Skip to main content
Erschienen in: BMC Gastroenterology 1/2022

Open Access 01.12.2022 | COVID-19 | Research

The impact of face shields on the quality of gastrointestinal endoscopy during the COVID-19 pandemic

verfasst von: Jong Yoon Lee, Yeo Wool Kang, Myeongseok Koh, Dong Kyun Kim, Jin Seok Jang, Jong Hoon Lee

Erschienen in: BMC Gastroenterology | Ausgabe 1/2022

Abstract

Background

Coronavirus disease 2019 (COVID-19) has become a global pandemic, with healthcare workers at a high risk of exposure. During this pandemic, endoscopists must wear personal protective equipment (PPE), including face shields, to prevent COVID-19 transmission; however, few studies have reported the impact of face shields on the quality of gastrointestinal (GI) endoscopy. We aimed to determine whether the use of PPE, including face shields, affected the quality of GI endoscopy during the COVID-19 pandemic.

Methods

The medical records of patients who had undergone screening or surveillance colonoscopy and gastric endoscopic submucosal dissection (ESD) at Dong-A University Hospital between June 2020 and March 2021 were retrospectively reviewed. Endoscopists wore isolation gowns, disposable gloves, and KF94 masks from June 2020 to October 2020. From November 2020, endoscopists also wore face shields. We compared GI endoscopy quality indicators between the first five months (no face shields) and the second five months (with face shields). In the non-face shield and face shield groups, we calculated the overall adenoma detection rates (ADRs), polyp detection rate (PDR), sessile serrated lesion detection rate (SSLDR), advanced neoplasia detection rate (ANDR), complete resection rate (CRR), number of polyps and/or adenomas per colonoscopy, and gastric ESD procedure time.

Results

In total, 1359 study patients had undergone screening or surveillance colonoscopy (face shield group, n = 679; non-face shield group, n = 680). No statistically significant between-group differences were observed (PDR, 49.04 vs. 52.50%, p = 0.202; ADR, 38.59 vs. 38.97%, p = 0.884; SSPDR, 1.91 vs. 1.32%, p = 0.388; ANDR, 3.98 vs. 3.97%, p = 0.991, respectively). No difference was found in colonoscopy quality indicators between patients examined by experienced and trainee endoscopists with and without face shields. Of 144 study patients who had undergone gastric ESD for gastric neoplasms, there were 72 patients in each group. No statistically significant differences were found in the CRR (94.44 vs 93.05%, p = 1.000) and procedure times (19.22 ± 9.33 vs. 19.03 ± 11.49, p = 0.911).

Conclusions

Wearing face shields during the COVID-19 pandemic did not affect the quality indicators for GI endoscopy.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ADRs
Adenoma detection rates
ANDR
Advanced neoplasia detection rate
APC
Adenoma per colonoscopy
COVID-19
Coronavirus disease 2019
CRC
Colorectal cancer
CRR
Complete resection rate
ESD
Endoscopic submucosal dissection
GI
Gastrointestinal
NBI
Narrow band image
PCCRC
Post-colonoscopy colorectal cancer
PDR
Polyp detection rate
PPE
Personal protective equipment
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
SSLDR
Sessile serrated lesion detection rate

