Skip to main content
Erschienen in: Respiratory Research 1/2023

Open Access 01.12.2023 | COVID-19 | Research

Targeting neutrophils extracellular traps (NETs) reduces multiple organ injury in a COVID-19 mouse model

verfasst von: Flavio P. Veras, Giovanni F. Gomes, Bruna M. S. Silva, Diego B. Caetité, Cicero J. L. R. Almeida, Camila Meirelles S. Silva, Ayda H. Schneider, Emily S. Corneo, Caio S. Bonilha, Sabrina S. Batah, Ronaldo Martins, Eurico Arruda, Alexandre T. Fabro, José C. Alves-Filho, Thiago M. Cunha, Fernando Q. Cunha

Erschienen in: Respiratory Research | Ausgabe 1/2023

Abstract

Background

COVID-19 is characterized by severe acute lung injury, which is associated with neutrophil infiltration and the release of neutrophil extracellular traps (NETs). COVID-19 treatment options are scarce. Previous work has shown an increase in NETs release in the lung and plasma of COVID-19 patients suggesting that drugs that prevent NETs formation or release could be potential therapeutic approaches for COVID-19 treatment.

Methods

Here, we report the efficacy of NET-degrading DNase I treatment in a murine model of COVID-19. SARS-CoV-2-infected K18-hACE2 mice were performed for clinical sickness scores and lung pathology. Moreover, the levels of NETs were assessed and lung injuries were by histopathology and TUNEL assay. Finally, the injury in the heart and kidney was assessed by histopathology and biochemical-specific markers.

Results

DNase I decreased detectable levels of NETs, improved clinical disease, and reduced lung, heart, and kidney injuries in SARS-CoV-2-infected K18-hACE2 mice. Furthermore, our findings indicate a potentially deleterious role for NETs lung tissue in vivo and lung epithelial (A549) cells in vitro, which might explain part of the pathophysiology of severe COVID-19. This deleterious effect was diminished by the treatment with DNase I.

Conclusions

Together, our results support the role of NETs in COVID-19 immunopathology and highlight NETs disruption pharmacological approaches as a potential strategy to ameliorate COVID-19 clinical outcomes.

Background

Coronavirus disease 2019 (COVID-19) is an infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1, 2] and pulmonary-related symptoms are one of its hallmarks [3, 4]. Neutrophils have been described as indicators of the severity of respiratory symptoms and poor COVID-19 prognosis [57]. Neutrophil extracellular traps (NETs) are one of the most relevant effector mechanisms of neutrophils in inflammatory diseases, playing a central role in organ damage [810].
NETs are web-like structures of extracellular DNA fibers containing histones and granule-derived enzymes, such as myeloperoxidase (MPO), neutrophil elastase, and cathepsin G [11, 12]. The formation of NETs is known as NETosis, and it starts with neutrophil activation by pattern recognition receptors (TLRs, e.g.) or chemokines. The process is followed by ROS production and calcium mobilization, which leads to the activation of protein arginine deiminase 4 (PAD-4) [13]. The activation of the neutrophil elastase also plays a role in NETs production in inflammatory responses [1417].
Elevated levels of NETs are found in the blood, thrombi, and lungs of patients with severe COVID-19, suggesting that neutrophils and NETs may play an important role in the pathophysiology of COVID-19 [810].
Drug repurposing is a key strategy to accelerate the discovery of new effective treatments for COVID-19 [18]. In this context, as the literature shows evidence of the role of NETs in COVID-19, DNase I, an FDA-approved drug that degrades NETs could be proposed as a potential new candidate for COVID-19 treatment [1921]. Dornase alfa (recombinant human DNase I) is broadly used to improve lung function of patients with Cystic Fibrosis [1921]. This drug significantly reduces mucus viscosity by degrading extracellular DNA in the airways [1921]. Thus, we propose DNase I as a therapeutic agent to reduce NETs in COVID-19, potentially improving clinical outcomes, pulmonary function, and, consequently, the prognosis of the disease.
Here, we demonstrate that DNase I treatment decreases the concentration of NETs in the plasma and lungs of SARS-CoV-2-infected mice and ameliorates experimental COVID-19. These findings highlight the importance of NETs inhibitors as a potential therapeutic approach for COVID-19 treatment.

Methods

K18-hACE2 mice

K18-hACE2 humanized mice (B6·Cg-Tg(K18-ACE2)2Prlmn/J) were obtained from The Jackson Laboratory and were bred in the Centro de Criação de Animais Especiais (Ribeirão Preto Medical School/University of São Paulo). This mouse strain has been previously used as the model for SARS-CoV-2-induced disease and it presents signs of diseases, and biochemical and lung pathological changes compatible with the human disease [22]. Mice had access to water and food ad libitum. The manipulation of these animals was performed in Biosafety Levels 3 (BSL3) facility and the study was approved by the Ethics Committee on the Use of Animals of the Ribeirão Preto Medical School, University of São Paulo (#066/2020).

