Cell 15:5693–5699PubMedCrossRef
66.
Zurück zum Zitat Sarmiento JM, Anazco CC, Campos DM, Prado GN, Navarro J, Gonzalez CB (2004) Novel down-regulatory mechanism of the surface expression of the vasopressin V2 receptor by an alternative splice receptor variant. J Biol Chem 279:47017–47023PubMedCrossRef Sarmiento JM, Anazco CC, Campos DM, Prado GN, Navarro J, Gonzalez CB (2004) Novel down-regulatory mechanism of the surface expression of the vasopressin V2 receptor by an alternative splice receptor variant. J Biol Chem 279:47017–47023PubMedCrossRef
67.
Zurück zum Zitat Gonzalez A, Borquez M, Trigo CA, Brenet M, Sarmiento JM, Figueroa CD, Navarro J, Gonzalez CB (2011) The splice variant of the V2 vasopressin receptor adopts alternative topologies. Biochem 50:4981–4986CrossRef Gonzalez A, Borquez M, Trigo CA, Brenet M, Sarmiento JM, Figueroa CD, Navarro J, Gonzalez CB (2011) The splice variant of the V2 vasopressin receptor adopts alternative topologies. Biochem 50:4981–4986CrossRef
69.
Zurück zum Zitat Thibonnier M, Preston JA, Dulin N, Wilkins PL, Berti-Mattera LN, Mattera R (1997) The human V3 pituitary vasopressin receptor: ligand binding profile and density-dependent signaling pathways. Endocrinol 138:4109–4122CrossRef Thibonnier M, Preston JA, Dulin N, Wilkins PL, Berti-Mattera LN, Mattera R (1997) The human V3 pituitary vasopressin receptor: ligand binding profile and density-dependent signaling pathways. Endocrinol 138:4109–4122CrossRef
70.
Zurück zum Zitat Vargas-Poussou R, Forestier L, Dautzenberg MD, Niaudet P, Dechaux M, Antignac C (1997) Mutations in the vasopressin V2 receptor and aquaporin-2 genes in 12 families with congenital nephrogenic diabetes insipidus. J Am Soc Nephrol 8:1855–1862PubMed Vargas-Poussou R, Forestier L, Dautzenberg MD, Niaudet P, Dechaux M, Antignac C (1997) Mutations in the vasopressin V2 receptor and aquaporin-2 genes in 12 families with congenital nephrogenic diabetes insipidus. J Am Soc Nephrol 8:1855–1862PubMed
71.
Zurück zum Zitat Spanakis E, Milord E, Gragnoli C (2008) AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance. J Cell Physiol 217:605–617PubMedCrossRef Spanakis E, Milord E, Gragnoli C (2008) AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance. J Cell Physiol 217:605–617PubMedCrossRef
72.
73.
Zurück zum Zitat Krawczak M, Ball EV, Cooper DN (1998) Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet 63:474–488PubMedCrossRef Krawczak M, Ball EV, Cooper DN (1998) Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet 63:474–488PubMedCrossRef
74.
Zurück zum Zitat Wenkert D, Schoneberg T, Merendino JJ Jr, Rodriguez Pena MS, Vinitsky R, Goldsmith PK, Wess J, Spiegel AM (1996) Functional characterization of five V2 vasopressin receptor gene mutations. Mol Cell Endocrinol 124:43–50PubMedCrossRef Wenkert D, Schoneberg T, Merendino JJ Jr, Rodriguez Pena MS, Vinitsky R, Goldsmith PK, Wess J, Spiegel AM (1996) Functional characterization of five V2 vasopressin receptor gene mutations. Mol Cell Endocrinol 124:43–50PubMedCrossRef
75.
Zurück zum Zitat Abaci A, Wood K, Demir K, Buyukgebiz A, Bober E, Kopp P (2010) A novel mutation in the AVPR2 gene (222delA) associated with X-linked nephrogenic diabetes insipidus in a boy with growth failure. Endocr Pract 16:231–236PubMedCrossRef Abaci A, Wood K, Demir K, Buyukgebiz A, Bober E, Kopp P (2010) A novel mutation in the AVPR2 gene (222delA) associated with X-linked nephrogenic diabetes insipidus in a boy with growth failure. Endocr Pract 16:231–236PubMedCrossRef
76.
Zurück zum Zitat Moon SD, Kim JH, Shim JY, Lim DJ, Cha BY, Han JH (2011) Analysis of a novel AVPR2 mutation in a family with nephrogenic diabetes insipidus. Int J Clin Exp Med 4:1–9PubMed Moon SD, Kim JH, Shim JY, Lim DJ, Cha BY, Han JH (2011) Analysis of a novel AVPR2 mutation in a family with nephrogenic diabetes insipidus. Int J Clin Exp Med 4:1–9PubMed
77.
Zurück zum Zitat Fujimoto M, Imai K, Hirata K, Kashiwagi R, Morinishi Y, Kitazawa K, Sasaki S, Arinami T, Nonoyama S, Noguchi E (2008) Immunological profile in a family with nephrogenic diabetes insipidus with a novel 11 kb deletion in AVPR2 and ARHGAP4 genes. BMC Med Genet 9:42PubMedCrossRef Fujimoto M, Imai K, Hirata K, Kashiwagi R, Morinishi Y, Kitazawa K, Sasaki S, Arinami T, Nonoyama S, Noguchi E (2008) Immunological profile in a family with nephrogenic diabetes insipidus with a novel 11 kb deletion in AVPR2 and ARHGAP4 genes. BMC Med Genet 9:42PubMedCrossRef
78.
Zurück zum Zitat Satoh M, Ogikubo S, Yoshizawa-Ogasawara A (2008) Correlation between clinical phenotypes and X-inactivation patterns in six female carriers with heterozygote vasopressin type 2 receptor gene mutations. Endocr J 55:277–284PubMedCrossRef Satoh M, Ogikubo S, Yoshizawa-Ogasawara A (2008) Correlation between clinical phenotypes and X-inactivation patterns in six female carriers with heterozygote vasopressin type 2 receptor gene mutations. Endocr J 55:277–284PubMedCrossRef
79.
Zurück zum Zitat Sakallioglu O, Tascilar ME, Kalman S, Cheong HI, Atay AA (2009) Nephrogenic diabetes insipidus due to a novel AVPR2 mutation. J Pediatr Endocrinol Metab 22:187–189PubMedCrossRef Sakallioglu O, Tascilar ME, Kalman S, Cheong HI, Atay AA (2009) Nephrogenic diabetes insipidus due to a novel AVPR2 mutation. J Pediatr Endocrinol Metab 22:187–189PubMedCrossRef
80.