Background

In December 2019, an outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was detected in a cluster of patients with respiratory tract infection of unknown etiology in Wuhan, Hubei Province, China [1]. In February 2020, the World Health Organization named the infection due to SARS-CoV-2 as coronavirus disease 2019 (COVID-19) and declared COVID-19 to be a pandemic in March 2020 [2]. COVID-19 is mainly transmitted through droplets, aerosols, and via direct contact; therefore, healthcare workers are at a higher risk of exposure to COVID-19 than the general population [3, 4]. Fecal-to-oral transmission may also be a route of COVID-19 infection [5]; therefore, endoscopic procedures increase the risk of COVID-19 transmission. The World Endoscopy Organization, the American Society for Gastrointestinal Endoscopy, the American Gastroenterological Association, the European Society of Gastrointestinal Endoscopy, and the Asian Pacific Society for Digestive Endoscopy have made several recommendations for clinicians to follow during the COVID-19 pandemic that include assessing the risk of COVID-19 to determine when to perform an endoscopy and recommending that all endoscopists wear appropriate personal protective equipment (PPE) to prevent COVID-19 transmission [610]. PPE includes an isolation gown, disposable gloves, a mask, and a face shield or goggles. A face shield is used for protection of the facial area from exposure to infectious agents. Many protective devices had previously been used during endoscopy, but face shields had not been used prior to the COVID-19 pandemic.
Colonoscopy is the gold standard method for the screening and diagnosis of colorectal cancer (CRC) [11, 12]. However, poor quality colonoscopy can lead to post-colonoscopy CRC (PCCRC) [13]. An increased adenoma detection rate (ADR) has been reported to reduce the risk of PCCRC and CRC-related mortality [14, 15]. The resolution of the colonoscope is known to affect the ADR [16, 17]. High resolution provides clear images, making it easy to detect abnormalities in the colonic mucosa. The sharpness of the screen is an important factor influencing the ADR during colonoscopy [18]. Since the face shield is a device worn in front of the eyes, the visual field of the user observing the screen may be affected. Compared with colonoscopy, there are few useful indicators to evaluate the quality of upper gastrointestinal (GI) endoscopy. We evaluated the complete resection rate (CRR) in gastric endoscopic submucosal dissection (ESD) as a quality indicator in upper GI endoscopy. ESD is a widely accepted treatment for early gastric cancer or gastric adenoma. Accurate delineation of margins is necessary for complete resection of gastric neoplasms [19, 20]. However, this requires precise observation, and there has been concern that wearing a face shield may affect accurate delineation. Few studies have reported the effect of face shields on the quality of GI endoscopy; therefore, we aimed to determine whether the use of a face shield affected GI endoscopy quality.

Methods

Study design and patients

We retrospectively reviewed the medical records of patients who had undergone screening or surveillance colonoscopy and gastric ESD at Dong-A University Hospital between June 2020 and March 2021 during the COVID-19 pandemic. All patients who had undergone colonoscopy were aged 30–79 years and had undergone either their first screening colonoscopy or surveillance colonoscopy after three years of their last examination. Colonoscopies were performed by four experienced endoscopists with > 5 years of experience and by three second- or third-year gastroenterology fellows who were able to perform colonoscopies independently. Patients aged ≥ 30 years who had undergone gastric ESD for the treatment of category 4 (mucosal high grade dysplasia or intramucosal carcinoma) disease according to the revised Vienna classification and confirmed after gastric ESD were included [21]. Gastric ESD was performed by two experienced endoscopists.
The endoscopists wore isolation gowns, disposable gloves, and KF94 masks from June 2020 to October 2020; patients examined under this condition were classified into a non-face shield group. From November 2020 onwards, the endoscopists additionally wore face shields, and the patients examined under this condition were classified into a face shield group (Fig. 1). We compared the quality indicators of GI endoscopy during five months without the use of face shields and five months with the use of face shields.

Risk stratification and endoscopic procedures

Dong-A University Hospital is a tertiary hospital that treats patients with COVID-19. Since the start of the COVID-19 pandemic, our hospital has classified patients’ risk of COVID-19 infection into three categories. Low-risk patients comprise those with no symptoms (e.g., cough, temperature > 37.5°, breathlessness, diarrhea), no contact with COVID-19-positive patients, and not having stayed in high-risk areas in the previous 14 days. Intermediate-risk patients comprise those with symptoms, but with no contact with COVID-19-positive patients, and not having stayed in high-risk areas in the previous 14 days, or patients without symptoms but who had contact with COVID-19-positive patients or who had stayed in high-risk areas in the previous 14 days. High-risk patients comprise those with symptoms and who had contact with COVID-19-positive patients or who had stayed in high-risk areas in the previous 14 days. During the chart review, colonoscopy and gastric ESD were performed for low-risk patients. Intermediate- or high-risk patients underwent a polymerase chain reaction test for COVID-19 to confirm a negative test result, and the necessity of endoscopy was evaluated. Subsequently, endoscopy was performed for patients with negative results but not for those confirmed as being positive for COVID-19. High-definition video processor systems (i.e., CV-290 EVIS LUCERTA ELITE [Olympus Medical, Tokyo, Japan] and EPK-i7010 [Pentax, Hoya Corporation, Tokyo, Japan]) were used for all coloscopies. However, when gastric ESD was performed, only the CV-290 EVIS LUCERTA ELITE [Olympus Medical, Tokyo, Japan] was used because routine observation using a narrow band image (NBI) was required. Patients undergoing colonoscopy were prepared with 1–2 L of a polyethylene glycol solution containing ascorbic acid with an additional 1–2 L of water. Midazolam 2–5 mg and/or propofol 10–60 mg was administered for sedation purposes.

