Skip to main content
Erschienen in: BMC Cardiovascular Disorders 1/2018

Open Access 01.12.2018 | Research article

Coronary calcium score improves the estimation for pretest probability of obstructive coronary artery disease and avoids unnecessary testing in individuals at low extreme of traditional risk factor burden: validation and comparison of CONFIRM score and genders extended model

verfasst von: Minghui Wang, Yujie Liu, Xiujun Zhou, Jia Zhou, Hong Zhang, Ying Zhang

Erschienen in: BMC Cardiovascular Disorders | Ausgabe 1/2018

Abstract

Background

Reliability of models for estimating pretest probability (PTP) of obstructive coronary artery disease (CAD) has not been investigated in individuals at low extreme of traditional risk factor (RF) burden. Thus, we sought to validate and compare CONFIRM score and Genders extended model (GEM) among these individuals.

Methods

We identified symptomatic individuals with 0 or 1 RF who underwent coronary calcium scan and coronary computed tomographic angiography (CCTA). Follow-up clinical data were also recorded. PTP of obstructive CAD for every individual was estimated according to CONFIRM score and GEM, respectively. Area under the receiver operating characteristic curve (AUC), integrated discrimination improvement (IDI), net reclassification improvement (NRI) and Hosmer–Lemeshow (H-L) test were used to assess the performance of models.

Results

There were 1201 individuals with 0 RF and 2415 with 1 RF. The AUC for GEM was significantly larger than that for CONFIRM score, no matter in individuals with 0 (0.843 v.s. 0.762, p < 0.0001) or 1 (0.823 v.s. 0.752, p < 0.0001) RF. Compared to CONFIRM score, GEM demonstrated positive IDI (5% in individuals with 0 RF and 8% in individuals with 1 RF), positive NRI (41.50% in individuals with 0 RF and 40.19% in individuals with 1 RF), better prediction of clinical events and less discrepancy between observed and predicted probabilities, resulting in a significant decrease of unnecessary testing, especially in negative individuals.

Conclusion

In individuals at low extreme of traditional RF burden of CAD, the addition of coronary calcium score provided a more accurate estimation for PTP and application of GEM instead of CONFIRM score could avoid unnecessary testing.
Abkürzungen
AUC
Area under receiver-operator characteristic curve
CAD
Coronary artery disease
CCS
Coronary calcium score
CCTA
Coronary computed tomographic angiography
ESC
European Society of Cardiology
GEM
Genders extended model
H-L
Hosmer–Lemeshow
IDI
Integrated discrimination improvement
MACE
Major adverse cardiovascular event
MI
Myocardial infarction
NRI
Net reclassification improvement
PTP
Pretest probability
RF
Risk factor
UDFM
Updated Diamond-Forrester method

Background

Recent studies have indicated that clinical value of a test for the diagnosis of obstructive coronary artery disease (CAD) depended on the pretest probability (PTP) [13]. Considering this, current guidelines regard the estimation of PTP as an initial and important step in the evaluation of a symptomatic individual with suspected CAD [4, 5]. Updated Diamond-Forrester method (UDFM), a traditional age, sex and chest pain typicality-based approach to the PTP of obstructive CAD on invasive coronary angiography [6], is currently recommended by the European Society of Cardiology (ESC) [4]. However, several studies determined that UDFM seemed to overestimate the PTP of obstructive CAD, especially in low risk populations [79].
With modern statistical methods and multicenter data from populations who underwent coronary computed tomographic angiography (CCTA), new models, e.g. CONFIRM score [10] and Genders extended model (GEM) [11], were developed and what’s more, the addition of coronary calcium score (CCS) in GEM dramatically improved the estimation of PTP [7, 8]. However, neither CONFIRM score nor GEM has been systematacially validated in symptomatic individuals at low extreme of traditional risk factor (RF) burden, for whom the selection of an appropriate diagnostic strategy is important but difficult [12].
Thus, we aim to validate and compare the two proposed models and investigated whether or not the addition of CCS would avoid unnecessary testing among symptomatic individuals with 0 or 1 RF from a cohort of Chinese patients who underwent CCTA.

Methods

Study population

Full details for the study cohort have been published previously [7]. This is a retrospective and observational cohort of 5743 patients who underwent CCTA for stable chest pain. Individuals without acute coronary syndrome, previous CAD or coronary revascularization, unassessable segments due to motion artifact, atrial fibrillation, aortic disease, New York Heart Association class III or IV heart failure, age > 90 years old, pacemaker lead or missing data were enrolled between December 2014 and December 2016. This subgroup analysis among individuals with 0 or 1 RF was approved by the ethics committees of the local institutions and informed consent was obtained from all individual participants included in the study.