Zurück zum Zitat Ranadive SA, Ersoy B, Favre H, Cheung CC, Rosenthal SM, Miller WL, Vaisse C (2009) Identification, characterization and rescue of a novel vasopressin-2 receptor mutation causing nephrogenic diabetes insipidus. Clin Endocrinol (Oxf) 71:388–393CrossRef Ranadive SA, Ersoy B, Favre H, Cheung CC, Rosenthal SM, Miller WL, Vaisse C (2009) Identification, characterization and rescue of a novel vasopressin-2 receptor mutation causing nephrogenic diabetes insipidus. Clin Endocrinol (Oxf) 71:388–393CrossRef
81.
Zurück zum Zitat Vaisbich MH, Carneiro J, Boson W, Resende B, De ML, Honjo RS, Kim CA, Koch VH (2009) Nephrogenic diabetes insipidus (NDI): clinical, laboratory and genetic characterization of five Brazilian patients. Clinics(Sao Paulo) 64:409–414 Vaisbich MH, Carneiro J, Boson W, Resende B, De ML, Honjo RS, Kim CA, Koch VH (2009) Nephrogenic diabetes insipidus (NDI): clinical, laboratory and genetic characterization of five Brazilian patients. Clinics(Sao Paulo) 64:409–414
82.
Zurück zum Zitat Takatani T, Matsuo K, Kinoshita K, Takatani R, Minagawa M, Kohno Y (2010) A novel missense mutation in the AVPR2 gene of a Japanese infant with nephrogenic diabetes insipidus. J Pediatr Endocrinol Metab 23:415–418PubMedCrossRef Takatani T, Matsuo K, Kinoshita K, Takatani R, Minagawa M, Kohno Y (2010) A novel missense mutation in the AVPR2 gene of a Japanese infant with nephrogenic diabetes insipidus. J Pediatr Endocrinol Metab 23:415–418PubMedCrossRef
83.
Zurück zum Zitat El-Kares R, Hueber PA, Blumenkrantz M, Iglesias D, Ma K, Jabado N, Bichet DG, Goodyer P (2009) Wilms tumor arising in a child with X-linked nephrogenic diabetes insipidus. Pediatr Nephrol 24:1313–1319PubMedCrossRef El-Kares R, Hueber PA, Blumenkrantz M, Iglesias D, Ma K, Jabado N, Bichet DG, Goodyer P (2009) Wilms tumor arising in a child with X-linked nephrogenic diabetes insipidus. Pediatr Nephrol 24:1313–1319PubMedCrossRef
84.
Zurück zum Zitat Sahakitrungruang T, Tee MK, Rattanachartnarong N, Shotelersuk V, Suphapeetiporn K, Miller WL (2010) Functional characterization of vasopressin receptor 2 mutations causing partial and complete congenital nephrogenic diabetes insipidus in Thai families. Horm Res Paediatr 73:349–354PubMedCrossRef Sahakitrungruang T, Tee MK, Rattanachartnarong N, Shotelersuk V, Suphapeetiporn K, Miller WL (2010) Functional characterization of vasopressin receptor 2 mutations causing partial and complete congenital nephrogenic diabetes insipidus in Thai families. Horm Res Paediatr 73:349–354PubMedCrossRef
85.
Zurück zum Zitat Oksche A, Dickson J, Schulein R, Seyberth HW, Muller M, Rascher W, Birnbaumer M, Rosenthal W (1994) Two novel mutations in the vasopressin V2 receptor gene in patients with congenital nephrogenic diabetes insipidus. Biochem Biophys Res Comm 205:552–557PubMedCrossRef Oksche A, Dickson J, Schulein R, Seyberth HW, Muller M, Rascher W, Birnbaumer M, Rosenthal W (1994) Two novel mutations in the vasopressin V2 receptor gene in patients with congenital nephrogenic diabetes insipidus. Biochem Biophys Res Comm 205:552–557PubMedCrossRef
86.
Zurück zum Zitat Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254PubMedCrossRef Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254PubMedCrossRef
87.
Zurück zum Zitat Tsukaguchi H, Matsubara H, Taketani S, Mori Y, Seido T, Inada M (1995) Binding-, intracellular transport-, and biosynthesis-defective mutants of vasopressin type 2 receptor in patients with X-linked nephrogenic diabetes insipidus. J Clin Invest 96:2043–2050PubMedCrossRef Tsukaguchi H, Matsubara H, Taketani S, Mori Y, Seido T, Inada M (1995) Binding-, intracellular transport-, and biosynthesis-defective mutants of vasopressin type 2 receptor in patients with X-linked nephrogenic diabetes insipidus. J Clin Invest 96:2043–2050PubMedCrossRef
88.
Zurück zum Zitat Ala Y, Morin D, Mouillac B, Sabatier N, Vargas R, Cotte N, Dechaux M, Antignac C, Arthus MF, Lonergan M, Turner MS, Balestre MN, Alonso G, Hibert M, Barberis C, Hendy GN, Bichet DG, Jard S (1998) Functional studies of twelve mutant V2 vasopressin receptors related to nephrogenic diabetes insipidus: molecular basis of a mild clinical phenotype. J Am Soc Nephrol 9:1861–1872PubMed Ala Y, Morin D, Mouillac B, Sabatier N, Vargas R, Cotte N, Dechaux M, Antignac C, Arthus MF, Lonergan M, Turner MS, Balestre MN, Alonso G, Hibert M, Barberis C, Hendy GN, Bichet DG, Jard S (1998) Functional studies of twelve mutant V2 vasopressin receptors related to nephrogenic diabetes insipidus: molecular basis of a mild clinical phenotype. J Am Soc Nephrol 9:1861–1872PubMed
89.
Zurück zum Zitat Bichet DG, Birnbaumer M, Lonergan M, Arthus MF, Rosenthal W, Goodyer P, Nivet H, Benoit S, Giampietro P, Simonetti S (1994) Nature and recurrence of AVPR2 mutations in X-linked nephrogenic diabetes insipidus. Am J Hum Genet 55:278–286PubMed Bichet DG, Birnbaumer M, Lonergan M, Arthus MF, Rosenthal W, Goodyer P, Nivet H, Benoit S, Giampietro P, Simonetti S (1994) Nature and recurrence of AVPR2 mutations in X-linked nephrogenic diabetes insipidus. Am J Hum Genet 55:278–286PubMed
90.
91.
Zurück zum Zitat Arthus MF, Lonergan M, Crumley MJ, Naumova AK, Morin D, De Marco LA, Kaplan BS, Robertson GL, Sasaki S, Morgan K, Bichet DG, Fujiwara TM (2000) Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 11:1044–1054PubMed Arthus MF, Lonergan M, Crumley MJ, Naumova AK, Morin D, De Marco LA, Kaplan BS, Robertson GL, Sasaki S, Morgan K, Bichet DG, Fujiwara TM (2000) Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 11:1044–1054PubMed
92.
Zurück zum Zitat Ellgaard L, Helenius A (2001) ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol 13:431–437PubMedCrossRef Ellgaard L, Helenius A (2001) ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol 13:431–437PubMedCrossRef
93.
