Skip to main content
Erschienen in: Clinical Research in Cardiology 9/2021

Open Access 22.06.2021 | COVID-19 | Letter to the Editors

Remote proctoring for high-risk coronary interventions with mechanical circulatory support during COVID-19 pandemic and beyond

verfasst von: Felix J. Woitek, Stephan Haussig, Johannes Mierke, Axel Linke, Norman Mangner

Erschienen in: Clinical Research in Cardiology | Ausgabe 9/2021

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Remote proctoring by advanced digital technologies may help to overcome pandemic, geographic, and resource-related constraints for mentoring and educating interventional cardiology skills. We present a case series of patients undergoing high-risk percutaneous coronary intervention (HR-PCI) with mechanical circulatory support (MCS) guided by remote proctoring to gain insights into a streaming technology platform with regard to video/audio quality, visibility of all structural and imaging details, and delay in transmission. According to our experience, remote proctoring appears to be a reliable, quick, and resource-conserving way to disseminate, educate and improve MCS-supported HR-PCI with implications far beyond the COVID-19 pandemic.
Abkürzungen
HR-PCI
High-risk percutaneous coronary intervention
MCS
Mechanical circulatory support
Sirs:
With the appearance of a novel coronavirus, severe acute respiratory syndrome coronavirus-2, and the consequential pandemic [1], strict private- and business-related travel restrictions became necessary and have been implemented. Interventional and surgical specialties particularly depend on practical education to provide high-quality care for patients. Mastering certain procedures is often realized by on-site proctoring by an experienced external operator; however, the travel ban has restricted those activities. On the other hand, many hospitals have reduced their elective program including cardiovascular procedures to provide structural and personal resources to handle patients with coronavirus disease 19 (Covid-19) [2]. Postponing procedures in the cardiovascular medicine has to balance the risks and benefits of this decision since some cardiovascular interventions in certain clinical situations are not truly elective. The European Association of Percutaneous Cardiovascular Interventions has provided a consensus document how patients and cardiovascular procedures should be prioritized [3]. According to these criteria, patients with acute coronary syndrome or coronary artery diseases having symptoms according to Canadian Cardiovascular Society class IV and/or require left main stem percutaneous intervention (PCI) or last-remaining vessel PCI should not be postponed and must be treated urgently. Those patients are often characterized by relevant comorbidities, reduced left ventricular ejection fraction and complex coronary artery disease fulfilling the criteria for high-risk (HR) PCI, thereby qualifying for short-term mechanical circulatory support (MCS) [4]. The Impella® 2.5 and CP heart pumps are nowadays the most often used MCS in the setting of HR-PCI [5]. However, the application can be associated with substantial complications including bleeding, access site complications and stroke negatively affecting the outcome of those patients [5]. It has been shown that the establishment of a MCS program is characterized by a certain learning curve on both the operator and center level [4, 6].
Against this background, we used a remote proctoring system: (1) to test the feasibility of this system for remote proctoring of MCS-supported HR-PCI with regard to video/audio quality, visibility of all structural and imaging details, and delay in transmission and (2) to perform educational sessions on MCS-supported HR-PCI for physicians and technical staff.
The remote proctoring system was provided by TEGUS Medical (TEGUS Medical, Hamburg, Germany). It consists of the following hardware that is placed in the cath lab: (1) a 360° rotatable and 180° tiltable high definition PTZ network camera (1920 × 1080 resolution; with optical zoom and optimized framerate) which is mounted to a purpose built stand-alone freely moveable tripod, (2) a small form factor server, which enables data transformation and online access, and (3) a lightweight Bluetooth headset for audio communication with the operator (Fig. 1A). The proctor uses any conventional desktop computer to connect to the cath lab via an online platform developed for on-demand visual and acoustic live streaming (Fig. 1B). There is no recording, only livestreams are used with no sensible data storage. The online platform is programmed, provided and maintained by TEGUS Medical (Hamburg, Germany). Access to the platform is password secured and data transfer is encrypted. After logging into the platform, the proctor is able to navigate the camera inside the cath lab and zoom into any spot, e.g., the hands of the operator, the imaging screens or the Impella® controller simply via a mouse click-to-move approach, e.g., clicking on the area of interest directly on the screen. The focus and brightness are controlled automatically to facilitate ease of use for the proctor; however, additional function buttons to pause audio transmission and manually adjust the focus and brightness are also provided. A “preset” function is also provided to enable quick movement between predefined views (Fig. 2).
We performed six HR-PCI cases with Impella® support under remote proctoring. Patients are included the Dresden Impella Registry that has been approved by the Ethics Committee at TU Dresden (EK 457-122-014). Patient- and procedural details as well as in-hospital outcomes are outlined in the Table 1. Patients represented a typical cohort for HR-PCI with Impella 2.5 and a single access strategy used in all cases. Extensive lesion preparation including rotablation and cutting balloon PCI was performed. All procedures were successful without in-hospital complications and discharge to home the following day in the majority of patients.
Table 1
Baseline characteristics, procedural details and in-hospital outcomes
 