Data collection and definitions

As part of the baseline examination, we collected information about traditional RFs, including smoking, hypertension, diabetes, and hyperlipidemia. Hypertension was defined as blood pressure of ≥140/90 mmHg or requiring antihypertensive treatment. Hyperlipidemia was defined as total cholesterol of ≥220 mg/dL, low-density lipoprotein cholesterol of ≥140 mg/dL, fasting triglycerides of ≥150 mm/dL or the need for antihyperlipidemic agents. Diabetes was defined as fasting glucose levels over 7 mmol/L or current treatment with either diet, oral glucose lowering agents, or insulin. Smoking was defined as current smoking or smoking in past 6 months. Family history of CAD was defined as myocardial infarction or cardiac death in a first-degree relative.
Chest pain was classified as typical angina if the following criteria were present: substernal chest pain, provoked by physical exertion or emotion, and relieved by rest or nitroglycerin. Atypical angina was defined by 2 of those criteria, and nonanginal chest pain if only 0 or 1 of 3 were present [13].
We validated and compared 2 regression models as previously developed and reported. CONFIRM score included age, sex, type of chest pain, diabetes, hypertension, family history of CAD and smoking [10]. GEM included age, sex, type of chest pain, dyslipidaemia, diabetes, hypertension, smoking and CCS [11]. We chose the low prevalence setting model when using GEM.

CCTA and CCS

Details of CCS and CCTA scan have been previously described [7]. CCS was determined using the Agatston method [14]. In CCTA image analyses, all segments ≥2 mm in diameter were identified and analyzed using the CAD-RADS(TM) Coronary Artery Disease - Reporting and Data System [15]. Obstructive CAD was defined as present if a patient had at least one lesion with ≥50% diameter stenosis or any non-assessable segments due to severe calcification.

Clinical outcomes

Follow-up information was obtained by phone call and/or physician visit after CCTA. The major adverse cardiovascular event (MACE) was composed of cardiac death, nonfatal myocardial infarction (MI), unstable angina hospitalization and late revascularization. All events were adjudicated via review of hospital records independently by 2 cardiologists who were blinded to the results of baseline testing in consensus. Cardiac death was defined as any death caused by cardiac disease or for which no other cause could be found. MI was defined when at least 2 of the following 3 criteria were met: chest pain or equivalent symptom complex, positive cardiac biomarkers, or typical ECG changes [16]. Late revascularizations (> 60 days after CCTA) are more likely to be associated with CAD progression.

Statistical analysis

Individuals were categorized as having 0 or 1 of the following traditional RF: smoking, diabetes, hypertension and hyperlipidemia. Student’s t tests or Mann Whitney U tests (for continuous variables) and Chi-square tests or Fisher’s exact tests (for count variables) were used to compare baseline characteristics. To validate and compare CONFIRM score and GEM, the ability of discrimination, classification and calibration are essential in the present study. Discrimination is the degree to which a model separates between positive and negative individuals and we calculated the area under receiver-operator characteristic curve (AUC) [17] and integrated discrimination improvement (IDI) [18]. Classification evaluates whether a model correctly classifies positive individuals into higher categories of PTP and negative ones into lower categories. Based on a reclassification table using PTP categories < 15%, 15–85%, and > 85% [4], the net reclassification improvement (NRI) [18] was assessed. Calibration measures agreement of observed and predicted probability. Hosmer–Lemeshow (H-L) tests divided patients into ten groups according to deciles of PTP, then a chi-square statistic (H-L χ2) was calculated to evaluate how well model fit the obstructive CAD observed by CCTA [19]. All statistical analysis was performed by MedCalc (version 15.2.2; MedCalc Software, Mariakerke, Belgium) and SAS (version 9.2; SAS Institute Inc., Cary, North Carolina). Two-tailed p < 0.05 was considered statistically significant.

Results

Table 1 shows the baseline characteristics of the study cohort by RF burden and presence of obstructive CAD on CCTA. There were 1201 individuals with 0 RF, of whom 363 (30%) were found to have obstructive CAD on CCTA. The mean age was 56.26 years and 425 (35%) were males. Except family history of CAD, all variables were significantly associated to the presence of obstructive CAD. Among 2415 individuals with 1 RF, 654 (27%) had obstructive CAD and these individuals were older and had a higher proportion of men, angina and CCS > 0.
Table 1
Baseline characteristics by RF burden and presence of obstructive CAD
Characteristic
0 RF
1 RF
Total
Obstructive CADb
P value
Total
Obstructive CAD
P value
N = 1201
Yes(N = 363)
No(N = 838)
 
N = 2415
Yes(N = 654)
No(N = 1761)
 