Zurück zum Zitat Oueslati M, Hermosilla R, Schonenberger E, Oorschot V, Beyermann M, Wiesner B, Schmidt A, Klumperman J, Rosenthal W, Schulein R (2007) Rescue of a nephrogenic diabetes insipidus-causing vasopressin V2 receptor mutant by cell-penetrating peptides. J Biol Chem 282:20676–20685PubMedCrossRef Oueslati M, Hermosilla R, Schonenberger E, Oorschot V, Beyermann M, Wiesner B, Schmidt A, Klumperman J, Rosenthal W, Schulein R (2007) Rescue of a nephrogenic diabetes insipidus-causing vasopressin V2 receptor mutant by cell-penetrating peptides. J Biol Chem 282:20676–20685PubMedCrossRef
94.
Zurück zum Zitat Pan Y, Wilson P, Gitschier J (1994) The effect of eight V2 vasopressin receptor mutations on stimulation of adenylyl cyclase and binding to vasopressin. J Biol Chem 269:31933–31937PubMed Pan Y, Wilson P, Gitschier J (1994) The effect of eight V2 vasopressin receptor mutations on stimulation of adenylyl cyclase and binding to vasopressin. J Biol Chem 269:31933–31937PubMed
95.
Zurück zum Zitat Robben JH, Knoers NV, Deen PM (2006) Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 291:F257–F270PubMedCrossRef Robben JH, Knoers NV, Deen PM (2006) Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 291:F257–F270PubMedCrossRef
96.
Zurück zum Zitat Barak LS, Oakley RH, Laporte SA, Caron MG (2001) Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc Natl Acad Sci USA 98:93–98PubMedCrossRef Barak LS, Oakley RH, Laporte SA, Caron MG (2001) Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc Natl Acad Sci USA 98:93–98PubMedCrossRef
97.
Zurück zum Zitat Knoers N, Monnens LA (1992) Nephrogenic diabetes insipidus: clinical symptoms, pathogenesis, genetics and treatment. Pediatr Nephrol 6:476–482PubMedCrossRef Knoers N, Monnens LA (1992) Nephrogenic diabetes insipidus: clinical symptoms, pathogenesis, genetics and treatment. Pediatr Nephrol 6:476–482PubMedCrossRef
98.
Zurück zum Zitat Bai L, Fushimi K, Sasaki S, Marumo F (1996) Structure of aquaporin-2 vasopressin water channel. J Biol Chem 271:5171–5176PubMedCrossRef Bai L, Fushimi K, Sasaki S, Marumo F (1996) Structure of aquaporin-2 vasopressin water channel. J Biol Chem 271:5171–5176PubMedCrossRef
99.
Zurück zum Zitat Marr N, Bichet DG, Hoefs S, Savelkoul PJ, Konings IB, De MF, Graat MP, Arthus MF, Lonergan M, Fujiwara TM, Knoers NV, Landau D, Balfe WJ, Oksche A, Rosenthal W, Muller D, van Os CH, Deen PM (2002) Cell-biologic and functional analyses of five new Aquaporin-2 missense mutations that cause recessive nephrogenic diabetes insipidus. J Am Soc Nephrol 13:2267–2277PubMedCrossRef Marr N, Bichet DG, Hoefs S, Savelkoul PJ, Konings IB, De MF, Graat MP, Arthus MF, Lonergan M, Fujiwara TM, Knoers NV, Landau D, Balfe WJ, Oksche A, Rosenthal W, Muller D, van Os CH, Deen PM (2002) Cell-biologic and functional analyses of five new Aquaporin-2 missense mutations that cause recessive nephrogenic diabetes insipidus. J Am Soc Nephrol 13:2267–2277PubMedCrossRef
100.
Zurück zum Zitat Baumgarten R, Van De Pol MH, Wetzels JF, van Os CH, Deen PM (1998) Glycosylation is not essential for vasopressin-dependent routing of aquaporin-2 in transfected Madin-Darby canine kidney cells. J Am Soc Nephrol 9:1553–1559PubMed Baumgarten R, Van De Pol MH, Wetzels JF, van Os CH, Deen PM (1998) Glycosylation is not essential for vasopressin-dependent routing of aquaporin-2 in transfected Madin-Darby canine kidney cells. J Am Soc Nephrol 9:1553–1559PubMed
101.
Zurück zum Zitat Fushimi K, Sasaki S, Marumo F (1997) Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem 272:14800–14804PubMedCrossRef Fushimi K, Sasaki S, Marumo F (1997) Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem 272:14800–14804PubMedCrossRef
102.
Zurück zum Zitat Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA (2006) Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci USA 103:7159–7164PubMedCrossRef Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA (2006) Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci USA 103:7159–7164PubMedCrossRef
103.
Zurück zum Zitat Hoffert JD, Fenton RA, Moeller HB, Simons B, Tchapyjnikov D, McDill BW, Yu MJ, Pisitkun T, Chen F, Knepper MA (2008) Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J Biol Chem 283:24617–24627PubMedCrossRef Hoffert JD, Fenton RA, Moeller HB, Simons B, Tchapyjnikov D, McDill BW, Yu MJ, Pisitkun T, Chen F, Knepper MA (2008) Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J Biol Chem 283:24617–24627PubMedCrossRef
104.
Zurück zum Zitat Moeller HB, MacAulay N, Knepper MA, Fenton RA (2009) Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating. Am J Physiol Renal Physiol 296:F649–F657PubMedCrossRef Moeller HB, MacAulay N, Knepper MA, Fenton RA (2009) Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating. Am J Physiol Renal Physiol 296:F649–F657PubMedCrossRef
105.
Zurück zum Zitat Xie L, Hoffert JD, Chou CL, Yu MJ, Pisitkun T, Knepper MA, Fenton RA (2010) Quantitative analysis of aquaporin-2 phosphorylation. Am J Physiol Renal Physiol 298:F1018–F1023PubMedCrossRef Xie L, Hoffert JD, Chou CL, Yu MJ, Pisitkun T, Knepper MA, Fenton RA (2010) Quantitative analysis of aquaporin-2 phosphorylation. Am J Physiol Renal Physiol 298:F1018–F1023PubMedCrossRef
106.
Zurück zum Zitat Hoffert JD, Nielsen J, Yu MJ, Pisitkun T, Schleicher SM, Nielsen S, Knepper MA (2007) Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am J physiology Renal Physiol 292:F691–F700CrossRef Hoffert JD, Nielsen J, Yu MJ, Pisitkun T, Schleicher SM, Nielsen S, Knepper MA (2007) Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am J physiology Renal Physiol 292:F691–F700CrossRef
107.
Zurück zum Zitat Moeller HB, Olesen ET, Fenton RA (2011) Regulation of the water channel aquaporin-2 by posttranslational modification. Am J Physiol Renal Physiol 300:F1062–F1073PubMedCrossRef Moeller HB, Olesen ET, Fenton RA (2011) Regulation of the water channel aquaporin-2 by posttranslational modification. Am J Physiol Renal Physiol 300:F1062–F1073PubMedCrossRef
108.
