Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 3/2020

07.02.2020 | Original Article

Contour-aware multi-label chest X-ray organ segmentation

verfasst von: M. Kholiavchenko, I. Sirazitdinov, K. Kubrak, R. Badrutdinova, R. Kuleev, Y. Yuan, T. Vrtovec, B. Ibragimov

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Segmentation of organs from chest X-ray images is an essential task for an accurate and reliable diagnosis of lung diseases and chest organ morphometry. In this study, we investigated the benefits of augmenting state-of-the-art deep convolutional neural networks (CNNs) for image segmentation with organ contour information and evaluated the performance of such augmentation on segmentation of lung fields, heart, and clavicles from chest X-ray images.

Methods

Three state-of-the-art CNNs were augmented, namely the UNet and LinkNet architecture with the ResNeXt feature extraction backbone, and the Tiramisu architecture with the DenseNet. All CNN architectures were trained on ground-truth segmentation masks and additionally on the corresponding contours. The contribution of such contour-based augmentation was evaluated against the contour-free architectures, and 20 existing algorithms for lung field segmentation.

Results

The proposed contour-aware segmentation improved the segmentation performance, and when compared against existing algorithms on the same publicly available database of 247 chest X-ray images, the UNet architecture with the ResNeXt50 encoder combined with the contour-aware approach resulted in the best overall segmentation performance, achieving a Jaccard overlap coefficient of 0.971, 0.933, and 0.903 for the lung fields, heart, and clavicles, respectively.