Agea
56.26 ± 10.61
61.24 ± 10.69
54.10 ± 9.83
< 0.0001
57.20 ± 10.56
61.87 ± 10.13
55.47 ± 10.22
< 0.0001
Male
425 (35)
188 (52)
237 (28)
< 0.0001
1233 (51)
400 (61)
833 (47)
< 0.0001
Diabetes
269 (11)
76 (12)
193 (11)
0.6962
Hypertension
949 (39)
263 (40)
686 (39)
0.5989
Hyperlipidemia
563 (23)
140 (21)
423 (24)
0.1974
Smoking
634 (26)
174 (27)
460 (26)
0.8450
Family history
212 (18)
63 (17)
149 (18)
0.7379
483 (20)
131 (20)
352 (20)
0.9544
Chest pain
   
< 0.0001
   
< 0.0001
 Nonanginal
433 (36)
53 (15)
380 (45)
 
893 (40)
92 (14)
801 (45)
 
 Atypical anginal
599 (46)
165 (45)
394 (47)
 
1048 (43)
314 (48)
734 (42)
 
 Typical anginal
209 (18)
145 (40)
64 (8)
 
474 (20)
247 (38)
227 (13)
 
CCS
   
< 0.0001
   
< 0.0001
 0
548 (46)
64 (18)
484 (58)
 
1134 (47)
94 (14)
1040 (59)
 
 0–100
344 (29)
115 (32)
229 (27)
 
607 (25)
197 (30)
410 (23)
 
 100–400
231 (19)
115 (31)
116 (14)
 
431 (18)
180 (28)
251 (14)
 
  > 400
78 (6)
69 (19)
9 (1)
 
243 (10)
182 (28)
61 (4)
 
Values are presented as n (%) unless stated otherwise
CAD coronary artery disease, CCTA coronary computed tomographic angiography, CCS coronary calcium score, RF risk factor
aYears, mean ± standard deviation
bObstructive CAD was defined as present if an individuals had at least one lesion with ≥50% diameter stenosis or any non-assessable segments due to severe calcification on CCTA
Comparison of discrimination using AUC and IDI is shown in Table 2. The AUC for GEM was significantly larger than that for CONFIRM score, no matter in individuals with 0 (0.843 v.s. 0.762, p < 0.0001) or 1 (0.823 v.s. 0.752, p < 0.0001) RF. Compared to CONFIRM score, GEM demonstrated a positive IDI in individuals with 0 RF (5%, p < 0.0001) and individuals with 1 RF (8%, p < 0.0001), respectively.
Table 2
Discriminations of CONFIRM score and GEM in individuals with 0 and 1 RF
 
AUC
IDI
Statistic
95% CI
P value
PTP
Statisticb
P value
Positive patientsa
Negative patients
0 RF
 CONFIRM score
0.756
0.731 to 0.781
< 0.0001
44%
18%
5%
< 0.0001
 GEM
0.843
0.820 to 0.866
46%
15%
1 RF
 CONFIRM score
0.762
0.742 to 0.783
< 0.0001
48%
22%
8%
< 0.0001
 GEM
0.823
0.804 to 0.841
55%
21%
AUC area under the receiver operating characteristic curve, IDI integrated discrimination improvement, CI confidence interval, other abbreviations as in Table 1
aObstructive CAD was defined as present if an individuals had at least one lesion with ≥50% diameter stenosis or any non-assessable segments due to severe calcification on CCTA
bCompared to CONFIRM score, the IDI of GEM = [P(GEM|Positive)- P(GEM|Positive)]-[P(CONFIRM score|Negative)- P(CONFIRM score|Negative)]
During a median follow-up of 17 months (interquartile range, 9–23 months), 137 (3.8%) individuals were lost on follow-up. MACEs occurred in 126 individuals (3.5%), including 4 (0.1%) cardiovascular deaths, 11 (0.3%) nonfatal MIs, 46 (1.3%) unstable angina, and 65 (1.8%) late revascularizations. In individuals with 0 RF, GEM had a significantly better discriminatory ability for MACEs than CONFIRM score (AUC for GEM: 0.785 v.s. AUC for CONFIRM score: 0.703, p < 0.0001). Results were similar among individuals with 1 RF (AUC for GEM: 0.802 v.s. AUC for CONFIRM score: 0.709, p < 0.0001).
Table 3 shows the classification of individuals with 0 RF. Of the 838 negative individuals, by GEM, 269 were correctly reclassified to a lower category, but 72 to a higher category. Of the 363 positive individuals, 64 were correctly reclassified to a higher category but 41 to a lower category. Thus, compared to CONFIRM score, the NRI for GEM was 23.51% in negative, 6.43% in positive, and 29.85% overall (p < 0.0001). Results were similar among individuals with 1 RF (Table 4). The NRI for GEM compared to was as follow: 19.42% for negative, 1.68% for positive and 21.10% overall (p < 0.0001).
Table 3
Reclassification table using PTP categories < 15%, 15–85%, and > 85% (Individuals with 0 RF)
PTP category based on GEM
PTP category based on CONFIRM score
 