Zurück zum Zitat Heymann JB, Engel A (1999) Aquaporins: Phylogeny, Structure, and Physiology of Water Channels. News Physiol Sci 14:187–193PubMed Heymann JB, Engel A (1999) Aquaporins: Phylogeny, Structure, and Physiology of Water Channels. News Physiol Sci 14:187–193PubMed
109.
Zurück zum Zitat Hub JS, Grubmuller H, de Groot BL (2009) Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handb Exp Pharmacol 57–76 Hub JS, Grubmuller H, de Groot BL (2009) Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handb Exp Pharmacol 57–76
110.
Zurück zum Zitat de Groot BL, Grubmuller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357PubMedCrossRef de Groot BL, Grubmuller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357PubMedCrossRef
111.
Zurück zum Zitat Kozono D, Yasui M, King LS, Agre P (2002) Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. J Clin Invest 109:1395–1399PubMed Kozono D, Yasui M, King LS, Agre P (2002) Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. J Clin Invest 109:1395–1399PubMed
112.
Zurück zum Zitat Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605PubMedCrossRef Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605PubMedCrossRef
113.
Zurück zum Zitat de Groot BL, Grubmuller H (2005) The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr Opin Struct Biol 15:176–183PubMedCrossRef de Groot BL, Grubmuller H (2005) The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr Opin Struct Biol 15:176–183PubMedCrossRef
114.
Zurück zum Zitat Lin SH, Bichet DG, Sasaki S, Kuwahara M, Arthus MF, Lonergan M, Lin YF (2002) Two novel aquaporin-2 mutations responsible for congenital nephrogenic diabetes insipidus in Chinese families. J Clin Endocrinol Metab 87:2694–2700PubMedCrossRef Lin SH, Bichet DG, Sasaki S, Kuwahara M, Arthus MF, Lonergan M, Lin YF (2002) Two novel aquaporin-2 mutations responsible for congenital nephrogenic diabetes insipidus in Chinese families. J Clin Endocrinol Metab 87:2694–2700PubMedCrossRef
115.
Zurück zum Zitat Boone M, Deen PM (2009) Congenital nephrogenic diabetes insipidus: what can we learn from mouse models? Exp Physiol 94:186–190PubMedCrossRef Boone M, Deen PM (2009) Congenital nephrogenic diabetes insipidus: what can we learn from mouse models? Exp Physiol 94:186–190PubMedCrossRef
116.
Zurück zum Zitat Lloyd DJ, Hall FW, Tarantino LM, Gekakis N (2005) Diabetes insipidus in mice with a mutation in aquaporin-2. PLoS Genet 1:e20PubMedCrossRef Lloyd DJ, Hall FW, Tarantino LM, Gekakis N (2005) Diabetes insipidus in mice with a mutation in aquaporin-2. PLoS Genet 1:e20PubMedCrossRef
117.
Zurück zum Zitat Tamarappoo BK, Verkman AS (1998) Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest 101:2257–2267PubMedCrossRef Tamarappoo BK, Verkman AS (1998) Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest 101:2257–2267PubMedCrossRef
118.
Zurück zum Zitat Abrami L, Berthonaud V, Deen PM, Rousselet G, Tacnet F, Ripoche P (1996) Glycerol permeability of mutant aquaporin 1 and other AQP-MIP proteins: inhibition studies. Pflug Arch 431:408–414CrossRef Abrami L, Berthonaud V, Deen PM, Rousselet G, Tacnet F, Ripoche P (1996) Glycerol permeability of mutant aquaporin 1 and other AQP-MIP proteins: inhibition studies. Pflug Arch 431:408–414CrossRef
119.
Zurück zum Zitat Goji K, Kuwahara M, Gu Y, Matsuo M, Marumo F, Sasaki S (1998) Novel mutations in aquaporin-2 gene in female siblings with nephrogenic diabetes insipidus: evidence of disrupted water channel function. J Clin Endocrinol Metab 83:3205–3209PubMedCrossRef Goji K, Kuwahara M, Gu Y, Matsuo M, Marumo F, Sasaki S (1998) Novel mutations in aquaporin-2 gene in female siblings with nephrogenic diabetes insipidus: evidence of disrupted water channel function. J Clin Endocrinol Metab 83:3205–3209PubMedCrossRef
120.
Zurück zum Zitat Kamsteeg EJ, Deen PM (2000) Importance of aquaporin-2 expression levels in genotype -phenotype studies in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 279:F778–F784PubMed Kamsteeg EJ, Deen PM (2000) Importance of aquaporin-2 expression levels in genotype -phenotype studies in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 279:F778–F784PubMed
121.
Zurück zum Zitat Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2001) Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. J Biol Chem 276:2775–2779PubMedCrossRef Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2001) Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. J Biol Chem 276:2775–2779PubMedCrossRef
122.
Zurück zum Zitat Deen PM, van Balkom BW, Kamsteeg EJ (2000) Routing of the aquaporin-2 water channel in health and disease. Eur J Cell Biol 79:523–530PubMedCrossRef Deen PM, van Balkom BW, Kamsteeg EJ (2000) Routing of the aquaporin-2 water channel in health and disease. Eur J Cell Biol 79:523–530PubMedCrossRef
123.
Zurück zum Zitat De Mattia F, Savelkoul PJ, Kamsteeg EJ, Konings IB, van der Sluijs P, Mallmann R, Oksche A, Deen PM (2005) Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus. J Am Soc Nephrol 16:2872–2880PubMedCrossRef De Mattia F, Savelkoul PJ, Kamsteeg EJ, Konings IB, van der Sluijs P, Mallmann R, Oksche A, Deen PM (2005) Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus. J Am Soc Nephrol 16:2872–2880PubMedCrossRef
124.
Zurück zum Zitat Kamsteeg EJ, Bichet DG, Konings IB, Nivet H, Lonergan M, Arthus MF, van Os CH, Deen PM (2003) Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. J Cell Biol 163:1099–1109PubMedCrossRef Kamsteeg EJ, Bichet DG, Konings IB, Nivet H, Lonergan M, Arthus MF, van Os CH, Deen PM (2003) Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. J Cell Biol 163:1099–1109PubMedCrossRef
125.
Zurück zum Zitat Kuwahara M, Iwai K, Ooeda T, Igarashi T, Ogawa E, Katsushima Y, Shinbo I, Uchida S, Terada Y, Arthus MF, Lonergan M, Fujiwara TM, Bichet DG, Marumo F, Sasaki S (2001) Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am J Hum Genet 69:738–748PubMedCrossRef Kuwahara M, Iwai K, Ooeda T, Igarashi T, Ogawa E, Katsushima Y, Shinbo I, Uchida S, Terada Y, Arthus MF, Lonergan M, Fujiwara TM, Bichet DG, Marumo F, Sasaki S (2001) Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am J Hum Genet 69:738–748PubMedCrossRef
126.