Conclusion

In this study, we proposed to augment CNN architectures for CXR segmentation with organ contour information and were able to significantly improve segmentation accuracy and outperform all existing solution using a public chest X-ray database.
Literatur
1.
Zurück zum Zitat Chen S, Zhong S, Yao L, Shang Y, Suzuki K (2016) Enhancement of chest radiographs obtained in the intensive care unit through bone suppression and consistent processing. Phys Med Biol 61:2283CrossRef Chen S, Zhong S, Yao L, Shang Y, Suzuki K (2016) Enhancement of chest radiographs obtained in the intensive care unit through bone suppression and consistent processing. Phys Med Biol 61:2283CrossRef
2.
Zurück zum Zitat Candemir S, Antani S (2019) A review on lung boundary detection in chest X-rays. Int J Comput Assist Radiol Surg 14:563–576CrossRef Candemir S, Antani S (2019) A review on lung boundary detection in chest X-rays. Int J Comput Assist Radiol Surg 14:563–576CrossRef
3.
Zurück zum Zitat Miniati M, Coppini G, Monti S, Bottai M, Paterni M, Ferdeghini E (2011) Computer-aided recognition of emphysema on digital chest radiography. Eur J Radiol 80:169–175CrossRef Miniati M, Coppini G, Monti S, Bottai M, Paterni M, Ferdeghini E (2011) Computer-aided recognition of emphysema on digital chest radiography. Eur J Radiol 80:169–175CrossRef
4.
Zurück zum Zitat Candemir S, Jaeger S, Lin W, Xue Z, Antani S, Thoma G (2016) Automatic heart localization and radiographic index computation in chest X-rays. In: SPIE medical imaging, 9785 Candemir S, Jaeger S, Lin W, Xue Z, Antani S, Thoma G (2016) Automatic heart localization and radiographic index computation in chest X-rays. In: SPIE medical imaging, 9785
5.
Zurück zum Zitat Finnegan R, Dowling J, Koh E-S, Tang S, Otton J, Delaney G, Batumalai V, Luo C, Atluri P, Satchithanandha A (2019) Feasibility of multi-atlas cardiac segmentation from thoracic planning CT in a probabilistic framework. Phys Med Biol 64:085006CrossRef Finnegan R, Dowling J, Koh E-S, Tang S, Otton J, Delaney G, Batumalai V, Luo C, Atluri P, Satchithanandha A (2019) Feasibility of multi-atlas cardiac segmentation from thoracic planning CT in a probabilistic framework. Phys Med Biol 64:085006CrossRef
6.
Zurück zum Zitat Gordienko Y, Gang P, Hui J, Zeng W, Kochura Y, Alienin O, Rokovyi O, Stirenko S (2018) Deep learning with lung segmentation and bone shadow exclusion techniques for chest x-ray analysis of lung cancer. In: International conference on ICAFS, pp 638–647 Gordienko Y, Gang P, Hui J, Zeng W, Kochura Y, Alienin O, Rokovyi O, Stirenko S (2018) Deep learning with lung segmentation and bone shadow exclusion techniques for chest x-ray analysis of lung cancer. In: International conference on ICAFS, pp 638–647
7.
Zurück zum Zitat Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu K, Matsui M, Fujita H, Kodera Y, Doi K (2000) Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. AJR Am J Roentgenol 174:71–4CrossRef Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu K, Matsui M, Fujita H, Kodera Y, Doi K (2000) Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. AJR Am J Roentgenol 174:71–4CrossRef
8.
Zurück zum Zitat van Ginneken B, Stegmann MB, Loog M (2006) Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med Image Anal 10:19–40CrossRef van Ginneken B, Stegmann MB, Loog M (2006) Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med Image Anal 10:19–40CrossRef
9.
Zurück zum Zitat Vittitoe NF, Vargas-Voracek R, Floyd CF Jr (1998) Identification of lung regions in chest radiographs using Markov random field modeling. Med Phys 25:976–85CrossRef Vittitoe NF, Vargas-Voracek R, Floyd CF Jr (1998) Identification of lung regions in chest radiographs using Markov random field modeling. Med Phys 25:976–85CrossRef
10.
Zurück zum Zitat Shi Z, Zhou P, He L, Nakamura T, Yao Q, Itoh H (2009) Lung segmentation in chest radiographs by means of Gaussian kernel-based FCM with spatial constraints. In: 6th international conference on fuzzy systems and knowledge discovery (FSKD). IEEE, pp 428–432 Shi Z, Zhou P, He L, Nakamura T, Yao Q, Itoh H (2009) Lung segmentation in chest radiographs by means of Gaussian kernel-based FCM with spatial constraints. In: 6th international conference on fuzzy systems and knowledge discovery (FSKD). IEEE, pp 428–432
11.