Patient # 1
Patient # 2
Patient # 3
Patient # 4
Patient # 5
Patient # 6
Patient characteristics
 Age, years
86
89
86
67
81
86
 Sex
male
male
male
male
male
male
 Body mass index, (kg/m2)
26.8
22.9
26.1
32.5
34.4
32.7
 Clinical presentation
Unstable angina pectoris
NSTEMI
Cardiac decompensation
Cardiac decompensation
NSTEMI
NSTEMI
 Comorbidities
Arterial hypertension, status post 2-chamber-pacemaker due to sick sinus syndrome, previous stroke
Arterial hypertension, PAD, carotid disease, chronic renal disease (GFR 39 ml/min)
Arterial hypertension, PAD, Diabetes mellitus, COPD, chronic renal failure (GFR 61 ml/min)
Arterial hypertension, carotid disease, complex PAD with recent femoral-popliteal bypass left and lower leg amputation right, hip replacement, consequently poor mobility
Arterial hypertension, diabetes mellitus
Arterial hypertension, chronic renal failure (GFR 60 ml/min)
 Previous myocardial infarction
No
No
No
No
No
No
 Previous PCI
No
Yes (RCA 1 week before HR-PCI)
No
No
No
No
 Previous cardiac surgery
No
No
No
No
No
No
 LV-EF, %
40
25
17
23
65
35
 Valvular heart disease
No
AS II°, MR II°
No
AS II°, TR II°
AS I°, MS II°, MR II°
No
Procedural characteristics
 Impella®
2.5
2.5
2.5
2.5
2.5
2.5
 Access site
Right common femoral artery
Left common femoral artery
Right common femoral artery
Right common femoral artery
Right common femoral artery
Left common femoral artery
 Single access strategy
Yes
Yes
Yes
Yes
Yes
Yes
 Coronary artery disease
2-vessel disease
3-vessel disease
3-vessel disease
3-vessel disease
3-vessel diseases
3-vessel disease
Dominance
left
right
left
right
left
right
 Left main > 50%
Yes (Medina 1-1-0)
Yes (Medina 1-1-1)
Yes (Medina 1-0-0)
Yes (Medina 1-1-1)
Yes (Medina 1-1-1)
Yes (Medina 1-1-1)
 Proximal LAD > 75%
Yes
Yes
No
Yes
Yes
Yes
 CTO
No
No
No
Yes (RCA)
Yes (RCA)
No
 Target vessel(s)
Left main, LAD
Left main, LAD, Cx
Left main
Left main, LAD, Cx
Left main, LAD, Cx
Left main, LAD, Cx
 Rotablation
No
No
No
Yes (left main/Cx)
Yes (left main/LAD + left main/Cx)
Yes (left main/LAD)
 Cutting balloon
Yes
No
Yes
No
Yes
No
 Bifurcation technique
Provisional Stenting left main
Mini-Crush left main
No
DK-Crush left main
DK-Crush left main
DK-Crush left main
 Intravascular imaging use
No
No
No
No
IVUS
IVUS
 Access site closure
MANTA 14F
MANTA 14F
MANTA 14F
MANTA 14F
MANTA 14F
MANTA 14F
 Procedure duration, min
90
108
65
126
157
114
 Contrast dye, cc
150
200
170
100
170
240
 Fluoroscopy, min
14.2
11.2
9.1
29
40.3
25.4
In-hospital outcomes
 Death
No
No
No
No
No
No
 Acute renal failure
No
No
No
No
No
No
 Stroke
No
No
No
No
No
No
 Major vascular complication
No
No
No
No
No
No
 Major bleeding
No
No
No
No
No
No
 Length of hospital stay after PCI, days
1
1
1
7
1
3
NSTEMI non-ST segment elevation myocardial infarction, PAD peripheral artery disease, COPD chronic obstructive pulmonary disease, RCA right coronary artery, (HR)-PCI (high-risk) percutaneous coronary intervention, AS aortic stenosis, MR mitral regurgitation, TR tricuspid regurgitation, MS mitral stenosis, LAD left anterior descending coronary artery, Cx circumflex coronary artery, CTO chronic total occlusion, IVUS intravascular ultrasound