DNase I treatment in SARS-CoV-2 experimental infection

Male K18-hACE2 mice, aged 8 weeks, were infected with 2 × 104 PFU of SARS-CoV-2 (in 40 µL) by the intranasal route. Uninfected mice (n = 5) were given an equal volume of PBS through the same route. On the day of infection, 1 h before virus inoculation, animals were treated with DNase I (10 mg/kg, s.c., Pulmozyme, Roche) (n = 6) or vehicle (PBS, s.c.) (n = 6). DNase I was also given once a day until 5 days post-infection. Body weight was evaluated on the baseline and all days post-infection. The right lung was collected, harvested, and homogenized in PBS with steel glass beads. The homogenate was added to TRIzol reagent (1:1), for posterior viral titration via RT-qPCR, or to lysis buffer (1:1), for ELISA assay, and stored at − 70 °C. The left lung was collected in paraformaldehyde (PFA, 4%) for posterior histological assessment.

H&E staining and lung pathology evaluation

Five μm lung, heart, and kidney slices were submitted to Hematoxylin and Eosin staining. A total of 10 photomicrographs in 40X magnification per animal were randomly obtained using a microscope ScanScope (Olympus) and Leica. Morphometric analysis was performed by the protocol established by the American Thoracic Society and European Thoracic Society (ATS/ERS) [23].

NETs quantification

Plasma or homogenate from the lung was incubated overnight in a plate pre-coated with anti-MPO antibody (Thermo Fisher Scientific; cat. PA5-16672) at 4 °C. The plate was washed with PBS-T (Phosphate-Buffered Saline with Tween 20). Next, samples were incubated overnight at 4 °C. Finally, the plate with samples was washed and over MPO-bound DNA was quantified using the Quant-iT PicoGreen kit (Invitrogen; cat. P11496).

Cytokines and chemokines levels

Lung homogenate was added to the RIPA buffer solution (Sigma-Aldrich, cat. R0278) and centrifuged at 10,000 g at 4 °C for 10 min. The supernatant was collected. The ELISA method was performed to detect the concentration of cytokines and chemokines using kits from R&D Systems (DuoSet), according to the manufacturer’s instructions. The following targets were evaluated: TNF-α, IL-6, IL-10, CXCL1, CCL2, and CCL4.

Immunofluorescence and confocal microscopy

Lungs were harvested and fixed with PFA 4%. After dehydration and paraffin embedding, 5 μm sections were prepared. The slides were deparaffinized and rehydrated by immersing the through Xylene and 100% Ethanol 90% for 15 min, in each solution. Antigen retrieval was performed with 1.0 mM EDTA, 10 mM Trizma-base, pH 9·0 at 95 °C for 30 min. Later, endogenous peroxidase activity was quenched by incubation of the slides in 5% H2O2 in methanol for 15 min. After blocking with IHC Select Blocking Reagent (Millipore, cat. 20773-M) for 2 h at room temperature (RT), the following primary antibodies were incubated overnight at 4 °C: goat polyclonal anti-myeloperoxidase (anti-MPO, R&D Systems, cat. AF3667, 1:100) and rabbit polyclonal, anti-histone H3 (H3Cit; Abcam; cat. ab5103; 1:100). The slides were then washed with TBS-T (Tris-Buffered Saline with Tween 20) and incubated with secondary antibodies donkey anti-goat IgG Alexa Fluor 488 (Abcam, cat. ab150129) and alpaca anti-rabbit IgG AlexaFluor 594 (Jackson ImmunoReseacher; Cat. 611-585-215; 1:1000). Autofluorescence was quenched using the TrueVIEW Autofluorescence Quenching Kit (Vector Laboratories, cat. SP-8400-15). Slides were then mounted using Vectashield Antifade Mounting Medium with DAPI (Vector Laboratories, Cat# H-1200-10). Images were acquired by Axio Observer combined with LSM 780 confocal microscope (Carl Zeiss) at 63X magnification at the same setup (zoom, laser rate) and tile-scanned at 4 fields/image. Images were analyzed with Fiji by Image J.

Measurement of organ damage biomarkers

Renal dysfunction was assessed by the levels of blood creatinine, and creatine kinase-MB was used as an index of cardiac lesions. The determinations were performed using a commercial kit (Bioclin).

Neutrophils isolation and NETs purification

Peripheral blood samples were collected from healthy controls by venipuncture and the neutrophil population was isolated by Percoll density gradient (GE Healthcare; cat. 17-5445-01). Isolated neutrophils (1.5 × 107 cells) were stimulated with 50 nM of PMA (Sigma-Aldrich; cat. P8139) for 4 h at 37 °C. The medium containing NETs was centrifuged at 450 g to remove cellular debris for 10 min, and NETs-containing supernatants were collected and centrifuged at 18,000 g for 20 min. Supernatants were removed, and DNA pellets were resuspended in PBS. NETs were then quantified with a GeneQuant (Amersham Biosciences Corporation).

Apoptosis assay

Lung tissue was harvested for detection of apoptotic cells in situ with Click-iT Plus TUNEL Assay Alexa Fluor 488, according to the manufacturer’s instructions (Thermo Fisher Scientific; cat. C10617). Human alveolar basal epithelial A549 cells (5 × 104) were maintained in DMEM and cultured with purified NETs (10 ng/ml) pretreated, or not, with DNase I (0·5 mg/ml; Pulmozyme, Roche). The cultures were then incubated for 24 h at 37 °C. Viability was determined by flow cytometric analysis of Annexin V staining.