Definitions concerning the polyp detection rate, the ADR, the sessile serrated lesion detection rate, and the advanced neoplasia detection rate

The polyp detection rate (PDR) was defined as the proportion of patients with at least one polyp, including adenoma and hyperplastic polyps (HPs), among all the patients examined. The ADR was defined as the proportion of patients with at least one adenoma among all the patients examined. We added features of clinically significant sessile serrated lesions (SSLs) to our definition of SSL. Therefore, the SSL was defined as follows: (a) a SSL with or without dysplasia, (b) an HP measuring ≥ 5 mm in the proximal colon (proximal to the splenic flexure), or (c) an HP ≥ 10 mm in the whole colon. Advanced adenoma was defined as follows: any adenoma ≥ 10 mm in size, with villous histology or with high-grade dysplasia, and any SSL ≥ 10 mm in size or with dysplasia. The SSL detection rate (SSLDR) and the advanced neoplasia detection rate (ANDR) were calculated in a similar manner to the PDR and the ADR.

Evaluation of horizontal margins and definition of the CRR

The CRR was calculated to evaluate whether the horizontal extent of the gastric neoplasm was adequately observed when performing ESD as the quality indicator that could most affect the visual field in upper GI endoscopy. Prior to performing an ESD, the horizontal margins were evaluated using two methods, namely, a white light image and an NBI. A pathological analysis of the resected specimen was defined as a complete resection that included the horizontal margins of the neoplasm.

Primary and secondary endpoints

The primary endpoints were the comparison of the ADR and the CRR between the groups. The secondary endpoints were the PDR, SSLDR, ANDR, number of adenoma per colonoscopy (APC), intubation time, and withdrawal time in lower GI endoscopy. A comparison of the procedure time for gastric ESD was also a secondary endpoint.

Statistical and data analyses

The data were divided into two groups: data from procedures performed wearing face shields and data from procedures performed without face shields. Continuous data were analyzed using a Student’s t-test and are represented as mean ± standard deviation. Categorical data were analyzed using Pearson’s chi-squared or Fisher’s exact tests. All analyses were performed using the Statistical Package for Social Sciences software (version 26.0, IBM, Armonk, New York, USA). Statistical significance was set at p < 0.05.

Ethics statement

Our research protocol was approved by the Ethics Committee of our hospital in accordance with international agreements (World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects). Due to the retrospective characteristics of the study, informed consent was waived, and the study was approved by the Institutional Review Board of Dong-A University College of Medicine (DAUHIRB-21-110).

Results

Colonoscopy quality indicators between the groups

In total, 1359 patients were included in this study; 680 and 679 procedures were performed without and with face shields, respectively. The demographic and clinical characteristics of the patients are summarized in Table 1. There were no significant differences between the two groups (face shield vs. non-face shield) regarding patients’ age and sex, bowel preparation, sedation, use of antiplatelet or anticoagulation, time of examination, indication for examination, type of colonoscope, and endoscopist’s experience (Table 1). There were no significant differences in insertion time between the face shield and non-face shield groups (431.94 ± 199.08 vs. 431.71 ± 209.18, respectively; p = 0.983) and withdrawal time (524.97 ± 164.55 vs. 537.54 ± 164.20, respectively; p = 0.159). There were no significant differences between the face shield and non-face shield groups in terms of the PDR (49.04 vs. 52.50%, respectively; p = 0.202), ADR (38.59 vs. 38.97%, respectively; p = 0.884), SSLDR (1.91 vs. 1.32%, respectively; p = 0.388), ANDR (3.98 vs. 3.97%, respectively; p = 0.991), number of polyps per colonoscopy (1.11 ± 1.83 vs. 1.10 ± 1.57, respectively; p = 0.897), and number of APC (0.73 ± 1.34 vs. 0.69 ± 1.12, respectively; p = 0.471) (Table 2).
Table 1
Demographic and clinical characteristics in patients who underwent colonoscopy
 
Face shield
(n = 679)
Non-face shield
(n = 680)
P value
Age
61.56 ± 11.32
62.68 ± 11.07
0.067
Gender
0.803
 Male
381
377
 