The TEGUS remote proctoring system provided a stable and high-quality video and audio signal throughout all procedures from initial puncture till access site closure. With maximum zoom, the resolution was high enough to clearly identify the interventional equipment and angiography on the screen, in particular IVUS pictures were clearly visible. Not only the procedure, but also the preparation of the Impella® heart pump and the controller could be supervised and in case of any alarms, advise for troubleshooting was given. In our setting, audio connection was only established between the proctor and the operator via a Bluetooth headset and not to the whole cath lab team. Audio connection is also possible via a remote loudspeaker which might have the advantage to provide direct advice to the unsterile cath lab staff, e.g., for adjustments at the Impella® controller. In one case, the hospital internet was disturbed; however, the integrated 4G mobile router maintained a stable connection between the proctor and operator. With both connections, no relevant lag in transmission was observed which is an important finding since in HR-PCI cases certain decisions have to be made immediately. Moreover, physicians and staff members attending as invited viewers on the secured website also reported on high-quality audio and video signals without lag in transmission indicating that the TEGUS system is not only a viable option for remote proctoring but also for streaming of educational sessions performed by an operator and potentially commented by the proctor.
Remote proctoring has been developed in operative disciplines [7], and has recently been described in a structural intervention case performing reverse LAMPOON (intentional laceration of the anterior mitral valve leaflet to prevent left ventricular outflow obstruction)-assisted transcatheter mitral valve implantation [8]. The TEGUS system was specifically developed for endovascular interventions and has been primarily introduced in a neurovascular scenario [9, 10]. To our knowledge, this is the first report on a series of remote proctored MCS-supported HR-PCI cases with the TEGUS system suggesting the applicability of this approach. Interventional cardiology and cardiac catheterization expertise is critical to the success of a percutaneous MCS program. As mentioned before, a significant learning curve exists and investment in training of the operator and the whole team is necessary to improve patient care and hemodynamic support by the MCS [4].
Our report has certain limitations: (1) Interventions and proctoring were performed by two experienced interventional cardiologists working together for several years. Therefore, proctoring between two unknown persons might be different. (2) Cases have been discussed face-to-face between the operator and proctor before. In real remote proctoring cases, patient’s characteristics, diagnostic findings, and the procedural strategy should be discussed in advance via a virtual meeting. (3) Stable internet connections are a prerequisite for this kind of proctoring with technical network requirements provided by TEGUS Medical.
Remote proctoring appears to be a reliable, quick, and resource-conserving way to disseminate, educate and improve MCS-supported HR-PCI in particular and interventional cardiology skills in general. The application of this approach is far beyond the COVID-19 pandemic.