Flow cytometry

Lung tissue was harvested and digested with type 2 collagenase to acquire cell suspensions. Cells were then stained with Fixable Viability Dye eFluor 780 (eBioscience; cat. 65-0865-14; 1:3000) and monoclonal antibodies specific for CD45 (BioLegend; clone 30-F11; cat. 103138; 1:200), CD11b (BD Biosciences; clone M1/70; cat. 553311) and Ly6G (Biolegend; clone 1A8; cat. 127606) for 30 min at 4 °C. A549 cells (1 × 105) were stained with FITC ApoScreen Annexin V Apoptosis Kit (SouthernBiotech; cat. 10010-02), according to the manufacturer’s instructions. Data were collected on a FACSVerse (BD Biosciences) and analyzed with FlowJo (TreeStar).

Statistical analysis

Statistical significance was determined by either two-tailed unpaired Student t-test, and by one-way or two-way ANOVA followed by Bonferroni’s post hoc test. P < 0·05 was considered statistically significant. Statistical analyses and graph plots were performed and built using GraphPad Prism 9·3·1 software.

Results

DNase I reduces clinical outcomes in an experimental model of COVID-19

To investigate the role of NETs in COVID-19 pathophysiology we used K18-hACE2 mouse intranasally infected with SARS-CoV-2; [22, 24]. Infected mice were treated with saline or DNAse I (10 mg/kg; s.c.) administered 1 h before virus infection and once daily up to 4 days after infection (Fig. 1a). We evaluated body weight loss from baseline measure (basal) and clinical scores, as read out of disease progression (Additional file 1: Table S1). Our data showed that DNase I treatment attenuates both body weight loss and clinical score caused by SARS-CoV-2 infection compared to vehicle-treated mice (Fig. 1b, c).
We observed an increase in NETs concentration (Fig. 1f, g) and the number of neutrophils in the lung of infected mice upon induction of the COVID-19 model (Fig. 1d, e). These data corroborate some findings published by either our group or other authors, showing the presence of systemic levels of NETs, as well as localized in pulmonary tissue from COVID-19 patients [810].
DNase I treatment did not alter the number of neutrophils that infiltrated into the lung tissue of SARS-CoV-2 infected mice. The FACS analysis showed that the frequency and absolute numbers of neutrophils (Ly6G + CD11b + cells; Fig. 1d, e) were not altered by the treatment. Similar results were observed when analyzing CD45 + cell populations (Additional file 1: Fig. S1). However, we demonstrate that DNAse I treatment of SARS-CoV-2-infected mice resulted in a substantial reduction of NETs production that associates with a lower disease score (Fig. 1h). These data suggest that NETs play a crucial role in SARS-CoV-2 infection.

Inhibition of NETs ameliorates lung pathology in SARS-CoV-2-infected mice

Lung inflammation is the primary cause of life-threatening respiratory disorders in critical and severe forms of COVID-19 [3, 4, 25]. NETs have been identified in the lung tissue of SARS-CoV-2 infected patients and lung injury experimental animal models [8, 9, 26]. Thus, we next investigated the effect of NETs degradation by DNase I treatment of the COVID-19 mouse model.
We noticed an extensive injury in the lung tissue of K18-hACE2-infected mice with interstitial leukocyte infiltration. The alveolar units showed architectural distortion compromising the alveolar-capillary barrier. DNase I treatment was able to prevent lung damage caused by SARS-CoV-2 infection (Fig. 2a). Moreover, analyzing the area fraction, as a score of septal thickness, DNase I-treatment reduced the area fraction in SARS-CoV-2-infected mice and was associated with a lower concentration of NETs released (Fig. 2b). The reduction in lung pathology was associated with a reduction of pro-inflammatory cytokines/chemokines, especially IL-6 and CXCL-1 in the lung tissue of mice treated with DNase I (Fig. 2c). These results indicate that pharmacological inhibition of NETs could be a novel approach to inhibit SARS-CoV-2-induced lung pathology.

DNase I attenuates extrapulmonary injuries in the COVID-19 mouse model

COVID-19 is a systemic viral disease that can affect other vital organs besides the lungs, such as the heart and kidney [2730]. To investigate this context, we harvested the heart and kidneys of animals 5 days post-infection and evaluated whether NETs inhibition could change this phenotype. We observed that the heart of mice infected with SARS-CoV-2 showed pathological changes in cardiac tissue with diffuse and sparse cardiac inflammatory cell infiltration and perivascular injury (Fig. 3a). Moreover, after treatment, there is a clear reduction of inflammatory cells in heart tissue, leaving “injured” (fine) fibers and interstitial edema, similar to what is seen in autoimmune myocarditis. In addition, plasma Creatine Kinase MB (CK-MB) concentration in the infected group was higher than in control mice (Fig. 3b). Interestingly, DNase I treatment attenuated the pathology and CK-MB concentration.
Finally, we aimed to investigate whether SARS-CoV-2 infection induces kidney damage in K18-hACE2 mice. Consistent with lung and heart pathological changes, we found the presence of ischemic tubulointerstitial nephritis in the COVID-19 model, mimicking acute tubular necrosis with cellular glomerulitis (Fig. 3c). Furthermore, the levels of creatinine in the blood of infected mice were higher in comparison with uninfected animals (Fig. 3d). As expected, DNase I treatment reduced kidney injury (Fig. 3c, d). Collectively, these findings indicate that pharmacological inhibition of NETs with DNase I prevents multi-organ dysfunction in COVID-19.