Zurück zum Zitat Marr N, Bichet DG, Lonergan M, Arthus MF, Jeck N, Seyberth HW, Rosenthal W, van Os CH, Oksche A, Deen PM (2002) Heteroligomerization of an Aquaporin-2 mutant with wild-type Aquaporin-2 and their misrouting to late endosomes/lysosomes explains dominant nephrogenic diabetes insipidus. Hum Mol Genet 11:779–789PubMedCrossRef Marr N, Bichet DG, Lonergan M, Arthus MF, Jeck N, Seyberth HW, Rosenthal W, van Os CH, Oksche A, Deen PM (2002) Heteroligomerization of an Aquaporin-2 mutant with wild-type Aquaporin-2 and their misrouting to late endosomes/lysosomes explains dominant nephrogenic diabetes insipidus. Hum Mol Genet 11:779–789PubMedCrossRef
127.
Zurück zum Zitat Mulders SM, Bichet DG, Rijss JP, Kamsteeg EJ, Arthus MF, Lonergan M, Fujiwara M, Morgan K, Leijendekker R, van der Sluijs P, van Os CH, Deen PM (1998) An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest 102:57–66PubMedCrossRef Mulders SM, Bichet DG, Rijss JP, Kamsteeg EJ, Arthus MF, Lonergan M, Fujiwara M, Morgan K, Leijendekker R, van der Sluijs P, van Os CH, Deen PM (1998) An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest 102:57–66PubMedCrossRef
128.
Zurück zum Zitat Savelkoul PJ, De MF, Li Y, Kamsteeg EJ, Konings IB, van der Sluijs P, Deen PM (2009) p.R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation. Hum Mutat 30:E891–E903PubMedCrossRef Savelkoul PJ, De MF, Li Y, Kamsteeg EJ, Konings IB, van der Sluijs P, Deen PM (2009) p.R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation. Hum Mutat 30:E891–E903PubMedCrossRef
129.
Zurück zum Zitat Shinbo I, Fushimi K, Kasahara M, Yamauchi K, Sasaki S, Marumo F (1999) Functional analysis of aquaporin-2 mutants associated with nephrogenic diabetes insipidus by yeast expression. Am J Physiol 277:F734–F741PubMed Shinbo I, Fushimi K, Kasahara M, Yamauchi K, Sasaki S, Marumo F (1999) Functional analysis of aquaporin-2 mutants associated with nephrogenic diabetes insipidus by yeast expression. Am J Physiol 277:F734–F741PubMed
130.
Zurück zum Zitat Kamsteeg EJ, Wormhoudt TA, Rijss JP, van Os CH, Deen PM (1999) An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. EMBO J 18:2394–2400PubMedCrossRef Kamsteeg EJ, Wormhoudt TA, Rijss JP, van Os CH, Deen PM (1999) An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. EMBO J 18:2394–2400PubMedCrossRef
131.
Zurück zum Zitat Moon SS, Kim HJ, Choi YK, Seo HA, Jeon JH, Lee JE, Lee JY, Kwon TH, Kim JG, Kim BW, Lee IK (2009) Novel mutation of aquaporin-2 gene in a patient with congenital nephrogenic diabetes insipidus. Endocr J 56:905–910PubMedCrossRef Moon SS, Kim HJ, Choi YK, Seo HA, Jeon JH, Lee JE, Lee JY, Kwon TH, Kim JG, Kim BW, Lee IK (2009) Novel mutation of aquaporin-2 gene in a patient with congenital nephrogenic diabetes insipidus. Endocr J 56:905–910PubMedCrossRef
132.
Zurück zum Zitat van Lieburg AF, Verdijk MA, Knoers VV, van Essen AJ, Proesmans W, Mallmann R, Monnens LA, van Oost BA, van Os CH, Deen PM (1994) Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. AmJ Hum Genet 55:648–652 van Lieburg AF, Verdijk MA, Knoers VV, van Essen AJ, Proesmans W, Mallmann R, Monnens LA, van Oost BA, van Os CH, Deen PM (1994) Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. AmJ Hum Genet 55:648–652
133.
Zurück zum Zitat Asai T, Kuwahara M, Kurihara H, Sakai T, Terada Y, Marumo F, Sasaki S (2003) Pathogenesis of nephrogenic diabetes insipidus by aquaporin-2 C-terminus mutations. Kidney Int 64:2–10PubMedCrossRef Asai T, Kuwahara M, Kurihara H, Sakai T, Terada Y, Marumo F, Sasaki S (2003) Pathogenesis of nephrogenic diabetes insipidus by aquaporin-2 C-terminus mutations. Kidney Int 64:2–10PubMedCrossRef
134.
Zurück zum Zitat van Balkom BW, Savelkoul PJ, Markovich D, Hofman E, Nielsen S, van der Sluijs P, Deen PM (2002) The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J Biol Chem 277:41473–41479PubMedCrossRef van Balkom BW, Savelkoul PJ, Markovich D, Hofman E, Nielsen S, van der Sluijs P, Deen PM (2002) The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J Biol Chem 277:41473–41479PubMedCrossRef
135.
Zurück zum Zitat Lu HJ, Matsuzaki T, Bouley R, Hasler U, Qin QH, Brown D (2008) The phosphorylation state of serine 256 is dominant over that of serine 261 in the regulation of AQP2 trafficking in renal epithelial cells. Am J Physiol Renal Physiol 295:F290–F294PubMedCrossRef Lu HJ, Matsuzaki T, Bouley R, Hasler U, Qin QH, Brown D (2008) The phosphorylation state of serine 256 is dominant over that of serine 261 in the regulation of AQP2 trafficking in renal epithelial cells. Am J Physiol Renal Physiol 295:F290–F294PubMedCrossRef
136.
Zurück zum Zitat Moeller HB, MacAulay N, Knepper MA, Fenton RA (2009) Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating. Am J Physiol Renal Physiol 296:F649–F657PubMedCrossRef Moeller HB, MacAulay N, Knepper MA, Fenton RA (2009) Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating. Am J Physiol Renal Physiol 296:F649–F657PubMedCrossRef
137.
Zurück zum Zitat Kamsteeg EJ, Stoffels M, Tamma G, Konings IB, Deen PM (2009) Repulsion between Lys258 and upstream arginines explains the missorting of the AQP2 mutant p.Glu258Lys in nephrogenic diabetes insipidus. Hum Mutat 30:1387–1396PubMedCrossRef Kamsteeg EJ, Stoffels M, Tamma G, Konings IB, Deen PM (2009) Repulsion between Lys258 and upstream arginines explains the missorting of the AQP2 mutant p.Glu258Lys in nephrogenic diabetes insipidus. Hum Mutat 30:1387–1396PubMedCrossRef
138.