Declarations

Conflict of interest

FJW reports personal fees from Abiomed, Abbott, Biotronik, Boston Scientific, Corvia, MSD, NeoVasc, outside the submitted work. SH has nothing to disclose. JM has nothing to disclose. AL reports grants from Novartis, personal fees from Medtronic, Abbott, Edwards Lifesciences, Boston Scientific, Astra Zeneca, Novartis, Pfizer, Abiomed, Bayer, Boehringer, and other from Picardia, Transverse Medical, Claret Medical, outside the submitted work. NM reports personal fees from Abiomed, Abbott, Edwards LifeScience, Medtronic, Boston Scientific, Biotronik, Novartis, Sanofi Genzyme, Bayer, Pfizer, and AstraZeneca, outside the submitted work.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.
download
DOWNLOAD
print
DRUCKEN

Unsere Produktempfehlungen

Neuer Inhalt

Print-Titel

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Hui DS, Azhar I, Madani TA, Ntoumi F, Kock R, Dar O, Ippolito G, Mchugh TD, Memish ZA, Drosten C, Zumla A, Petersen E (2020) The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan. China Int J Infect Dis 91:264–266CrossRef Hui DS, Azhar I, Madani TA, Ntoumi F, Kock R, Dar O, Ippolito G, Mchugh TD, Memish ZA, Drosten C, Zumla A, Petersen E (2020) The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan. China Int J Infect Dis 91:264–266CrossRef
2.
Zurück zum Zitat Konig S, Ueberham L, Pellissier V, Hohenstein S, Meier-Hellmann A, Thiele H, Ahmadli V, Borger MA, Kuhlen R, Hindricks G, Bollmann A (2021) Hospitalization deficit of in- and outpatient cases with cardiovascular diseases and utilization of cardiological interventions during the COVID-19 pandemic: insights from the German-wide helios hospital network. Clin Cardiol 44:392–400CrossRef Konig S, Ueberham L, Pellissier V, Hohenstein S, Meier-Hellmann A, Thiele H, Ahmadli V, Borger MA, Kuhlen R, Hindricks G, Bollmann A (2021) Hospitalization deficit of in- and outpatient cases with cardiovascular diseases and utilization of cardiological interventions during the COVID-19 pandemic: insights from the German-wide helios hospital network. Clin Cardiol 44:392–400CrossRef
3.
Zurück zum Zitat Chieffo A, Tarantini G, Naber CK, Barbato E, Roffi M, Stefanini GG, Buchanan GL, Buszman P, Moreno R, Zawislak B, Cayla G, Danenberg H, Da Silveira JAB, Nef H, James SK, Mauri FJ, Voskuil M, Witt N, Windecker S, Baumbach A, Dudek D (2021) Performing elective cardiac invasive procedures during the COVID-19 outbreak: a position statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI). EuroIntervention 16:1177–1186CrossRef Chieffo A, Tarantini G, Naber CK, Barbato E, Roffi M, Stefanini GG, Buchanan GL, Buszman P, Moreno R, Zawislak B, Cayla G, Danenberg H, Da Silveira JAB, Nef H, James SK, Mauri FJ, Voskuil M, Witt N, Windecker S, Baumbach A, Dudek D (2021) Performing elective cardiac invasive procedures during the COVID-19 outbreak: a position statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI). EuroIntervention 16:1177–1186CrossRef
4.
Zurück zum Zitat Atkinson TM, Ohman EM, O’Neill WW, Rab T, Cigarroa JE (2016) A practical approach to mechanical circulatory support in patients undergoing percutaneous coronary intervention: an interventional perspective. JACC Cardiovasc Interv 9:871–883CrossRef Atkinson TM, Ohman EM, O’Neill WW, Rab T, Cigarroa JE (2016) A practical approach to mechanical circulatory support in patients undergoing percutaneous coronary intervention: an interventional perspective. JACC Cardiovasc Interv 9:871–883CrossRef
5.
Zurück zum Zitat Amin AP, Spertus JA, Curtis JP, Desai N, Masoudi FA, Bach RG, McNeely C, Al-Badarin F, House JA, Kulkarni H, Rao SV (2020) The evolving landscape of Impella use in the United States among patients undergoing percutaneous coronary intervention with mechanical circulatory support. Circulation 141:273–284CrossRef Amin AP, Spertus JA, Curtis JP, Desai N, Masoudi FA, Bach RG, McNeely C, Al-Badarin F, House JA, Kulkarni H, Rao SV (2020) The evolving landscape of Impella use in the United States among patients undergoing percutaneous coronary intervention with mechanical circulatory support. Circulation 141:273–284CrossRef
6.