DNase I prevents NETs-induced apoptosis of lung tissue in SARS-CoV-2-infected mice

To understand the possible role of NETs in the pathophysiology of COVID-19, we explored the hypothesis that NETs could be involved in lung damage accompanied by the disease, as previously described [9, 31].
To this end, lung analysis of k18-hACE2 mice infected with SARS-CoV-2 reveals a massive presence of apoptotic cells after 5 days of infection. DNase I treatment was able to prevent lung apoptosis caused by the COVID-19 mouse model (Fig. 4a). Our analysis showed a reduction of approximately 60% in TUNEL-positive cells after NETs degradation (Fig. 4b).
In our next step, purified NETs from healthy human neutrophils were incubated with A549 cells, a human alveolar basal epithelial cell, and cell viability was determined (annexin V + cells) by flow cytometry.
We found that exposure of A549 cells to purified NETs significantly increased the percentage of apoptotic cells in comparison with untreated cells. Importantly, the pretreatment of purified NETs with DNase I prevented NETs-induced epithelial (Fig. 4c, d) apoptosis to similar levels observed in untreated cells. Taken together, these results are evidence that DNase I exhibits a protective effect on NETs deleterious functions in lung tissue and could be a potential strategy to block organ injury during COVID-19.

Discussion

While the number of patients with COVID-19 is growing worldwide, there is no effective treatment for the disease [32, 33]. Thus, the understanding of the mechanisms by which the hosts deal with the SARS-CoV-2 virus could allow the development of new therapeutic strategies aiming to prevent tissue injuries triggered by the infection. Here, we report that in a COVID-19 mouse model, NETs are released systemically and in higher concentrations in the lungs of K18-hACE2 mice. Moreover, DNase I treatment reduced multi-organ lesions and improved outcomes associated with NETs released.
The increase in the number of circulating neutrophils is an indicator of a worse outcome of COVID-19 [34]. In 2004, Brinkmann et al. described, for the first time, that NETs are released by neutrophils, and work as a microbicidal mediator [11]. However, following ability, NETs mediate lesions observed in several inflammatory diseases, including rheumatoid arthritis, lupus, diabetes, and sepsis [8, 10, 3539]. Inhibition of NETs production prevented lung, heart, and liver lesions observed in experimental sepsis [3840].
The SARS-CoV-2 infection affects the lungs and multiple organs, occasionally causing death. Besides immunizations, strategies to prevent organ dysfunction in patients with COVID-19 are of main importance. Emerging evidence implicates that NET formation plays a pivotal role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19 [8, 9].
Several stimuli trigger NETs release, including pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and inflammatory mediators, studies demonstrated that NETs have a dual biological role. Besides their microbicide such as cytokines and chemokines [4143]. Our group has previously demonstrated that SARS-CoV-2 can directly infect human neutrophils and is key to triggering NETs production. The first step in neutrophil infection by SARS-CoV-2 is the interaction of the virus with ACE2 and TMPRSS2 expressed on the surface of human neutrophils [8]. It is possible to speculate the participation of the cytokines and chemokines released by host cells as activators [44, 45] of NETs production by the neutrophils in the K18-hACE2 model; however, this deserves future investigation.
In humans, the response to SARS-CoV-2 infection is comprised of cytokines and chemokines production [46]. Here, we show that SARS-CoV-2 infection of K18-hACE2 mice elicits a measurable systemic pro-inflammatory cytokine response which is significantly increased at 5 DPI and characterized by an increase in TNF-α, IL-6, and IL-10, and encompasses upregulation of cell-recruiting chemokines CXCL-1, CCL-2, and CCL-4. Importantly, increased levels of TNF-α and IL-6 are associated with the severity of disease in COVID-19 patients [47]. In addition, cytokine levels are also reported to be indicative of extrapulmonary multiple-organ failure [48, 49]. Interestingly, DNase I could prevent systemic inflammation in some COVID-19 patients, including the reduction of pro-inflammatory cytokines TNF-α and IL-6 [50, 51]. This needs to be further investigated to clarify if our observation suggests a differently modulated immune response and pathogenesis by NETs levels.
NETs play a paradoxical role. Once released, they play an important microbicidal role due to their toxic content, assisting the capture and inactivation of different types of pathogens, including viruses [11, 13, 41, 43, 52]. However, in excess, these traps can also cause significant tissue damage, as seen in rheumatoid arthritis [35], diabetes [37], prothrombotic events, and sepsis [39, 40]. Our group and others have demonstrated a significant increase in the concentration of NETs in the plasma and also in the lung tissues of patients with COVID-19 [8, 10]. Thus, combining antiviral with the control of NETs might be a strategic option to treat short-living virus-caused pathologies, especially COVID-19. Although we demonstrated the presence of NETs, cell-free DNA can exert a role during COVID-19 as demonstrated by some authors in patients’ samples. However, the massive production of cell-free DNA is from NETs as recently demonstrated [53].
The literature describes that NETs can present direct cytotoxic effects on different mammalian cell types, including epithelial and endothelial cells, inducing apoptosis or necrosis [12, 54]. Moreover, NETs could also activate different PRR receptors, such as toll-like receptor (TLR)-4 and 9, which mediate the release of inflammatory mediators; in turn, amplifying the direct effects of NETs [35]. In this context, during COVID-19, apoptosis of lung epithelial was previously observed. These events are capable of compromising lung function, worsening the severity of the disease [3, 4]. Considering these findings, in the present study, we observed that DNase I prevented apoptosis in lung tissue from SARS-CoV-2-infected mice. In accordance observed in the COVID-19 model, isolated NETs from the culture of PMA-stimulated human neutrophils induced in vitro apoptosis of A549 epithelial cells with reversal homeostasis in presence of DNase I. A549 is a great tool for mimicking the lung inflammatory environment and was used as a model to investigate NET-induced apoptosis of lung cells, as stated above. In future work, we intend to investigate the molecular mechanisms of NET-induced apoptosis in lung cells.
Extending this finding to COVID-19 disease, it is possible to suggest that the reduction of viability of the lung cells is a consequence of the local production of NETs. In this line, we observed the presence of neutrophils releasing NETs, as well as a high concentration of NETs in the lung of SARS-CoV-2-infected mice. It is reported that DNase reduces NETosis in the plasma of SARS-CoV-2-infected patients, alleviates systemic inflammation, and attenuates mortality in a septic mouse model [51].
In patients with severe COVID-19 pneumonia, treatment with DNase I, in a randomized clinical trial, resulted in significant anti-inflammatory effects and reduced markers of immune pathology [55]. In another clinical trial, treatment with DNase I was associated with improved oxygenation and decreased NETs lung fluid [21]. These data indicate that the degradation of NETs or NET-associated structures by inhaled DNase I can be beneficial in the context of pulmonary diseases. The effectiveness of DNase I in patients with acute respiratory infection and inflammation corroborates our experimental findings. Some authors described that NETs are found in inflamed lungs of hamsters inoculated with SARS-CoV-2 that could mediate immunothrombosis and lung injury [26]. Indeed, the experimental inhibition of NET formation in SARS-CoV-2-infected K18-hACE2 mice could attenuate the development of signs of disease, and act in the reduction of lung pathology and cytokine storm [38, 56]. In summary, our findings support NETs as a target for improving COVID-19 clinical outcomes.