Reclassificationa
NRIb
p value for NRI
Low
Medium
High
Total
Up
Down
  
Negative individuals
    
8.59%
32.10%
29.85%
< 0.0001
 Low
300
260
3
563
    
 Medium
66
196
6
268
    
 High
3
3
1
7
    
Total
369
459
10
838
    
Positive individualsc
    
17.63%
11.29%
  
 Low
11
15
5
31
    
 Medium
6
235
21
262
    
 High
1
57
12
70
    
Total
18
307
38
363
    
NRI net reclassification improvement; other abbreviations as in Table 1
aIndividuals was reclassified by GEM and was compared to CONFIRM score
bNRI = [P(Up|Positive)- P(Down|Positive)]-[P(Up|Negative)- P(Down|Negative)]
cPositive individuals was defined as those had at least one lesion with ≥50% diameter stenosis or any non-assessable segments due to severe calcification on CCTA
Table 4
Reclassification table using PTP categories < 15%, 15–85%, and > 85% (Individuals with 1 RF)
PTP category based on GEM
PTP category based on CONFIRM score
Total
Reclassificationa
NRIb
P value for NRI
Low
Medium
High
Up
Down
Negative individuals
    
16.64%
36.06%
21.1%
< 0.0001
 Low
418
592
11
1021
    
 Medium
252
410
32
694
    
 High
15
26
5
46
    
Total
685
1028
48
1761
    
Positive individualsc
    
13.15%
11.47%
  
 Low
19
46
5
70
    
 Medium
11
439
24
474
    
 High
3
72
35
110
    
Total
33
557
64
654
    
Abbreviations as in Table 3
aIndividuals was reclassified by GEM and was compared to CONFIRM score
bNRI = [P(Up|Positive)- P(Down|Positive)]-[P(Up|Negative)- P(Down|Negative)]
cPositive individuals was defined as those had at least one lesion with ≥50% diameter stenosis or any non-assessable segments due to severe calcification on CCTA
CONFIRM score classified 55% (459/838) negative individuals with 0 RF and 58% (1028/1721) negative individuals with 1 RF into medium PTP group, for which noninvasive testing were recommend according to current guidelines. Using GEM instead of CONFIRM score would imply a change for diagnostic strategy in these individuals: 57% (260/459) with 0 RF and 58% (592/1028) with 1 RF into low PTP group, for which no further test was recommend. What’s more, among the 852 individuals, only 8 MACEs occurred (0.9%, no cardiovascular death, 1 nonfatal MI, 3 unstable angina, and 4 late revascularizations).
Comparisons of predicted and observed probabilities of obstructive CAD were made by deciles of PTP in Fig. 1. In individuals with 0 RF, CONFIRM score overestimated the prevalence of obstructive CAD resulting in a poor calibration (H-L χ2 = 127.34, p < 0.01). On the contrary, GEM revealed a lower but still significant degree of discordance between observed and predicted probabilities (H-L χ2 = 56.17, p < 0.01). Comparably, in individuals with 1 RF, GEM was more well calibrated, whereas calibration for both models was unsatisfactory (CONFIRM score: H-L χ2 = 85.31, p < 0.01, GEM: H-L χ2 = 38.74, p < 0.01).