Zurück zum Zitat Kamsteeg EJ, Savelkoul PJ, Hendriks G, Konings IB, Nivillac NM, Lagendijk AK, van der Sluijs P, Deen PM (2008) Missorting of the Aquaporin-2 mutant E258K to multivesicular bodies/lysosomes in dominant NDI is associated with its monoubiquitination and increased phosphorylation by PKC but is due to the loss of E258. Pflug Arch 455:1041–1054CrossRef Kamsteeg EJ, Savelkoul PJ, Hendriks G, Konings IB, Nivillac NM, Lagendijk AK, van der Sluijs P, Deen PM (2008) Missorting of the Aquaporin-2 mutant E258K to multivesicular bodies/lysosomes in dominant NDI is associated with its monoubiquitination and increased phosphorylation by PKC but is due to the loss of E258. Pflug Arch 455:1041–1054CrossRef
139.
Zurück zum Zitat Tajika Y, Matsuzaki T, Suzuki T, Aoki T, Hagiwara H, Tanaka S, Kominami E, Takata K (2002) Immunohistochemical characterization of the intracellular pool of water channel aquaporin-2 in the rat kidney. Anat Sci Int 77:189–195PubMedCrossRef Tajika Y, Matsuzaki T, Suzuki T, Aoki T, Hagiwara H, Tanaka S, Kominami E, Takata K (2002) Immunohistochemical characterization of the intracellular pool of water channel aquaporin-2 in the rat kidney. Anat Sci Int 77:189–195PubMedCrossRef
140.
Zurück zum Zitat Sohara E, Rai T, Yang SS, Uchida K, Nitta K, Horita S, Ohno M, Harada A, Sasaki S, Uchida S (2006) Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation. Proc Natl Acad Sci USA 103:14217–14222PubMedCrossRef Sohara E, Rai T, Yang SS, Uchida K, Nitta K, Horita S, Ohno M, Harada A, Sasaki S, Uchida S (2006) Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation. Proc Natl Acad Sci USA 103:14217–14222PubMedCrossRef
141.
Zurück zum Zitat Katsura T, Gustafson CE, Ausiello DA, Brown D (1997) Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am J Physiol 272:F817–F822PubMed Katsura T, Gustafson CE, Ausiello DA, Brown D (1997) Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am J Physiol 272:F817–F822PubMed
142.
Zurück zum Zitat Edemir B, Pavenstadt H, Schlatter E, Weide T (2011) Mechanisms of cell polarity and aquaporin sorting in the nephron. Pflug Arch 461:607–621CrossRef Edemir B, Pavenstadt H, Schlatter E, Weide T (2011) Mechanisms of cell polarity and aquaporin sorting in the nephron. Pflug Arch 461:607–621CrossRef
143.
Zurück zum Zitat McDill BW, Li SZ, Kovach PA, Ding L, Chen F (2006) Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci USA 103:6952–6957PubMedCrossRef McDill BW, Li SZ, Kovach PA, Ding L, Chen F (2006) Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci USA 103:6952–6957PubMedCrossRef
144.
Zurück zum Zitat Rojek A, Fuchtbauer EM, Kwon TH, Frokiaer J, Nielsen S (2006) Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice. Proc Natl Acad Sci USA 103:6037–6042PubMedCrossRef Rojek A, Fuchtbauer EM, Kwon TH, Frokiaer J, Nielsen S (2006) Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice. Proc Natl Acad Sci USA 103:6037–6042PubMedCrossRef
145.
Zurück zum Zitat Yang B, Zhao D, Qian L, Verkman AS (2006) Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion. Am J Physiol Renal Physiol 291:F465–F472PubMedCrossRef Yang B, Zhao D, Qian L, Verkman AS (2006) Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion. Am J Physiol Renal Physiol 291:F465–F472PubMedCrossRef
146.
Zurück zum Zitat De Mattia F, Savelkoul PJ, Bichet DG, Kamsteeg EJ, Konings IB, Marr N, Arthus MF, Lonergan M, van Os CH, van der Sluijs P, Robertson G, Deen PM (2004) A novel mechanism in recessive nephrogenic diabetes insipidus: wild-type aquaporin-2 rescues the apical membrane expression of intracellularly retained AQP2-P262L. Hum Mol Genet 13:3045–3056PubMedCrossRef De Mattia F, Savelkoul PJ, Bichet DG, Kamsteeg EJ, Konings IB, Marr N, Arthus MF, Lonergan M, van Os CH, van der Sluijs P, Robertson G, Deen PM (2004) A novel mechanism in recessive nephrogenic diabetes insipidus: wild-type aquaporin-2 rescues the apical membrane expression of intracellularly retained AQP2-P262L. Hum Mol Genet 13:3045–3056PubMedCrossRef
147.
Zurück zum Zitat Deen PM (2007) Mouse models for congenital nephrogenic diabetes insipidus: what can we learn from them? Nephrol Dial Transplant 22:1023–1026PubMedCrossRef Deen PM (2007) Mouse models for congenital nephrogenic diabetes insipidus: what can we learn from them? Nephrol Dial Transplant 22:1023–1026PubMedCrossRef
148.
Zurück zum Zitat Kirchlechner V, Koller DY, Seidl R, Waldhauser F (1999) Treatment of nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride. Arch Dis Child 80:548–552PubMedCrossRef Kirchlechner V, Koller DY, Seidl R, Waldhauser F (1999) Treatment of nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride. Arch Dis Child 80:548–552PubMedCrossRef
149.
Zurück zum Zitat Alon U, Chan JC (1985) Hydrochlorothiazide-amiloride in the treatment of congenital nephrogenic diabetes insipidus. Am J Nephrol 5:9–13PubMedCrossRef Alon U, Chan JC (1985) Hydrochlorothiazide-amiloride in the treatment of congenital nephrogenic diabetes insipidus. Am J Nephrol 5:9–13PubMedCrossRef
150.
Zurück zum Zitat Knoers N, Monnens LA (1990) Amiloride-hydrochlorothiazide versus indomethacin-hydrochlorothiazide in the treatment of nephrogenic diabetes insipidus. J Pediatr 117:499–502PubMedCrossRef Knoers N, Monnens LA (1990) Amiloride-hydrochlorothiazide versus indomethacin-hydrochlorothiazide in the treatment of nephrogenic diabetes insipidus. J Pediatr 117:499–502PubMedCrossRef
151.
Zurück zum Zitat Knoers NV, Deen PM (2001) Molecular and cellular defects in nephrogenic diabetes insipidus. Pediatr Nephrol 16:1146–1152PubMedCrossRef Knoers NV, Deen PM (2001) Molecular and cellular defects in nephrogenic diabetes insipidus. Pediatr Nephrol 16:1146–1152PubMedCrossRef
152.
Zurück zum Zitat Kim GH, Lee JW, Oh YK, Chang HR, Joo KW, Na KY, Earm JH, Knepper MA, Han JS (2004) Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol 15:2836–2843PubMedCrossRef Kim GH, Lee JW, Oh YK, Chang HR, Joo KW, Na KY, Earm JH, Knepper MA, Han JS (2004) Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol 15:2836–2843PubMedCrossRef
153.