Conclusions

We observed the presence of neutrophils releasing NETs in the lung tissue of infected mice, detected in the alveolar space. Disease progression was prevented with DNase I treatment in vivo. This observation is tightly correlated with the development of lung injury, suggesting that strategies to reduce NETs levels could have favorable effects on recovering lung function.
Together, our findings demonstrate the potentially deleterious role of NETs during COVID-19 and support the use of inhibitors of NETs, such as DNase I as a strategy to ameliorate multi-organ damage during COVID-19.

Acknowledgements

We are grateful to Marcella Daruge Grando, Roberta Rosales, Soraya Jabur Badra, Andreia Nogueira, and Juliana Trench Abumansur for their specialized technical assistance. This research was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grants (2013/08216-2 and 2020/05601-6), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) grants.

Declarations

The manipulation of animals was performed in Biosafety Levels 3 (BSL3) facility and the study was approved by the Ethics Committee on the Use of Animals of the Ribeirão Preto Medical School, University of São Paulo (#066/2020).
Not applicable.

Competing interests

The authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA. 2020. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA. 2020.
2.
Zurück zum Zitat Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020.
3.
Zurück zum Zitat Dolhnikoff M, Duarte-Neto AN, de Almeida Monteiro RA, Ferraz da Silva LF, Pierre de Oliveira E, Nascimento Saldiva PH, et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J Thromb Haemost. 2020. Dolhnikoff M, Duarte-Neto AN, de Almeida Monteiro RA, Ferraz da Silva LF, Pierre de Oliveira E, Nascimento Saldiva PH, et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J Thromb Haemost. 2020.
4.
Zurück zum Zitat Batah SS, Benatti MN, Siyuan L, Telini WM, Barboza JO, Menezes MB, et al. COVID-19 bimodal clinical and pathological phenotypes. Clin Transl Med [Internet]. 2022;12. Batah SS, Benatti MN, Siyuan L, Telini WM, Barboza JO, Menezes MB, et al. COVID-19 bimodal clinical and pathological phenotypes. Clin Transl Med [Internet]. 2022;12.
5.
Zurück zum Zitat Skendros P, Mitsios A, Chrysanthopoulou A, Mastellos DC, Metallidis S, Rafailidis P, et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest [Internet]. 2020; Available from: http://www.jci.org/articles/view/141374. Skendros P, Mitsios A, Chrysanthopoulou A, Mastellos DC, Metallidis S, Rafailidis P, et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest [Internet]. 2020; Available from: http://​www.​jci.​org/​articles/​view/​141374.
6.
Zurück zum Zitat Reusch N, De Domenico E, Bonaguro L, Schulte-Schrepping J, Baßler K, Schultze JL, et al. Neutrophils in COVID-19. Front Immunol. 2021;12:952.CrossRef Reusch N, De Domenico E, Bonaguro L, Schulte-Schrepping J, Baßler K, Schultze JL, et al. Neutrophils in COVID-19. Front Immunol. 2021;12:952.CrossRef
7.
Zurück zum Zitat Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, Schlickeiser S, Zhang B, et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell Cell Press. 2020;182:1419-1440.e23. Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, Schlickeiser S, Zhang B, et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell Cell Press. 2020;182:1419-1440.e23.
9.
Zurück zum Zitat Middleton EA, He X-Y, Denorme F, Campbell RA, Ng D, Salvatore SP, et al. Neutrophil extracellular traps (NETs) contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood [Internet]. 2020. Middleton EA, He X-Y, Denorme F, Campbell RA, Ng D, Salvatore SP, et al. Neutrophil extracellular traps (NETs) contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood [Internet]. 2020.
10.
Zurück zum Zitat Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil extracellular traps in COVID-19. JCI insight. 2020. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil extracellular traps in COVID-19. JCI insight. 2020.
11.
Zurück zum Zitat Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.CrossRefPubMed Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.CrossRefPubMed
12.
Zurück zum Zitat Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017; 279–87. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017; 279–87.
13.
Zurück zum Zitat Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010. Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010.
14.