 Female
298
303
 
Bowel preparation
0.565
 BBPS 8,9
377
367
 
 BBPS 6,7
302
313
 
Sedation
0.705
 Yes
666
665
 
 No
13
15
 
Antiplatelet or anticoagulation use
0.937
 Yes
71
72
 
 No
608
608
 
Examination of day
0.487
 Morning
183
172
 
 Afternoon
496
508
 
Reason of examination
0.461
 Screening
516
505
 
 Surveillance
163
175
 
Type of colonocope
0.846
 CV-290
300
304
 
 EPK-i7010
379
376
 
Endoscopist’s experience
0.683
 Experienced
317
325
 
 Trainee
362
355
 
BPPS Boston bowel preparation score
Table 2
Colonoscopic quality indicators between the groups
 
Face shield
(n = 679)
Non-face shield (n = 680)
P value
Cecal intubation time (second)
431.94 ± 199.08
431.71 ± 209.18
0.983
Withdrawal time (second)
524.97 ± 164.55
537.54 ± 164.20
0.159
PDR (%)
49.04 (333/679)
52.50 (357/680)
0.202
ADR (%)
38.59 (262/679)
38.97 (265/680)
0.884
SSLDR (%)
1.91 (13/679)
1.32 (9/680)
0.388
ANDR (%)
3.98 (27/679)
3.97 (27/680)
0.991
PPC
1.11 ± 1.83
1.10 ± 1.57
0.159
APC
0.73 ± 1.34
0.69 ± 1.12
0.471
PPB, %
0/333
0/357
1.000
PDR polyp detection rate, ADR adenoma detection rate, SSPDR sessile serrated polyp detection rate, ANDR advanced neoplasm detection rate, PPC polyp per colonoscopy, APC adenoma per colonoscopy, PPB post polypectomy bleeding

Adenomas per colonoscopy according to endoscopic features and size

Adenomas were divided into two categories according to their endoscopic features: polypoid and flat. The number of APC, according to endoscopic features, was not significant between the face shield and non-face shield groups (polypoid: 0.05 vs. 0.05, respectively; p = 0.933; flat: 0.68 vs. 0.64, respectively; p = 0.457). Adenomas were divided into three categories according to size: < 5 mm, 5–10 mm, and > 10 mm. The number of APC, according to size, did not differ significantly between the face shield and non-face shield groups (< 5 mm: 0.66 vs. 0.58, respectively; p = 0.199; 5–10 mm: 0.05 vs. 0.08, respectively; p = 0.171; > 10 mm: 0.03 vs. 0.03, respectively, p = 0.997; Table 3).
Table 3
Adenomas per colonoscopy by endoscopic feature and size
 
Face shield
(n = 679)
Non-face shield (n = 680)
P value
Endoscopic feature
 Polypoid
0.05 (31/679)
0.05 (34/680)
0.933
 Flat
0.68 (465/679)
0.64 (435/680)
0.457
Size
 < 5 mm
0.66 (445/679)
0.58 (394/680)
0.199
 5– 10 mm
0.05 (31/679)
0.08 (54/680)
0.171
 > 10 mm
0.03 (20/679)
0.03 (21/680)
0.997
 Overall
0.73 (496/679)
0.69 ± 1.12
0.471
APC adenoma per colonoscopy

Colonoscopy quality indicators according to endoscopists’ experience

Data concerning the face shield and non-face shield groups were further compared according to endoscopists’ experience. Regarding trainee endoscopists, there were no significant differences between the face shield and non-face shield groups in cecal intubation time (455.02 ± 199.81 vs. 464.22 ± 185.30, respectively; p = 0.523), withdrawal time (522.68 ± 172.04 vs. 544.33 ± 172.97, respectively; p = 0.093), the PDR (46.69 vs. 51.55, respectively; p = 0.193), the ADR (35.36 vs. 37.46, respectively; p = 0.558), and the number of APC (0.61 ± 1.23 vs. 0.63 ± 1.10, respectively; p = 0.789). Similarly, regarding experienced endoscopists, there were no statistically significant differences between the face shield and non-face shield groups in cecal intubation time (405.58 ± 195.25 vs. 396.19 ± 227.50, respectively; p = 0.575), withdrawal time (527.58 ± 155.78 vs. 530.13 ± 153.98, respectively; p = 0.835), the PDR (52.29 vs. 53.53, respectively; p = 0.647), the ADR (42.22 vs. 40.61, respectively; p = 0.670), and the number of APC (0.88 ± 1.44 vs. 0.74 ± 1.14, respectively; p = 0.198; Table 4).
Table 4
Colonoscopic quality indicators according to endoscopists’ experience
 