Discussion

This CCTA-based study completed in individuals at low extreme of traditional CAD RF burden (0 or 1 RF) demonstrated that the addition of CCS in GEM provided a more accurate estimation for PTP of obstructive CAD. Compared to CONFIRM score, GEM showed a larger AUC, a positive NRI and less discrepancy between observed and predicted probabilities in individuals with 0 and 1 RF, respectively. What’s more, using GEM instead of CONFIRM score could change diagnostic strategy in these individuals, resulting a decrease in unnecessary testing.
Although ESC guidelines recommend UDFM as the model to estimate PTP of obstructive CAD, it revealed significantly overestimates in several external validation studies completed in CCTA-based cohorts [79]. To address this shortcoming, the medical history-based CONFIRM score was developed from an international cohort of patients undergoing CCTA [10]. The CONFIRM score underwent external validation only once after its publication, showing a positive NRI and less miscalibration, but a similar AUC compared to UDFM. In consideration of the change in the quantitative relationship between CAD and variables in traditional age, sex, chest pain typicality and RF-based approaches [8, 2022], many efforts have been made to explore whether newer markers could improve the precision of PTP models. A recent work has emphasized that the incorporation of CCS into Duke clinical score improved the diagnostic accuracy for obstructive CAD compared with Duke clinical score alone [23]. Two external validation study [7, 8] for GEM also demonstrated that the addition of CCS promoted the estimation of PTP in the ability of discrimination, classification and calibration, which was confirmed by the present study in individuals with 0 or 1 RF. What’s more, despite the sub-optimal calibration for both models possibly caused by ethnic variation, our results suggested that GEM including CCS provided a more accurate prediction of obstructive CAD than CONFIRM score in individuals at low extreme of traditional RF burden.
So far as we know, this is the first study that systematically validates and compares PTP models in individuals at low extreme of traditional RF burden. In the contemporary environment of rising healthcare costs, a better strategy to select individuals who might benefit from further testing is needed in daily clinical practice [24]. However, several potential reasons may account for the difficult decision-making of diagnostic strategy for symptomatic individuals at low extreme of traditional RF burden, such as lack of awareness, pursuit of economic benefits and fears about the increase in malpractice liability [25, 26]. Current guidelines recommended noninvasive testing, e.g. CCTA and treadmill exercise testing as the appropriate diagnostic test for individuals with medium PTP [4, 5]. Unfortunately, several large and real-world trials which were completed in symptomatic individuals with low-to- medium risk revealed low rates of cardiovascular event and positive noninvasive testing [22, 2729]. In conformity with this, according to the reclassification table in our study, CONFIRM score classified more than half of the negative individuals into medium PTP group, which may cause overuse of noninvasive testing. Conversely, GEM classified most negative individuals into low PTP group, resulting in a positive NRI and IDI. Although IDI of GEM over CONFIRM was modest, even small improvements can become significant when applied to the large number of low risk individuals evaluated for suspected CAD in everyday practice. What’s more, the rate of MACEs in individuals reclassified into low PTP group was extremely low. Thus, the addition of CCS into PTP model could change the diagnostic strategy safely and effectively, leading to an evident decrease of unnecessary testing.
There were several limitations that warrant acknowledgement. First, this cohort is a subset of a retrospective and single-center study. In real clinical practice, a substantial proportion of patients with stable chest pain are directly referred for other testing based on individual physician decision. Second, CCTA oftentimes overestimates the severity of calcified plaques because of the high-density artifacts [30]. We defined unassessable segments due to severe calcification as positive, so that if these segments were assessable and taken into account, any overestimation would increase further. Thus, this hypothesis would not qualitatively change the conclusions in this analysis. Last, in the future, the conclusions of this study need to be validated and confirmed in comparative cost-effectiveness analyses with long-term outcome data.

Conclusions

In individuals with 0 or 1 RF, the addition of CCS in GEM provided a more accurate estimation for PTP of obstructive CAD, due to the improvement in discrimination, classification and calibration compared to CONFIRM score. The application of GEM instead of CONFIRM score could change the diagnostic strategy and avoid unnecessary noninvasive testing in individuals at low extreme of traditional RF burden of CAD.

Funding

This study was funded by the Key Program of Medical Industry of Tianjin (No. 16KG132) and Key Research Program of Tianjin Chest Hospital (No. 2018XKC10).