Zurück zum Zitat Loffing J, Kaissling B (2003) Sodium and calcium transport pathways along the mammalian distal nephron: from rabbit to human. Am J Physiol Renal Physiol 284:F628–F643PubMed Loffing J, Kaissling B (2003) Sodium and calcium transport pathways along the mammalian distal nephron: from rabbit to human. Am J Physiol Renal Physiol 284:F628–F643PubMed
154.
Zurück zum Zitat Los EL, Deen PM, Robben JH (2010) Potential of nonpeptide (ant)agonists to rescue vasopressin V2 receptor mutants for the treatment of X-linked nephrogenic diabetes insipidus. J Neuroendocrinol 22:393–399PubMedCrossRef Los EL, Deen PM, Robben JH (2010) Potential of nonpeptide (ant)agonists to rescue vasopressin V2 receptor mutants for the treatment of X-linked nephrogenic diabetes insipidus. J Neuroendocrinol 22:393–399PubMedCrossRef
155.
Zurück zum Zitat Robben JH, Kortenoeven ML, Sze M, Yae C, Milligan G, Oorschot VM, Klumperman J, Knoers NV, Deen PM (2009) Intracellular activation of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus by nonpeptide agonists. Proc Natl Acad Sci USA 106:12195–12200PubMedCrossRef Robben JH, Kortenoeven ML, Sze M, Yae C, Milligan G, Oorschot VM, Klumperman J, Knoers NV, Deen PM (2009) Intracellular activation of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus by nonpeptide agonists. Proc Natl Acad Sci USA 106:12195–12200PubMedCrossRef
156.
Zurück zum Zitat Li JH, Chou CL, Li B, Gavrilova O, Eisner C, Schnermann J, Anderson SA, Deng CX, Knepper MA, Wess J (2009) A selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus. J Clin Invest 119:3115–3126PubMedCrossRef Li JH, Chou CL, Li B, Gavrilova O, Eisner C, Schnermann J, Anderson SA, Deng CX, Knepper MA, Wess J (2009) A selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus. J Clin Invest 119:3115–3126PubMedCrossRef
157.
Zurück zum Zitat Cohen FE, Kelly JW (2003) Therapeutic approaches to protein-misfolding diseases. Nature 426:905–909PubMedCrossRef Cohen FE, Kelly JW (2003) Therapeutic approaches to protein-misfolding diseases. Nature 426:905–909PubMedCrossRef
158.
Zurück zum Zitat Eilers M, Schatz G (1986) Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322:228–232PubMedCrossRef Eilers M, Schatz G (1986) Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322:228–232PubMedCrossRef
159.
Zurück zum Zitat Morello JP, Salahpour A, Laperriere A, Bernier V, Arthus MF, Lonergan M, Petaja-Repo U, Angers S, Morin D, Bichet DG, Bouvier M (2000) Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest 105:887–895PubMedCrossRef Morello JP, Salahpour A, Laperriere A, Bernier V, Arthus MF, Lonergan M, Petaja-Repo U, Angers S, Morin D, Bichet DG, Bouvier M (2000) Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest 105:887–895PubMedCrossRef
160.
Zurück zum Zitat Wuller S, Wiesner B, Loffler A, Furkert J, Krause G, Hermosilla R, Schaefer M, Schulein R, Rosenthal W, Oksche A (2004) Pharmacochaperones post-translationally enhance cell surface expression by increasing conformational stability of wild-type and mutant vasopressin V2 receptors. J Biol Chem 279:47254–47263PubMedCrossRef Wuller S, Wiesner B, Loffler A, Furkert J, Krause G, Hermosilla R, Schaefer M, Schulein R, Rosenthal W, Oksche A (2004) Pharmacochaperones post-translationally enhance cell surface expression by increasing conformational stability of wild-type and mutant vasopressin V2 receptors. J Biol Chem 279:47254–47263PubMedCrossRef
161.
Zurück zum Zitat Bernier V, Morello JP, Zarruk A, Debrand N, Salahpour A, Lonergan M, Arthus MF, Laperriere A, Brouard R, Bouvier M, Bichet DG (2006) Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 17:232–243PubMedCrossRef Bernier V, Morello JP, Zarruk A, Debrand N, Salahpour A, Lonergan M, Arthus MF, Laperriere A, Brouard R, Bouvier M, Bichet DG (2006) Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 17:232–243PubMedCrossRef
162.
Zurück zum Zitat Robben JH, Sze M, Knoers NV, Deen PM (2007) Functional rescue of vasopressin V2 receptor mutants in MDCK cells by pharmacochaperones: relevance to therapy of nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 292:F253–F260PubMedCrossRef Robben JH, Sze M, Knoers NV, Deen PM (2007) Functional rescue of vasopressin V2 receptor mutants in MDCK cells by pharmacochaperones: relevance to therapy of nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 292:F253–F260PubMedCrossRef
163.
Zurück zum Zitat Bernier V, Lagace M, Lonergan M, Arthus MF, Bichet DG, Bouvier M (2004) Functional rescue of the constitutively internalized V2 vasopressin receptor mutant R137H by the pharmacological chaperone action of SR49059. Mol Endocrinol 18:2074–2084PubMedCrossRef Bernier V, Lagace M, Lonergan M, Arthus MF, Bichet DG, Bouvier M (2004) Functional rescue of the constitutively internalized V2 vasopressin receptor mutant R137H by the pharmacological chaperone action of SR49059. Mol Endocrinol 18:2074–2084PubMedCrossRef
164.
Zurück zum Zitat Thibonnier M, Conarty DM, Preston JA, Wilkins PL, Berti-Mattera LN, Mattera R (1998) Molecular pharmacology of human vasopressin receptors. Adv Exp Med Biol 449:251–276PubMedCrossRef Thibonnier M, Conarty DM, Preston JA, Wilkins PL, Berti-Mattera LN, Mattera R (1998) Molecular pharmacology of human vasopressin receptors. Adv Exp Med Biol 449:251–276PubMedCrossRef
165.
Zurück zum Zitat Jean-Alphonse F, Perkovska S, Frantz MC, Durroux T, Mejean C, Morin D, Loison S, Bonnet D, Hibert M, Mouillac B, Mendre C (2009) Biased agonist pharmacochaperones of the AVP V2 receptor may treat congenital nephrogenic diabetes insipidus. J Am Soc Nephrol 20:2190–2203PubMedCrossRef Jean-Alphonse F, Perkovska S, Frantz MC, Durroux T, Mejean C, Morin D, Loison S, Bonnet D, Hibert M, Mouillac B, Mendre C (2009) Biased agonist pharmacochaperones of the AVP V2 receptor may treat congenital nephrogenic diabetes insipidus. J Am Soc Nephrol 20:2190–2203PubMedCrossRef
166.
Zurück zum Zitat Calebiro D, Nikolaev VO, Persani L, Lohse MJ (2010) Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci 31:221–228PubMedCrossRef Calebiro D, Nikolaev VO, Persani L, Lohse MJ (2010) Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci 31:221–228PubMedCrossRef
167.