Face shield
Non-face shield
P value
Trainee endoscopts
 Cecal intubation time, s
455.02 ± 199.81
464.22 ± 185.30
0.523
 Withdrawal time, s
522.68 ± 172.04
544.33 ± 172.97
0.093
 PDR, %
46.69
51.55
0.193
 ADR, %
35.36
37.46
0.558
 APC
0.61 ± 1.23
0.63 ± 1.10
0.789
Experienced endoscopists
 Cecal intubation time, s
405.58 ± 195.25
396.19 ± 227.50
0.575
 Withdrawal time, s
527.58 ± 155.78
530.13 ± 153.98
0.835
 PDR, %
52.29
53.53
0.647
 ADR, %
42.22
40.61
0.670
 APC
0.88 ± 1.44
0.74 ± 1.14
0.198
PDR polyp detection rate, ADR adenoma detection rate, APC adenoma per colonoscopy

The CRR and the procedure time of gastric ESD between the groups

Of 144 patients who underwent gastric ESD for gastric neoplasms in this study, 72 patients were in the face shield group and 72 patients were in the non-face shield group. No significant difference was observed in terms of demographics and clinical characteristics between the two groups (Table 5). No statistically significant differences were found between the two groups in the CRR (94.4 vs 93.05%, respectively, p = 1.000) and procedure time (19.22 ± 9.33 vs. 19.03 ± 11.49, respectively, p = 0.911; Table 6).
Table 5
Demographics and clinical characteristics in patient who underwent gastric ESD
 
Face shield
(n = 72)
Non-face shield
(n = 72)
P value
Age, mean, years
65.67 ± 9.30
67.35 ± 10.18
0.303
Gender, n
0.835
 Male
58
57
 
 Female
14
15
 
Tumor size, mean ± SD, mm
12.70 ± 7.21
14.89 ± 8.43
0.097
Location
0.067
 Antrum
46
56
 
 Body and fundus
26
16
 
Macroscopic type
0.943
 Elevated
30
32
 
 Flat
12
9
 
 Depressed
21
24
 
 Mixed
9
7
 
H.pylori status
0.863
 Positive
26
27
 
 Negative
46
45
 
Final pathology
0.165
 HGD
21
12
 
 EGC, differentiated
48
58
 
 EGC, undifferentiated
3
2
 
Invasion depth
0.574
 HGD and T1a
66
64
 
 T1b and deeper
6
8
 
Endoscopists
0.688
 Endoscopist 1
57
55
 
 Endoscopist 2
15
17
 
EGC early gastric cancer, HGD high grade dysplasia
Table 6
Procedure time and complete resection rate between groups
 
Face shield
Non-face shield
P value
Endoscopist 1
 Procedure time, min
18.65 ± 9.44
18.05 ± 10.24
0.750
 Complete resection rate, %
92.98
94.55
1.000
 Negative lateral margin
53
52
 
 Positive lateral margin
4
3
 
Endoscopist 2
 Procedure time, min
21.40 ± 8.88
22.18 ± 14.77
0.861
 Complete resection rate, %
100
88.24
0.486
 Negative lateral margin
15
15
 
 Positive lateral margin
0
2
 
Overall
 Procedure time, min
19.22 ± 9.33
19.03 ± 11.49
0.911
 Complete resection rate, %
94.44
93.05
1.000
 Negative lateral margin
68
67
 