Zurück zum Zitat Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: Computer vision and pattern recognition (CVPR). IEEE, pp 248–55 Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: Computer vision and pattern recognition (CVPR). IEEE, pp 248–55
12.
Zurück zum Zitat Wang C (2017) Segmentation of multiple structures in chest radiographs using multi-task fully convolutional networks. In: Scandinavian conference on image analysis (SCIA). Volume 10270 of Lecture notes in computer science. Springer, Cham, pp 282–289CrossRef Wang C (2017) Segmentation of multiple structures in chest radiographs using multi-task fully convolutional networks. In: Scandinavian conference on image analysis (SCIA). Volume 10270 of Lecture notes in computer science. Springer, Cham, pp 282–289CrossRef
13.
Zurück zum Zitat Hwang S, Park S (2017) Accurate lung segmentation via network-wise training of convolutional networks. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, vol 10553 lecture notes in computer science. Springer, Cham, pp 92–99CrossRef Hwang S, Park S (2017) Accurate lung segmentation via network-wise training of convolutional networks. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, vol 10553 lecture notes in computer science. Springer, Cham, pp 92–99CrossRef
14.
Zurück zum Zitat Dai W, Dong N, Wang Z, Liang X, Zhang H, Xing EP (2018) SCAN: structure correcting adversarial network for organ segmentation in chest X-rays. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, volume 11045 of lecture notes in computer science. Springer, Berlin, pp 263–73CrossRef Dai W, Dong N, Wang Z, Liang X, Zhang H, Xing EP (2018) SCAN: structure correcting adversarial network for organ segmentation in chest X-rays. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, volume 11045 of lecture notes in computer science. Springer, Berlin, pp 263–73CrossRef
15.
Zurück zum Zitat Bi L, Feng D, Kim J (2018) Dual-path adversarial learning for fully convolutional network (FCN)-based medical image segmentation. Vis Comput 34:1043–52CrossRef Bi L, Feng D, Kim J (2018) Dual-path adversarial learning for fully convolutional network (FCN)-based medical image segmentation. Vis Comput 34:1043–52CrossRef
16.
Zurück zum Zitat Novikov AA, Lenis D, Major D, Hladůvka J, Wimmer M, Bühler K (2018) Fully convolutional architectures for multi-class segmentation in chest radiographs. IEEE Trans Med Imaging 37:1865–76CrossRef Novikov AA, Lenis D, Major D, Hladůvka J, Wimmer M, Bühler K (2018) Fully convolutional architectures for multi-class segmentation in chest radiographs. IEEE Trans Med Imaging 37:1865–76CrossRef
17.
Zurück zum Zitat Mittal A, Hooda R, Sofat S (2018) LF-SegNet: a fully convolutional encoder-decoder network for segmenting lung fields from chest radiographs. Wirel Pers Commun 101:511–29CrossRef Mittal A, Hooda R, Sofat S (2018) LF-SegNet: a fully convolutional encoder-decoder network for segmenting lung fields from chest radiographs. Wirel Pers Commun 101:511–29CrossRef
18.
Zurück zum Zitat Frid-Adar M, Ben-Cohen A, Amer R, Greenspan H (2018) Improving the segmentation of anatomical structures in chest radiographs using U-Net with an ImageNet pre-trained encoder. In: Image analysis for moving organ. breast, and thoracic images, volume 11040 of lecture notes in computer science. Springer, Cham, pp 159–68CrossRef Frid-Adar M, Ben-Cohen A, Amer R, Greenspan H (2018) Improving the segmentation of anatomical structures in chest radiographs using U-Net with an ImageNet pre-trained encoder. In: Image analysis for moving organ. breast, and thoracic images, volume 11040 of lecture notes in computer science. Springer, Cham, pp 159–68CrossRef
19.
Zurück zum Zitat Bonheur S, Stern D, Payer C, Pienn M, Olschewski H, Urschler M (2019) Matwo-capsnet: a multi-label semantic segmentation capsules network. MICCAI 2019:664–672 Bonheur S, Stern D, Payer C, Pienn M, Olschewski H, Urschler M (2019) Matwo-capsnet: a multi-label semantic segmentation capsules network. MICCAI 2019:664–672
20.
Zurück zum Zitat Ngo T A, Carneiro G (205) Lung segmentation in chest radiographs using distance regularized level set and deep-structured learning and inference. In: International conference on image processing (ICIP). IEEE, pp 2140–2143 Ngo T A, Carneiro G (205) Lung segmentation in chest radiographs using distance regularized level set and deep-structured learning and inference. In: International conference on image processing (ICIP). IEEE, pp 2140–2143