Zurück zum Zitat Calebiro D, Nikolaev VO, Lohse MJ (2010) Imaging of persistent cAMP signaling by internalized G protein-coupled receptors. J Mol Endocrinol 45:1–8PubMedCrossRef Calebiro D, Nikolaev VO, Lohse MJ (2010) Imaging of persistent cAMP signaling by internalized G protein-coupled receptors. J Mol Endocrinol 45:1–8PubMedCrossRef
168.
Zurück zum Zitat Calebiro D, Nikolaev VO, Gagliani MC, de FT, Dees C, Tacchetti C, Persani L, Lohse MJ (2009) Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol 7:e1000172 Calebiro D, Nikolaev VO, Gagliani MC, de FT, Dees C, Tacchetti C, Persani L, Lohse MJ (2009) Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol 7:e1000172
169.
Zurück zum Zitat Yun J, Schoneberg T, Liu J, Schulz A, Ecelbarger CA, Promeneur D, Nielsen S, Sheng H, Grinberg A, Deng C, Wess J (2000) Generation and phenotype of mice harboring a nonsense mutation in the V2 vasopressin receptor gene. J Clin Invest 106:1361–1371PubMedCrossRef Yun J, Schoneberg T, Liu J, Schulz A, Ecelbarger CA, Promeneur D, Nielsen S, Sheng H, Grinberg A, Deng C, Wess J (2000) Generation and phenotype of mice harboring a nonsense mutation in the V2 vasopressin receptor gene. J Clin Invest 106:1361–1371PubMedCrossRef
170.
Zurück zum Zitat Li Y, Shaw S, Kamsteeg EJ, Vandewalle A, Deen PM (2006) Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity. J Am Soc Nephrol 17:1063–1072PubMedCrossRef Li Y, Shaw S, Kamsteeg EJ, Vandewalle A, Deen PM (2006) Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity. J Am Soc Nephrol 17:1063–1072PubMedCrossRef
171.
Zurück zum Zitat Olesen ET, Rutzler MR, Moeller HB, Praetorius HA, Fenton RA (2011) Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. Proc Natl Acad Sci USA 108:12949–12954PubMedCrossRef Olesen ET, Rutzler MR, Moeller HB, Praetorius HA, Fenton RA (2011) Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. Proc Natl Acad Sci USA 108:12949–12954PubMedCrossRef
172.
Zurück zum Zitat Desai S, April H, Nwaneshiudu C, Ashby B (2000) Comparison of agonist-induced internalization of the human EP2 and EP4 prostaglandin receptors: role of the carboxyl terminus in EP4 receptor sequestration. Mol Pharmacol 58:1279–1286PubMed Desai S, April H, Nwaneshiudu C, Ashby B (2000) Comparison of agonist-induced internalization of the human EP2 and EP4 prostaglandin receptors: role of the carboxyl terminus in EP4 receptor sequestration. Mol Pharmacol 58:1279–1286PubMed
173.
174.
Zurück zum Zitat Steinwall M, Akerlund M, Bossmar T, Nishii M, Wright M (2004) ONO-8815Ly, an EP2 agonist that markedly inhibits uterine contractions in women. BJOG 111:120–124PubMedCrossRef Steinwall M, Akerlund M, Bossmar T, Nishii M, Wright M (2004) ONO-8815Ly, an EP2 agonist that markedly inhibits uterine contractions in women. BJOG 111:120–124PubMedCrossRef
175.
Zurück zum Zitat Yang B, Zhao D, Verkman AS (2009) Hsp90 inhibitor partially corrects nephrogenic diabetes insipidus in a conditional knock-in mouse model of aquaporin-2 mutation. FASEB J 23:503–512PubMedCrossRef Yang B, Zhao D, Verkman AS (2009) Hsp90 inhibitor partially corrects nephrogenic diabetes insipidus in a conditional knock-in mouse model of aquaporin-2 mutation. FASEB J 23:503–512PubMedCrossRef
176.
Zurück zum Zitat Jiang C, Fang SL, Xiao YF, O'Connor SP, Nadler SG, Lee DW, Jefferson DM, Kaplan JM, Smith AE, Cheng SH (1998) Partial restoration of cAMP-stimulated CFTR chloride channel activity in DeltaF508 cells by deoxyspergualin. Am J Physiol 275:C171–C178PubMed Jiang C, Fang SL, Xiao YF, O'Connor SP, Nadler SG, Lee DW, Jefferson DM, Kaplan JM, Smith AE, Cheng SH (1998) Partial restoration of cAMP-stimulated CFTR chloride channel activity in DeltaF508 cells by deoxyspergualin. Am J Physiol 275:C171–C178PubMed
177.
Zurück zum Zitat Taiyab A, Sreedhar AS, Rao C (2009) Hsp90 inhibitors, GA and 17AAG, lead to ER stress-induced apoptosis in rat histiocytoma. Biochem Pharmacol 78:142–152PubMedCrossRef Taiyab A, Sreedhar AS, Rao C (2009) Hsp90 inhibitors, GA and 17AAG, lead to ER stress-induced apoptosis in rat histiocytoma. Biochem Pharmacol 78:142–152PubMedCrossRef
178.
Zurück zum Zitat Wang W, Li C, Kwon TH, Knepper MA, Frokiaer J, Nielsen S (2002) AQP3, p-AQP2, and AQP2 expression is reduced in polyuric rats with hypercalcemia: prevention by cAMP-PDE inhibitors. Am J Physiol Renal Physiol 283:F1313–F1325PubMed Wang W, Li C, Kwon TH, Knepper MA, Frokiaer J, Nielsen S (2002) AQP3, p-AQP2, and AQP2 expression is reduced in polyuric rats with hypercalcemia: prevention by cAMP-PDE inhibitors. Am J Physiol Renal Physiol 283:F1313–F1325PubMed
179.
Zurück zum Zitat Souness JE, Aldous D, Sargent C (2000) Immunosuppressive and anti-inflammatory effects of cyclic AMP phosphodiesterase (PDE) type 4 inhibitors. Immunopharmacol 47:127–162CrossRef Souness JE, Aldous D, Sargent C (2000) Immunosuppressive and anti-inflammatory effects of cyclic AMP phosphodiesterase (PDE) type 4 inhibitors. Immunopharmacol 47:127–162CrossRef
Metadaten
Titel
Congenital nephrogenic diabetes insipidus: the current state of affairs
verfasst von
Daniel Wesche
Peter M. T. Deen
Nine V. A. M. Knoers
Publikationsdatum
01.12.2012
Verlag
Springer-Verlag
Erschienen in
Pediatric Nephrology / Ausgabe 12/2012
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-012-2118-8

Weitere Artikel der Ausgabe 12/2012

Pediatric Nephrology 12/2012 Zur Ausgabe

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.