Availability of data and materials

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
This study was approved by Ethic Committees of the Tianjin Chest Hospital. The ethical code of the study was 2017-KY-004. All patients filled a written informed consent form before entering the study.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Genders TS, Meijboom WB, Meijs MF, Schuijf JD, Mollet NR, Weustink AC, et al. CT coronary angiography in patients suspected of having coronary artery disease: decision making from various perspectives in the face of uncertainty. Radiology. 2009;253:734–44.CrossRefPubMed Genders TS, Meijboom WB, Meijs MF, Schuijf JD, Mollet NR, Weustink AC, et al. CT coronary angiography in patients suspected of having coronary artery disease: decision making from various perspectives in the face of uncertainty. Radiology. 2009;253:734–44.CrossRefPubMed
2.
Zurück zum Zitat Genders TS, Petersen SE, Pugliese F, Dastidar AG, Fleischmann KE, Nieman K, et al. The optimal imaging strategy for patients with stable chest pain: a cost-effectiveness analysis. Ann Intern Med. 2015;162:474–84.CrossRefPubMed Genders TS, Petersen SE, Pugliese F, Dastidar AG, Fleischmann KE, Nieman K, et al. The optimal imaging strategy for patients with stable chest pain: a cost-effectiveness analysis. Ann Intern Med. 2015;162:474–84.CrossRefPubMed
3.
Zurück zum Zitat Min JK, Gilmore A, Budoff MJ, Berman DS, O’Day K. Cost-effectiveness of coronary CT angiography versus myocardial perfusion SPECT for evaluation of patients with chest pain and no known coronary artery disease. Radiology. 2010;254:801–8.CrossRefPubMed Min JK, Gilmore A, Budoff MJ, Berman DS, O’Day K. Cost-effectiveness of coronary CT angiography versus myocardial perfusion SPECT for evaluation of patients with chest pain and no known coronary artery disease. Radiology. 2010;254:801–8.CrossRefPubMed
4.
Zurück zum Zitat Task Force M, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34:2949–3003.CrossRef Task Force M, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34:2949–3003.CrossRef
5.
Zurück zum Zitat Fihn SD, Blankenship JC, Alexander KP, Bittl JA, Byrne JG, Fletcher BJ, et al. ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and Management of Patients with Stable Ischemic Heart Disease. J Am Coll Cardiol. 2014;64:1929–49.CrossRefPubMed Fihn SD, Blankenship JC, Alexander KP, Bittl JA, Byrne JG, Fletcher BJ, et al. ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and Management of Patients with Stable Ischemic Heart Disease. J Am Coll Cardiol. 2014;64:1929–49.CrossRefPubMed
6.
Zurück zum Zitat Genders TS, Steyerberg EW, Alkadhi H, Leschka S, Desbiolles L, Nieman K, et al. A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension. Eur Heart J. 2011;32:1316–30.CrossRefPubMed Genders TS, Steyerberg EW, Alkadhi H, Leschka S, Desbiolles L, Nieman K, et al. A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension. Eur Heart J. 2011;32:1316–30.CrossRefPubMed
7.
Zurück zum Zitat Zhou J, Liu Y, Huang L, Tan Y, Li X, Zhang H, et al. Validation and comparison of four models to calculate pretest probability of obstructive coronary artery disease in a Chinese population: a coronary computed tomographic angiography study. J Cardiovasc Comput Tomogr. 2017;11:317–23.CrossRefPubMed Zhou J, Liu Y, Huang L, Tan Y, Li X, Zhang H, et al. Validation and comparison of four models to calculate pretest probability of obstructive coronary artery disease in a Chinese population: a coronary computed tomographic angiography study. J Cardiovasc Comput Tomogr. 2017;11:317–23.CrossRefPubMed
8.
Zurück zum Zitat Genders TSS, Coles A, Hoffmann U, Patel MR, Mark DB, Lee KL, et al. The external validity of prediction models for the diagnosis of obstructive coronary artery disease in patients with stable chest pain: insights from the PROMISE trial. JACC Cardiovasc Imaging. 2017;11:437–46.CrossRefPubMed Genders TSS, Coles A, Hoffmann U, Patel MR, Mark DB, Lee KL, et al. The external validity of prediction models for the diagnosis of obstructive coronary artery disease in patients with stable chest pain: insights from the PROMISE trial. JACC Cardiovasc Imaging. 2017;11:437–46.CrossRefPubMed
9.
Zurück zum Zitat Almeida J, Fonseca P, Dias T, Ladeiras-Lopes R, Bettencourt N, Ribeiro J, et al. Comparison of coronary artery disease consortium 1 and 2 scores and Duke clinical score to predict obstructive coronary disease by invasive coronary angiography. Clin Cardiol. 2016;39:223–8.CrossRefPubMed Almeida J, Fonseca P, Dias T, Ladeiras-Lopes R, Bettencourt N, Ribeiro J, et al. Comparison of coronary artery disease consortium 1 and 2 scores and Duke clinical score to predict obstructive coronary disease by invasive coronary angiography. Clin Cardiol. 2016;39:223–8.CrossRefPubMed
10.