 Positive lateral margin
4
5
 

Discussion

This single-center retrospective study aimed to determine whether the use of a face shield affected the quality of GI endoscopy during the COVID-19 pandemic. We found that performing endoscopic procedures while wearing a face shield did not affect the quality indicators of GI endoscopy. In addition, the proficiency of both experienced endoscopists and trainee endoscopists was not affected by the use of face shields.
As the number of endoscopic procedures performed increases, occupation-associated health hazards for endoscopists have increased, one of which is exposure to infection [22]. Throughout the COVID-19 pandemic, endoscopists have been at an increased risk of contracting COVID-19 from airborne droplets and conjunctival contact. Because human-to-human transmission occurs primarily through direct contact or air droplets, upper GI endoscopy may be a procedure that increases the risk of COVID-19 infection due to patients coughing during the examination [7, 23]. The live SARS-CoV-2 virus has also been found in patient stools, and fecal–oral transmission of COVID-19 is also possible [5, 24]. Therefore, colonoscopy is likely to be a procedure involving an increased risk of COVID-19 infection. Furthermore, patients with COVID-19 can present clinically with atypical GI symptoms; therefore, endoscopy may be performed on an undiagnosed, infected patient with COVID-19, thereby further increasing the risk of COVID-19 transmission [25].
One study that quantified the rate of unrecognized exposure to potentially infectious biologic samples during endoscopy via an endoscopist’s face reported that facial exposure may result in transmission of infectious diseases [26]. According to previous studies conducted in the early phase of the COVID-19 pandemic, 19% of healthcare workers who wore masks and gloves and who performed hand hygiene without additional facial protection were infected with COVID-19, but those who used additional facial protection were not infected [27, 28]. For these reasons, it is important that endoscopists wear a face shield along with isolation gowns, gloves, and a mask throughout endoscopic procedures during this COVID-19 pandemic.
However, wearing a face shield may affect the observation capacity of endoscopists during procedures. Previous studies have reported that the ADR was affected by the resolution and visual field of the colonoscopy [1618]. Observing adenomas is relatively uncomplicated when a screen is clear and the visual field is wide. However, concerns may be raised regarding whether the wearing of a face shield affects clarity or the visual field during colonoscopy and thus reduces the ADR. Therefore, we aimed to determine whether wearing a face shield affected endoscopists’ performance and whether the procedure time subsequently increased or whether the withdrawal time subsequently decreased. During our study period, Lee et al. reported that colonoscopy performance was not unfavorably affected when wearing a face shield [29]. We also found that wearing a face shield did not affect the quality indicators of colonoscopy, including the ADR. However, our study differed from Lee et al.’s study in that we analyzed quality indicators concerning both lower and upper GI endoscopy. Endoscopic retrograde cholangiography was excluded from our analysis because wearing goggles had been recommended prior to the COVID-19 pandemic due to ocular radiation exposure [22, 30]. We evaluated the CRR in gastric ESD as a quality indicator in upper GI endoscopy. Inaccurate diagnosis of tumor margins might cause incomplete resection with a positive margin for tumor cells and local recurrence [19, 20, 31]. Therefore, gastric neoplasm demarcation evaluated visually must be very precise. High-resolution endoscopy, magnifying endoscopy, indigocarmine chromoendoscopy, and NBI are used to increase the accuracy of tumor demarcation [3135]. Therefore, there may be concerns regarding whether the wearing of a face shield affects clarity or the visual field during gastric ESD and thus decreases the accuracy of tumor demarcation and reduces the CRR. In this study, we found that wearing a face shield did not reduce the accuracy of tumor demarcation or delay the procedure time.
This study had some limitations. When a face shield is worn, light may be reflected on the face shield and interfere with the endoscopist’s visual field. In our hospital’s endoscopy room, the lights were turned off, with only the screen of the video processor being turned on, and no direct sunlight. However, while the lighting or brightness of the endoscopy room and the position of the screen may reflect light on the face shield, these effects are likely to differ between endoscopy rooms. In this study, the effects of these differences on the GI quality indicators were not analyzed. Moreover, in this study, the effect of only one type of face shield was investigated. Since various types of face shields are available, their effects on the quality indicators of GI endoscopy may differ. This was a retrospective study of medical records; therefore, it had inherent limitations. In our hospital, endoscopy is required to be performed in strict accordance with guideline recommendations; however, as this was a retrospective study, we could not confirm whether these recommendations were followed or not for some of the patients. However, according to an investigation carried out among our hospital staff, adherence to wearing facial protection was > 95% during the period; therefore, we consider that this limitation did not significantly affect our results. Our results, obtained through examining patient medical records within a short period of time during which facial protection recommendations were strictly followed, are likely to be of value in understanding the effects of changes implemented in response to an unprecedented and globally threatening pandemic.
Experts and medical societies have provided guidelines for the management of COVID-19 infection, and medical workers are required to follow such guidelines to prevent droplet or air transmission. The same management guidelines are also applied when working in the endoscopy room, and the wearing of PPE, including facial protection, is essential for endoscopists [610]. However, even when guidelines are strictly followed, endoscopists can experience fear and reluctance to perform endoscopies due to the risk of contracting COVID-19. One study found that gastroenterologists were less fearful of contracting acquired immunodeficiency syndrome (AIDS) approximately six years after the first study about fears of AIDS [36]. This finding indicates that in the unprecedented COVID-19 pandemic era, more research and advances in treatment for COVID-19 are needed to help alleviate endoscopists’ fears. Further studies are also needed to determine whether wearing a face shield is necessary for the prevention of other infections without degrading the quality indicators of colonoscopy, even after the COVID-19 pandemic has ended.