Zurück zum Zitat Henriques JP, Ouweneel DM, Naidu SS, Palacios IF, Popma J, Ohman EM, O’Neill WW (2014) Evaluating the learning curve in the prospective Randomized Clinical Trial of hemodynamic support with Impella 2.5 versus Intra-Aortic Balloon Pump in patients undergoing high-risk percutaneous coronary intervention: a prespecified subanalysis of the PROTECT II study. Am Heart J 167:472–479CrossRef Henriques JP, Ouweneel DM, Naidu SS, Palacios IF, Popma J, Ohman EM, O’Neill WW (2014) Evaluating the learning curve in the prospective Randomized Clinical Trial of hemodynamic support with Impella 2.5 versus Intra-Aortic Balloon Pump in patients undergoing high-risk percutaneous coronary intervention: a prespecified subanalysis of the PROTECT II study. Am Heart J 167:472–479CrossRef
7.
Zurück zum Zitat Huang EY, Knight S, Guetter CR, Davis CH, Moller M, Slama E, Crandall M (2019) Telemedicine and telementoring in the surgical specialties: a narrative review. Am J Surg 218:760–766CrossRef Huang EY, Knight S, Guetter CR, Davis CH, Moller M, Slama E, Crandall M (2019) Telemedicine and telementoring in the surgical specialties: a narrative review. Am J Surg 218:760–766CrossRef
8.
Zurück zum Zitat Goel SS, Greenbaum AB, Patel A, Little SH, Parikh R, Wyler von Ballmoos MC, Lumsden AB, Reardon MJ, Kleiman NS (2020) Role of teleproctoring in challenging and innovative structural interventions amid the COVID-19 pandemic and beyond. JACC Cardiovasc Interv 13:1945–1948CrossRef Goel SS, Greenbaum AB, Patel A, Little SH, Parikh R, Wyler von Ballmoos MC, Lumsden AB, Reardon MJ, Kleiman NS (2020) Role of teleproctoring in challenging and innovative structural interventions amid the COVID-19 pandemic and beyond. JACC Cardiovasc Interv 13:1945–1948CrossRef
9.
Zurück zum Zitat Bechstein M, Buhk JH, Frolich AM, Broocks G, Hanning U, Erler M, Andelkovic M, Debeljak D, Fiehler J, Goebell E (2021) Training and supervision of thrombectomy by remote live streaming support (RESS): Randomized comparison using simulated stroke interventions. Clin Neuroradiol 31:181–187CrossRef Bechstein M, Buhk JH, Frolich AM, Broocks G, Hanning U, Erler M, Andelkovic M, Debeljak D, Fiehler J, Goebell E (2021) Training and supervision of thrombectomy by remote live streaming support (RESS): Randomized comparison using simulated stroke interventions. Clin Neuroradiol 31:181–187CrossRef
10.
Zurück zum Zitat Bechstein M, Elsheikh S, Wodarg F, Taschner CA, Hanning U, Buhk JH, McDonough R, Goebell E, Fiehler J, Bester M (2021) Republished: Interhospital teleproctoring of endovascular intracranial aneurysm treatment using a dedicated live-streaming technology: first experiences during the COVID-19 pandemic. J Neurointerv Surg 13:1CrossRef Bechstein M, Elsheikh S, Wodarg F, Taschner CA, Hanning U, Buhk JH, McDonough R, Goebell E, Fiehler J, Bester M (2021) Republished: Interhospital teleproctoring of endovascular intracranial aneurysm treatment using a dedicated live-streaming technology: first experiences during the COVID-19 pandemic. J Neurointerv Surg 13:1CrossRef
Metadaten
Titel
Remote proctoring for high-risk coronary interventions with mechanical circulatory support during COVID-19 pandemic and beyond
verfasst von
Felix J. Woitek
Stephan Haussig
Johannes Mierke
Axel Linke
Norman Mangner
Publikationsdatum
22.06.2021
Verlag
Springer Berlin Heidelberg
Schlagwort
COVID-19
Erschienen in
Clinical Research in Cardiology / Ausgabe 9/2021
Print ISSN: 1861-0684
Elektronische ISSN: 1861-0692
DOI
https://doi.org/10.1007/s00392-021-01890-3

Weitere Artikel der Ausgabe 9/2021

Clinical Research in Cardiology 9/2021 Zur Ausgabe

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Strenge Blutdruckeinstellung lohnt auch im Alter noch

30.04.2024 Arterielle Hypertonie Nachrichten

Ältere Frauen, die von chronischen Erkrankungen weitgehend verschont sind, haben offenbar die besten Chancen, ihren 90. Geburtstag zu erleben, wenn ihr systolischer Blutdruck < 130 mmHg liegt. Das scheint selbst für 80-Jährige noch zu gelten.

Frauen bekommen seltener eine intensive Statintherapie

30.04.2024 Statine Nachrichten

Frauen in den Niederlanden erhalten bei vergleichbarem kardiovaskulärem Risiko seltener eine intensive Statintherapie als Männer. Ihre LDL-Zielwerte erreichen sie aber fast ähnlich oft.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.