21.
Zurück zum Zitat Kumar N, Verma R, Sharma S, Bhargava S, Vahadane A, Sethi A (2017) A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans Med Imaging 36:1550–60CrossRef Kumar N, Verma R, Sharma S, Bhargava S, Vahadane A, Sethi A (2017) A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans Med Imaging 36:1550–60CrossRef
22.
Zurück zum Zitat Cui Y, Zhang G, Liu Z, Xiong Z, Hu J (2018) A deep learning algorithm for one-step contour aware nuclei segmentation of histopathological images. arXiv, p 1803.02786 Cui Y, Zhang G, Liu Z, Xiong Z, Hu J (2018) A deep learning algorithm for one-step contour aware nuclei segmentation of histopathological images. arXiv, p 1803.02786
23.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention (MICCAI), volume 9351 of lecture notes in computer science. Springer, Cham, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention (MICCAI), volume 9351 of lecture notes in computer science. Springer, Cham, pp 234–241
24.
Zurück zum Zitat Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: Computer vision and pattern recognition (CVPR). IEEE, pp 5987–5995 Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: Computer vision and pattern recognition (CVPR). IEEE, pp 5987–5995
25.
Zurück zum Zitat Chaurasia A, Culurciello E (2017) LinkNet: exploiting encoder representations for efficient semantic segmentation. In: Visual communications and image processing (VCIP). IEEE Chaurasia A, Culurciello E (2017) LinkNet: exploiting encoder representations for efficient semantic segmentation. In: Visual communications and image processing (VCIP). IEEE
26.
Zurück zum Zitat Jégou S, Drozdzal M, Vazquez D, Romero A, Bengio Y (2017) The one hundred layers tiramisu: fully convolutional DenseNets for semantic segmentation. In: Computer vision and pattern recognition workshops (CVPRW). IEEE, pp 1175–1783 Jégou S, Drozdzal M, Vazquez D, Romero A, Bengio Y (2017) The one hundred layers tiramisu: fully convolutional DenseNets for semantic segmentation. In: Computer vision and pattern recognition workshops (CVPRW). IEEE, pp 1175–1783
27.
Zurück zum Zitat Huang G, Liu Z, van der Maaten L, Weinberger K Q (2017) Densely connected convolutional networks. In: Computer vision and pattern recognition (CVPR). IEEE, pp 2261–2269 Huang G, Liu Z, van der Maaten L, Weinberger K Q (2017) Densely connected convolutional networks. In: Computer vision and pattern recognition (CVPR). IEEE, pp 2261–2269
28.
Zurück zum Zitat Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Computer vision and pattern recognition (CVPR). IEEE, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Computer vision and pattern recognition (CVPR). IEEE, pp 3431–3440
29.
Zurück zum Zitat Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) UNet++: a nested U-Net architecture for medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support (DLMIA / ML-CDS), volume 11045 of lecture notes in computer science. Springer, Cham, pp 3–11CrossRef Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) UNet++: a nested U-Net architecture for medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support (DLMIA / ML-CDS), volume 11045 of lecture notes in computer science. Springer, Cham, pp 3–11CrossRef
30.
Zurück zum Zitat Wang CW, Huang CT, Lee JH, Li CH, Chang SW, Siao MJ, Lai TM, Ibragimov B, Vrtovec T, Ronneberger O, Fischer P, Cootes TF, Lindner C (2016) A benchmark for comparison of dental radiography analysis algorithms. Med Image Anal 31:63–76CrossRef Wang CW, Huang CT, Lee JH, Li CH, Chang SW, Siao MJ, Lai TM, Ibragimov B, Vrtovec T, Ronneberger O, Fischer P, Cootes TF, Lindner C (2016) A benchmark for comparison of dental radiography analysis algorithms. Med Image Anal 31:63–76CrossRef
31.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Computer vision and pattern recognition (CVPR). IEEE, pp 770–788 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Computer vision and pattern recognition (CVPR). IEEE, pp 770–788
32.