Zurück zum Zitat Paryzhak S, Dumych T, Mahorivska I, Boichuk M, Bila G, Peshkova S, et al. Neutrophil-released enzymes can influence composition of circulating immune complexes in multiple sclerosis. Autoimmunity. 2018. Paryzhak S, Dumych T, Mahorivska I, Boichuk M, Bila G, Peshkova S, et al. Neutrophil-released enzymes can influence composition of circulating immune complexes in multiple sclerosis. Autoimmunity. 2018.
15.
Zurück zum Zitat Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One. 2012. Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One. 2012.
16.
Zurück zum Zitat Henry CM, Sullivan GP, Clancy DM, Afonina IS, Kulms D, Martin SJ. Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep. 2016;14:708–22.CrossRefPubMed Henry CM, Sullivan GP, Clancy DM, Afonina IS, Kulms D, Martin SJ. Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep. 2016;14:708–22.CrossRefPubMed
17.
Zurück zum Zitat Toussaint M, Jackson DJ, Swieboda D, Guedán A, Tsourouktsoglou TD, Ching YM, et al. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat Med [Internet]. 2017;23:681–91.CrossRefPubMedPubMedCentral Toussaint M, Jackson DJ, Swieboda D, Guedán A, Tsourouktsoglou TD, Ching YM, et al. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat Med [Internet]. 2017;23:681–91.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat MacConnachie AM. Dornase-alfa (DNase, Pulmozyme) for cystic fibrosis. Intensive Crit Care Nurs [Internet]. 1998;14:101–2.CrossRefPubMed MacConnachie AM. Dornase-alfa (DNase, Pulmozyme) for cystic fibrosis. Intensive Crit Care Nurs [Internet]. 1998;14:101–2.CrossRefPubMed
20.
Zurück zum Zitat Ranasinha C, Assoufi B, Geddes D, Hodson M, Empey D, Shak S, et al. Efficacy and safety of short-term administration of aerosolised recombinant human DNase I in adults with stable stage cystic fibrosis. Lancet. 1993. Ranasinha C, Assoufi B, Geddes D, Hodson M, Empey D, Shak S, et al. Efficacy and safety of short-term administration of aerosolised recombinant human DNase I in adults with stable stage cystic fibrosis. Lancet. 1993.
21.
Zurück zum Zitat Holliday ZM, Earhart AP, Alnijoumi MM, Krvavac A, Allen LAH, Schrum AG. Non-randomized trial of dornase alfa for acute respiratory distress syndrome secondary to Covid-19. Front Immunol [Internet]. 2021;12. Holliday ZM, Earhart AP, Alnijoumi MM, Krvavac A, Allen LAH, Schrum AG. Non-randomized trial of dornase alfa for acute respiratory distress syndrome secondary to Covid-19. Front Immunol [Internet]. 2021;12.
22.
Zurück zum Zitat Golden JW, Cline CR, Zeng X, Garrison AR, Carey BD, Mucker EM, et al. Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease. JCI Insight. 2020;5. Golden JW, Cline CR, Zeng X, Garrison AR, Carey BD, Mucker EM, et al. Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease. JCI Insight. 2020;5.
23.
Zurück zum Zitat Hsia CCW, Hyde DM, Ochs M, Weibel ER. An Official Research Policy Statement of the American ThoracicSociety/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med [Internet]. 2010;181:394.CrossRefPubMedPubMedCentral Hsia CCW, Hyde DM, Ochs M, Weibel ER. An Official Research Policy Statement of the American ThoracicSociety/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med [Internet]. 2010;181:394.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Dong W, Mead H, Tian L, Park J-G, Garcia JI, Jaramillo S, et al. The K18-human ACE2 transgenic mouse model recapitulates non-severe and severe COVID-19 in response to an infectious dose of the SARS-CoV-2 virus. J Virol [Internet]. 2022;96. Available from: https://pubmed.ncbi.nlm.nih.gov/34668775/. Dong W, Mead H, Tian L, Park J-G, Garcia JI, Jaramillo S, et al. The K18-human ACE2 transgenic mouse model recapitulates non-severe and severe COVID-19 in response to an infectious dose of the SARS-CoV-2 virus. J Virol [Internet]. 2022;96. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​34668775/​.
25.
Zurück zum Zitat Zhang H, Zhou P, Wei Y, Yue H, Wang Y, Hu M, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med. 2020. Zhang H, Zhou P, Wei Y, Yue H, Wang Y, Hu M, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med. 2020.
26.
Zurück zum Zitat Becker K, Beythien G, de Buhr N, Stanelle-Bertram S, Tuku B, Kouassi NM, et al. Vasculitis and neutrophil extracellular traps in lungs of golden Syrian hamsters with SARS-CoV-2. Front Immunol. 2021;12:1125.CrossRef Becker K, Beythien G, de Buhr N, Stanelle-Bertram S, Tuku B, Kouassi NM, et al. Vasculitis and neutrophil extracellular traps in lungs of golden Syrian hamsters with SARS-CoV-2. Front Immunol. 2021;12:1125.CrossRef
27.
Zurück zum Zitat Tian S, Xiong Y, Liu H, Niu L, Guo J, Liao M, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 2020. Tian S, Xiong Y, Liu H, Niu L, Guo J, Liao M, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 2020.