Zurück zum Zitat Min JK, Dunning A, Gransar H, Achenbach S, Lin FY, Al-Mallah M, et al. Medical history for prognostic risk assessment and diagnosis of stable patients with suspected coronary artery disease. Am J Med. 2015;128:871–8.CrossRefPubMedPubMedCentral Min JK, Dunning A, Gransar H, Achenbach S, Lin FY, Al-Mallah M, et al. Medical history for prognostic risk assessment and diagnosis of stable patients with suspected coronary artery disease. Am J Med. 2015;128:871–8.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Genders TS, Steyerberg EW, Hunink MG, Nieman K, Galema TW, Mollet NR, et al. Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts. BMJ. 2012;344:e3485.CrossRefPubMedPubMedCentral Genders TS, Steyerberg EW, Hunink MG, Nieman K, Galema TW, Mollet NR, et al. Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts. BMJ. 2012;344:e3485.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Genders TS, Ferket BS, Hunink MG. The quantitative science of evaluating imaging evidence. JACC Cardiovasc Imaging. 2017;10:264–75.CrossRefPubMed Genders TS, Ferket BS, Hunink MG. The quantitative science of evaluating imaging evidence. JACC Cardiovasc Imaging. 2017;10:264–75.CrossRefPubMed
13.
Zurück zum Zitat Diamond GA. A clinically relevant classification of chest discomfort. J Am Coll Cardiol. 1983;1:574–5.CrossRefPubMed Diamond GA. A clinically relevant classification of chest discomfort. J Am Coll Cardiol. 1983;1:574–5.CrossRefPubMed
14.
Zurück zum Zitat Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.CrossRefPubMed Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.CrossRefPubMed
15.
Zurück zum Zitat Cury RC, Abbara S, Achenbach S, Agatston A, Berman DS, Budoff MJ, et al. CAD-RADS(TM) coronary artery disease - reporting and data system. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the north American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J Cardiovasc Comput Tomogr. 2016;10:269–81.CrossRefPubMed Cury RC, Abbara S, Achenbach S, Agatston A, Berman DS, Budoff MJ, et al. CAD-RADS(TM) coronary artery disease - reporting and data system. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the north American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J Cardiovasc Comput Tomogr. 2016;10:269–81.CrossRefPubMed
16.
Zurück zum Zitat Bittencourt MS, Hulten E, Polonsky TS, Hoffman U, Nasir K, Abbara S, et al. European Society of Cardiology-Recommended Coronary Artery Disease Consortium Pretest Probability Scores More Accurately Predict Obstructive Coronary Disease and Cardiovascular Events than the diamond and Forrester score: the partners registry. Circulation. 2016;134:201–11.CrossRefPubMed Bittencourt MS, Hulten E, Polonsky TS, Hoffman U, Nasir K, Abbara S, et al. European Society of Cardiology-Recommended Coronary Artery Disease Consortium Pretest Probability Scores More Accurately Predict Obstructive Coronary Disease and Cardiovascular Events than the diamond and Forrester score: the partners registry. Circulation. 2016;134:201–11.CrossRefPubMed
17.
Zurück zum Zitat Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.CrossRefPubMed Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.CrossRefPubMed
18.
Zurück zum Zitat Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157–72. discussion 207-12CrossRefPubMed Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157–72. discussion 207-12CrossRefPubMed
19.
Zurück zum Zitat Kramer AA, Zimmerman JE. Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited. Crit Care Med. 2007;35:2052–6.CrossRefPubMed Kramer AA, Zimmerman JE. Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited. Crit Care Med. 2007;35:2052–6.CrossRefPubMed
20.
Zurück zum Zitat Rovai D, Neglia D, Lorenzoni V, Caselli C, Knuuti J, Underwood SR. Limitations of chest pain categorization models to predict coronary artery disease. Am J Cardiol. 2015;116:504–7.CrossRefPubMed Rovai D, Neglia D, Lorenzoni V, Caselli C, Knuuti J, Underwood SR. Limitations of chest pain categorization models to predict coronary artery disease. Am J Cardiol. 2015;116:504–7.CrossRefPubMed
21.
Zurück zum Zitat Akita Chun A, McGee SR. Bedside diagnosis of coronary artery disease: a systematic review. Am J Med. 2004;117:334–43.CrossRef Akita Chun A, McGee SR. Bedside diagnosis of coronary artery disease: a systematic review. Am J Med. 2004;117:334–43.CrossRef
22.
Zurück zum Zitat Cheng VY, Berman DS, Rozanski A, Dunning AM, Achenbach S, Al-Mallah M, et al. Performance of the traditional age, sex, and angina typicality-based approach for estimating pretest probability of angiographically significant coronary artery disease in patients undergoing coronary computed tomographic angiography: results from the multinational coronary CT angiography evaluation for clinical outcomes: an international multicenter registry (CONFIRM). Circulation. 2011;124:2423–32. 1–8CrossRefPubMedPubMedCentral Cheng VY, Berman DS, Rozanski A, Dunning AM, Achenbach S, Al-Mallah M, et al. Performance of the traditional age, sex, and angina typicality-based approach for estimating pretest probability of angiographically significant coronary artery disease in patients undergoing coronary computed tomographic angiography: results from the multinational coronary CT angiography evaluation for clinical outcomes: an international multicenter registry (CONFIRM). Circulation. 