Zurück zum Zitat Shaikh M, Anand G, Acharya G, Amrutkar A, Varghese A, Krishnamurthi G (2018) Brain tumor segmentation using dense fully convolutional neural network. Brainlesion: Glioma. In: Multiple sclerosis, stroke and traumatic brain injuries (BrainLes), volume 10670 of lecture notes in computer Science. Springer, Cham, pp 309–319CrossRef Shaikh M, Anand G, Acharya G, Amrutkar A, Varghese A, Krishnamurthi G (2018) Brain tumor segmentation using dense fully convolutional neural network. Brainlesion: Glioma. In: Multiple sclerosis, stroke and traumatic brain injuries (BrainLes), volume 10670 of lecture notes in computer Science. Springer, Cham, pp 309–319CrossRef
33.
Zurück zum Zitat Xu C, Xu L, Brahm G, Zhang, Li S (2018) Mutgan: simultaneous segmentation and quantification of myocardial infarction without contrast agents via joint adversarial learning. In: Conference on Medical Image Computing and Computer-Assisted Intervention, pp 525–534, 2018CrossRef Xu C, Xu L, Brahm G, Zhang, Li S (2018) Mutgan: simultaneous segmentation and quantification of myocardial infarction without contrast agents via joint adversarial learning. In: Conference on Medical Image Computing and Computer-Assisted Intervention, pp 525–534, 2018CrossRef
34.
Zurück zum Zitat Arik SO, Ibragimov B, Xing L (2017) Fully automated quantitative cephalometry using convolutional neural networks. J Med Imaging 4:014501CrossRef Arik SO, Ibragimov B, Xing L (2017) Fully automated quantitative cephalometry using convolutional neural networks. J Med Imaging 4:014501CrossRef
35.
Zurück zum Zitat Milletari F, Navab N, Ahmadi S-A (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3D vision (3DV). IEEE, pp 565–571 Milletari F, Navab N, Ahmadi S-A (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3D vision (3DV). IEEE, pp 565–571
38.
Zurück zum Zitat Isensee F, Petersen J, Kohl S A A, Jager PF, Maier-Hein KH (2019) Nnu-net: breaking the spell on successful medical image segmentation. arXiv:1904.08128 Isensee F, Petersen J, Kohl S A A, Jager PF, Maier-Hein KH (2019) Nnu-net: breaking the spell on successful medical image segmentation. arXiv:​1904.​08128
39.
Zurück zum Zitat Kingma DP, Ba LJ (2015) Adam: a method for stochastic optimization. In: 3rd International conference on learning representations (ICLR) Kingma DP, Ba LJ (2015) Adam: a method for stochastic optimization. In: 3rd International conference on learning representations (ICLR)
40.
Zurück zum Zitat Shi Y, Qi F, Xue Z, Chen L, Ito K, Matsuo H, Shen D (2008) Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics. IEEE Trans Med Imaging 27:481–94CrossRef Shi Y, Qi F, Xue Z, Chen L, Ito K, Matsuo H, Shen D (2008) Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics. IEEE Trans Med Imaging 27:481–94CrossRef
41.
Zurück zum Zitat Li X, Luo S, Hu Q, Li J, Wang D, Chiong F (2016) Automatic lung field segmentation in X-ray radiographs using statistical shape and appearance models. J Med Imaging Health Inform 6:338–48CrossRef Li X, Luo S, Hu Q, Li J, Wang D, Chiong F (2016) Automatic lung field segmentation in X-ray radiographs using statistical shape and appearance models. J Med Imaging Health Inform 6:338–48CrossRef
42.
Zurück zum Zitat Dawoud A (2010) Fusing shape information in lung segmentation in chest radiographs. In: Image analysis and recognition—ICIAR 2010, volume 6112 of lecture notes in computer science. Springer, Berlin, Heidelberg, pp 70–78 Dawoud A (2010) Fusing shape information in lung segmentation in chest radiographs. In: Image analysis and recognition—ICIAR 2010, volume 6112 of lecture notes in computer science. Springer, Berlin, Heidelberg, pp 70–78
43.
Zurück zum Zitat Candemir S, Jaeger S, Palaniappan K, Musco JP, Singh RK, Zhiyun X, Karargyris A, Antani S, Thoma G, McDonald CJ (2014) Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans Med Imaging 33:577–90CrossRef Candemir S, Jaeger S, Palaniappan K, Musco JP, Singh RK, Zhiyun X, Karargyris A, Antani S, Thoma G, McDonald CJ (2014) Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans Med Imaging 33:577–90CrossRef
44.
Zurück zum Zitat Ibragimov B, Likar B, Pernuš F, Vrtovec T (2012) A game-theorteic framework for landmark-based image segmentation. IEEE Trans. Med. Imaging 31:1761–76CrossRef Ibragimov B, Likar B, Pernuš F, Vrtovec T (2012) A game-theorteic framework for landmark-based image segmentation. IEEE Trans. Med. Imaging 31:1761–76CrossRef
45.
Zurück zum Zitat Seghers D, Loeckx D, Maes F, Vandermeulen D, Suetens P (2007) Minimal shape and intensity cost path segmentation. IEEE Trans Med Imaging 26:1115–29CrossRef Seghers D, Loeckx D, Maes F, Vandermeulen D, Suetens P (2007) Minimal shape and intensity cost path segmentation. IEEE Trans Med Imaging 26:1115–29CrossRef