28.
Zurück zum Zitat Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ. 2020. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ. 2020.
29.
Zurück zum Zitat Su H, Yang M, Wan C, Yi LX, Tang F, Zhu HY, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020. Su H, Yang M, Wan C, Yi LX, Tang F, Zhu HY, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020.
30.
Zurück zum Zitat Hin Chu P†, Jasper Fuk-Woo Chan M†, Terrence Tsz-Tai Yuen B†, Huiping Shuai P†, Shuofeng Yuan P, Yixin Wang Mp, et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. The Lancet Microbe. 2020. Hin Chu P†, Jasper Fuk-Woo Chan M†, Terrence Tsz-Tai Yuen B†, Huiping Shuai P†, Shuofeng Yuan P, Yixin Wang Mp, et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. The Lancet Microbe. 2020.
31.
Zurück zum Zitat Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med. 2020. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med. 2020.
33.
Zurück zum Zitat Fenton C, Keam SJ. Emerging small molecule antivirals may fit neatly into COVID-19 treatment. Drugs Ther Perspect [Internet]. 2022. Fenton C, Keam SJ. Emerging small molecule antivirals may fit neatly into COVID-19 treatment. Drugs Ther Perspect [Internet]. 2022.
34.
Zurück zum Zitat Yang AP, Liu J ping, Tao W qiang, Li H ming. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol. 2020. Yang AP, Liu J ping, Tao W qiang, Li H ming. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol. 2020.
35.
Zurück zum Zitat Schneider AH, MacHado CC, Veras FP, Maganin AGDME, De Souza FFL, Barroso LC, et al. Neutrophil extracellular traps mediate joint hyperalgesia induced by immune inflammation. Rheumatology (Oxford) [Internet]. 2021;60:3461–73.CrossRef Schneider AH, MacHado CC, Veras FP, Maganin AGDME, De Souza FFL, Barroso LC, et al. Neutrophil extracellular traps mediate joint hyperalgesia induced by immune inflammation. Rheumatology (Oxford) [Internet]. 2021;60:3461–73.CrossRef
36.
Zurück zum Zitat O’neil LJ, Kaplan MJ, Carmona-Rivera C. The role of neutrophils and neutrophil extracellular traps in vascular damage in systemic lupus erythematosus. J Clin Med [Internet]. 2019;8. O’neil LJ, Kaplan MJ, Carmona-Rivera C. The role of neutrophils and neutrophil extracellular traps in vascular damage in systemic lupus erythematosus. J Clin Med [Internet]. 2019;8.
37.
Zurück zum Zitat Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015. Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015.
38.
Zurück zum Zitat Silva CM, Wanderley CWS, Veras FP, Sonego F, Nascimento DC, Gonçalves AV, et al. Gasdermin D inhibition prevents multiple organ dysfunction during sepsis by blocking NET formation. Blood. 2021. Silva CM, Wanderley CWS, Veras FP, Sonego F, Nascimento DC, Gonçalves AV, et al. Gasdermin D inhibition prevents multiple organ dysfunction during sepsis by blocking NET formation. Blood. 2021.
39.
Zurück zum Zitat Colón DF, Wanderley CW, Franchin M, Silva CM, Hiroki CH, Castanheira FVS, et al. Neutrophil extracellular traps (NETs) exacerbate severity of infant sepsis. Crit Care. 2019. Colón DF, Wanderley CW, Franchin M, Silva CM, Hiroki CH, Castanheira FVS, et al. Neutrophil extracellular traps (NETs) exacerbate severity of infant sepsis. Crit Care. 2019.
40.
Zurück zum Zitat Czaikoski PG, Mota JMSC, Nascimento DC, Sônego F, Castanheira FVES, Melo PH, et al. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS One. 2016. Czaikoski PG, Mota JMSC, Nascimento DC, Sônego F, Castanheira FVES, Melo PH, et al. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS One. 2016.
41.
Zurück zum Zitat Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012.
42.
Zurück zum Zitat Funchal GA, Jaeger N, Czepielewski RS, Machado MS, Muraro SP, Stein RT, et al. Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils. PLoS One. 2015. Funchal GA, Jaeger N, Czepielewski RS, Machado MS, Muraro SP, Stein RT, et al. Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils. PLoS One. 2015.
43.
Zurück zum Zitat Hiroki CH, Toller-Kawahisa JE, Fumagalli MJ, Colon DF, Figueiredo LTM, Fonseca BALD, et al. Neutrophil extracellular traps effectively control acute chikungunya virus infection. Front Immunol. 2020. Hiroki CH, Toller-Kawahisa JE, Fumagalli MJ, Colon DF, Figueiredo LTM, Fonseca BALD, et al. Neutrophil extracellular traps effectively control acute chikungunya virus infection. Front Immunol. 2020.
45.
Zurück zum Zitat Keshari RS, Jyoti A, Dubey M, Kothari N, Kohli M, Bogra J, et al. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS One. 2012. Keshari RS, Jyoti A, Dubey M, Kothari N, Kohli M, Bogra J, et al. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS One. 2012.