2011;124:2423–32. 1–8CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Takamura K, Kondo T, Fujimoto S, Hiki M, Matsumori R, Kawaguchi Y, et al. Incremental predictive value for obstructive coronary artery disease by combination of Duke clinical score and Agatston score. Eur Heart J Cardiovasc Imaging. 2016;17:550–6.CrossRefPubMed Takamura K, Kondo T, Fujimoto S, Hiki M, Matsumori R, Kawaguchi Y, et al. Incremental predictive value for obstructive coronary artery disease by combination of Duke clinical score and Agatston score. Eur Heart J Cardiovasc Imaging. 2016;17:550–6.CrossRefPubMed
24.
Zurück zum Zitat Di Carli MF, Geva T, Davidoff R. The future of cardiovascular imaging. Circulation. 2016;133:2640–61.CrossRefPubMed Di Carli MF, Geva T, Davidoff R. The future of cardiovascular imaging. Circulation. 2016;133:2640–61.CrossRefPubMed
25.
Zurück zum Zitat Nieuwlaat R, Schwalm JD, Khatib R, Yusuf S. Why are we failing to implement effective therapies in cardiovascular disease? Eur Heart J. 2013;34:1262–9.CrossRefPubMed Nieuwlaat R, Schwalm JD, Khatib R, Yusuf S. Why are we failing to implement effective therapies in cardiovascular disease? Eur Heart J. 2013;34:1262–9.CrossRefPubMed
26.
Zurück zum Zitat Zhou J, Yang JJ, Yang X, Chen ZY, He B, Du LS, et al. Impact of clinical guideline recommendations on the application of coronary computed tomographic angiography in patients with suspected stable coronary artery disease. Chin Med J. 2016;129:135–41.CrossRefPubMedPubMedCentral Zhou J, Yang JJ, Yang X, Chen ZY, He B, Du LS, et al. Impact of clinical guideline recommendations on the application of coronary computed tomographic angiography in patients with suspected stable coronary artery disease. Chin Med J. 2016;129:135–41.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372:1291–300.CrossRefPubMedPubMedCentral Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372:1291–300.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Rozanski A, Gransar H, Hayes SW, Min J, Friedman JD, Thomson LE, et al. Temporal trends in the frequency of inducible myocardial ischemia during cardiac stress testing: 1991 to 2009. J Am Coll Cardiol. 2013;61:1054–65.CrossRefPubMed Rozanski A, Gransar H, Hayes SW, Min J, Friedman JD, Thomson LE, et al. Temporal trends in the frequency of inducible myocardial ischemia during cardiac stress testing: 1991 to 2009. J Am Coll Cardiol. 2013;61:1054–65.CrossRefPubMed
29.
Zurück zum Zitat Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR(CT): outcome and resource impacts study. Eur Heart J. 2015;36:3359–67.CrossRefPubMedPubMedCentral Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR(CT): outcome and resource impacts study. Eur Heart J. 2015;36:3359–67.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Kruk M, Noll D, Achenbach S, Mintz GS, Pręgowski J, Kaczmarska E, et al. Impact of coronary artery calcium characteristics on accuracy of CT angiography. J Am Coll Cardiol Img. 2014;7:49–58.CrossRef Kruk M, Noll D, Achenbach S, Mintz GS, Pręgowski J, Kaczmarska E, et al. Impact of coronary artery calcium characteristics on accuracy of CT angiography. J Am Coll Cardiol Img. 2014;7:49–58.CrossRef
Metadaten
Titel
Coronary calcium score improves the estimation for pretest probability of obstructive coronary artery disease and avoids unnecessary testing in individuals at low extreme of traditional risk factor burden: validation and comparison of CONFIRM score and genders extended model
verfasst von
Minghui Wang
Yujie Liu
Xiujun Zhou
Jia Zhou
Hong Zhang
Ying Zhang
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Cardiovascular Disorders / Ausgabe 1/2018
Elektronische ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-018-0912-3

Weitere Artikel der Ausgabe 1/2018

BMC Cardiovascular Disorders 1/2018 Zur Ausgabe

Schadet Ärger den Gefäßen?

14.05.2024 Arteriosklerose Nachrichten

In einer Studie aus New York wirkte sich Ärger kurzfristig deutlich negativ auf die Endothelfunktion gesunder Probanden aus. Möglicherweise hat dies Einfluss auf die kardiovaskuläre Gesundheit.

Intervallfasten zur Regeneration des Herzmuskels?

14.05.2024 Herzinfarkt Nachrichten

Die Nahrungsaufnahme auf wenige Stunden am Tag zu beschränken, hat möglicherweise einen günstigen Einfluss auf die Prognose nach akutem ST-Hebungsinfarkt. Darauf deutet eine Studie an der Uniklinik in Halle an der Saale hin.

Shunt-Therapie bei Herzinsuffizienz: Kein Anzug, der allen passt

13.05.2024 Chronische Herzinsuffizienz Nachrichten

Die Anlage eines interatrialen Shunts zur Reduktion des linksatrialen Drucks ist ein neuer Therapieansatz bei Herzinsuffizienz. Viele Patienten sprechen darauf an, andere jedoch nicht. 

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.