46.
Zurück zum Zitat Wu G, Zhang X, Luo S, Hu Q (2015) Lung segmentation based on customized active shape model from digital radiography chest images. J Med Imaging Health Inform 5:184–91CrossRef Wu G, Zhang X, Luo S, Hu Q (2015) Lung segmentation based on customized active shape model from digital radiography chest images. J Med Imaging Health Inform 5:184–91CrossRef
47.
Zurück zum Zitat Yang W, Liu Y, Lin L, Yun Z, Lu Z, Feng Q, Chen W (2018) Lung field segmentation in chest radiographs from boundary maps by a structured edge detector. IEEE J Biomed Health Inform 22:842–51CrossRef Yang W, Liu Y, Lin L, Yun Z, Lu Z, Feng Q, Chen W (2018) Lung field segmentation in chest radiographs from boundary maps by a structured edge detector. IEEE J Biomed Health Inform 22:842–51CrossRef
48.
Zurück zum Zitat Ibragimov B, Likar B, Pernuš F, Vrtovec T (2016) Accurate landmark-based segmentation by incorporating landmark misdetections. In: 13th international symposium on biomedical imaging (ISBI). IEEE, pp 1072–1075 Ibragimov B, Likar B, Pernuš F, Vrtovec T (2016) Accurate landmark-based segmentation by incorporating landmark misdetections. In: 13th international symposium on biomedical imaging (ISBI). IEEE, pp 1072–1075
49.
Zurück zum Zitat Chondro P, Yao C-Y, Ruan S-J, Chien L-C (2018) Low order adaptive region growing for lung segmentation on plain chest radiographs. Neurocomputing 275:1002–11CrossRef Chondro P, Yao C-Y, Ruan S-J, Chien L-C (2018) Low order adaptive region growing for lung segmentation on plain chest radiographs. Neurocomputing 275:1002–11CrossRef
50.
Zurück zum Zitat Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of CVPR 2017 Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of CVPR 2017
52.
Zurück zum Zitat Karargyris A, Siegelman J, Tzortzis D, Jaeger S, Candemir S, Xue Z, Santosh K, Vajda S, Antani S, Folio L, Thoma G (2016) Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays. Int J Comput Assist Radiol Surg 11:99–106CrossRef Karargyris A, Siegelman J, Tzortzis D, Jaeger S, Candemir S, Xue Z, Santosh K, Vajda S, Antani S, Folio L, Thoma G (2016) Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays. Int J Comput Assist Radiol Surg 11:99–106CrossRef
53.
Zurück zum Zitat Zheng G, Chu C, Belavy DL, Ibragimov B, Korez R, Vrtovec T, Hutt H, Everson R, Meakin J, Andrade IL, Glocker B, Chen H, Qi Dou Q, Heng PA, Wang C, Forsberg D, Neubert A, Fripp J, Urschler M, Stern D, Wimmer M, Novikov AA, Cheng H, Armbrecht G, Felsenberg D, Li S (2017) Evaluation and comparison of 3d intervertebral disc localization and segmentation methods for 3d t2mr data: a grand challenge. Med Image Anal 35:327–344CrossRef Zheng G, Chu C, Belavy DL, Ibragimov B, Korez R, Vrtovec T, Hutt H, Everson R, Meakin J, Andrade IL, Glocker B, Chen H, Qi Dou Q, Heng PA, Wang C, Forsberg D, Neubert A, Fripp J, Urschler M, Stern D, Wimmer M, Novikov AA, Cheng H, Armbrecht G, Felsenberg D, Li S (2017) Evaluation and comparison of 3d intervertebral disc localization and segmentation methods for 3d t2mr data: a grand challenge. Med Image Anal 35:327–344CrossRef
54.
Zurück zum Zitat Cong J, Zheng Y, Xue W, Cao B, Li S (2019) Ma-shape: modality adaptation shape regression for left ventricle segmentation on mixed MR and CT images. IEEE Access 7:16584–16593CrossRef Cong J, Zheng Y, Xue W, Cao B, Li S (2019) Ma-shape: modality adaptation shape regression for left ventricle segmentation on mixed MR and CT images. IEEE Access 7:16584–16593CrossRef
56.
Zurück zum Zitat Jeager S, Candemir S, Antani S, Wang Y, Lu P, G Thoma (2014) Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg 4:475–477 Jeager S, Candemir S, Antani S, Wang Y, Lu P, G Thoma (2014) Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg 4:475–477
Metadaten
Titel
Contour-aware multi-label chest X-ray organ segmentation
verfasst von
M. Kholiavchenko
I. Sirazitdinov
K. Kubrak
R. Badrutdinova
R. Kuleev
Y. Yuan
T. Vrtovec
B. Ibragimov
Publikationsdatum
07.02.2020
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 3/2020
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-02115-9

Weitere Artikel der Ausgabe 3/2020

International Journal of Computer Assisted Radiology and Surgery 3/2020 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.