46.
Zurück zum Zitat Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020.
47.
Zurück zum Zitat McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med [Internet]. 2020;202:812–21.CrossRefPubMedPubMedCentral McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med [Internet]. 2020;202:812–21.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Parsons PE, Eisner MD, Thompson BT, Matthay MA, Ancukiewicz M, Bernard GR, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med [Internet]. 2005;33:1–6.CrossRefPubMed Parsons PE, Eisner MD, Thompson BT, Matthay MA, Ancukiewicz M, Bernard GR, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med [Internet]. 2005;33:1–6.CrossRefPubMed
49.
Zurück zum Zitat Wang H, Ma S. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Emerg Med [Internet]. 2008;26:711–5.CrossRefPubMed Wang H, Ma S. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Emerg Med [Internet]. 2008;26:711–5.CrossRefPubMed
50.
Zurück zum Zitat Fisher J, Mohanty T, Karlsson CAQ, Khademi SMH, Malmström E, Frigyesi A, et al. Proteome profiling of recombinant DNase therapy in reducing NETs and aiding recovery in COVID-19 patients. Mol Cell Proteomics. 2021;20:100113.CrossRefPubMedPubMedCentral Fisher J, Mohanty T, Karlsson CAQ, Khademi SMH, Malmström E, Frigyesi A, et al. Proteome profiling of recombinant DNase therapy in reducing NETs and aiding recovery in COVID-19 patients. Mol Cell Proteomics. 2021;20:100113.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Schönrich G, Raftery MJ. Neutrophil extracellular traps go viral. Front Immunol. 2016; 366. Schönrich G, Raftery MJ. Neutrophil extracellular traps go viral. Front Immunol. 2016; 366.
53.
Zurück zum Zitat Andargie TE, Tsuji N, Seifuddin F, Jang MK, Yuen PST, Kong H, et al. Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury. JCI Insight [Internet]. 2021;6. https://doi.org/10.1172/jci. Andargie TE, Tsuji N, Seifuddin F, Jang MK, Yuen PST, Kong H, et al. Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury. JCI Insight [Internet]. 2021;6. https://​doi.​org/​10.​1172/​jci.
54.
Zurück zum Zitat Yipp BG, Petri B, Salina D, Jenne CN, Scott BN V, Zbytnuik LD, et al. Dynamic NETosis is carried out by live neutrophils in human and mouse bacterial abscesses and during severe gram- positive infection. Nat Med. 2015. Yipp BG, Petri B, Salina D, Jenne CN, Scott BN V, Zbytnuik LD, et al. Dynamic NETosis is carried out by live neutrophils in human and mouse bacterial abscesses and during severe gram- positive infection. Nat Med. 2015.
55.
56.
Zurück zum Zitat Adrover JM, Carrau L, Daßler-Plenker J, Bram Y, Chandar V, Houghton S, et al. Disulfiram inhibits neutrophil extracellular trap formation and protects rodents from acute lung injury and SARS-CoV-2 infection. JCI insight 2022;7. Adrover JM, Carrau L, Daßler-Plenker J, Bram Y, Chandar V, Houghton S, et al. Disulfiram inhibits neutrophil extracellular trap formation and protects rodents from acute lung injury and SARS-CoV-2 infection. JCI insight 2022;7.
Metadaten
Titel
Targeting neutrophils extracellular traps (NETs) reduces multiple organ injury in a COVID-19 mouse model
verfasst von
Flavio P. Veras
Giovanni F. Gomes
Bruna M. S. Silva
Diego B. Caetité
Cicero J. L. R. Almeida
Camila Meirelles S. Silva
Ayda H. Schneider
Emily S. Corneo
Caio S. Bonilha
Sabrina S. Batah
Ronaldo Martins
Eurico Arruda
Alexandre T. Fabro
José C. Alves-Filho
Thiago M. Cunha
Fernando Q. Cunha
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
Respiratory Research / Ausgabe 1/2023
Elektronische ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-023-02336-2

Weitere Artikel der Ausgabe 1/2023

Respiratory Research 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Eingreifen von Umstehenden rettet vor Erstickungstod!

15.05.2024 Fremdkörperaspiration Nachrichten

Wer sich an einem Essensrest verschluckt und um Luft ringt, benötigt vor allem rasche Hilfe. Dass Umstehende nur in jedem zweiten Erstickungsnotfall bereit waren, diese zu leisten, ist das ernüchternde Ergebnis einer Beobachtungsstudie aus Japan. Doch es gibt auch eine gute Nachricht.

Neue S3-Leitlinie zur unkomplizierten Zystitis: Auf Antibiotika verzichten?

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Schadet Ärger den Gefäßen?

14.05.2024 Arteriosklerose Nachrichten

In einer Studie aus New York wirkte sich Ärger kurzfristig deutlich negativ auf die Endothelfunktion gesunder Probanden aus. Möglicherweise hat dies Einfluss auf die kardiovaskuläre Gesundheit.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.