Conclusions

Quality indicators of GI endoscopy were not affected due to the wearing of face shields during the COVID-19 pandemic. The additional use of face shields to prevent COVID-19 transmission did not reduce the quality of GI endoscopy during the COVID-19 pandemic.

Acknowledgements

Not applicable.

Declarations

Our research protocol was approved by the Ethics Committee in accordance with international agreements (World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects). Due to the retrospective characteristics of the study, informed consent was waived, and the study was approved by the Institutional Review Board of Dong-A University College of Medicine (DAUHIRB-21-110).
Informed consent for publication was obtained from the endoscopist wearing the protective equipment in Fig. 1.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H, Megawati D, Hayati Z, Wagner AL, Mudatsir M. Coronavirus disease 2019 (COVID-19): a literature review. J Infect Public Health. 2020;13(5):667–73.CrossRef Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H, Megawati D, Hayati Z, Wagner AL, Mudatsir M. Coronavirus disease 2019 (COVID-19): a literature review. J Infect Public Health. 2020;13(5):667–73.CrossRef
2.
Zurück zum Zitat Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207.CrossRef Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207.CrossRef
3.
Zurück zum Zitat Nguyen LH, Drew DA, Graham MS, Joshi AD, Guo CG, Ma W, Mehta RS, Warner ET, Sikavi DR, Lo CH, et al. Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study. The Lancet Public Health. 2020;5(9):e475–83.CrossRef Nguyen LH, Drew DA, Graham MS, Joshi AD, Guo CG, Ma W, Mehta RS, Warner ET, Sikavi DR, Lo CH, et al. Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study. The Lancet Public Health. 2020;5(9):e475–83.CrossRef
4.
Zurück zum Zitat Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, Liu L, Shan H, Lei C-L, Hui DSC, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.CrossRef Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, Liu L, Shan H, Lei C-L, Hui DSC, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.CrossRef
5.
Zurück zum Zitat Gu J, Han B, Wang J. COVID-19: gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020;158(6):1518–9.CrossRef Gu J, Han B, Wang J. COVID-19: gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020;158(6):1518–9.CrossRef
6.
Zurück zum Zitat Guda NM, Emura F, Reddy DN, Rey J-F, Seo D-W, Gyokeres T, Tajiri H, Faigel D. Recommendations for the Operation of Endoscopy Centers in the setting of the COVID-19 pandemic—World Endoscopy Organization guidance document. Dig Endosc. 2020;32(6):844–50.CrossRef Guda NM, Emura F, Reddy DN, Rey J-F, Seo D-W, Gyokeres T, Tajiri H, Faigel D. Recommendations for the Operation of Endoscopy Centers in the setting of the COVID-19 pandemic—World Endoscopy Organization guidance document. Dig Endosc. 2020;32(6):844–50.CrossRef
7.
Zurück zum Zitat Repici A, Maselli R, Colombo M, Gabbiadini R, Spadaccini M, Anderloni A, Carrara S, Fugazza A, Di Leo M, Galtieri PA, et al. Coronavirus (COVID-19) outbreak: what the department of endoscopy should know. Gastrointest Endosc. 2020;92(1):192–7.CrossRef Repici A, Maselli R, Colombo M, Gabbiadini R, Spadaccini M, Anderloni A, Carrara S, Fugazza A, Di Leo M, Galtieri PA, et al. Coronavirus (COVID-19) outbreak: what the department of endoscopy should know. Gastrointest Endosc. 2020;92(1):192–7.CrossRef
8.
Zurück zum Zitat Sultan S, Lim JK, Altayar O, Davitkov P, Feuerstein JD, Siddique SM, Falck-Ytter Y, El-Serag HB. AGA rapid recommendations for gastrointestinal procedures during the COVID-19 pandemic. Gastroenterology. 2020;159(2):739-758.e734.CrossRef Sultan S, Lim JK, Altayar O, Davitkov P, Feuerstein JD, Siddique SM, Falck-Ytter Y, El-Serag HB. AGA rapid recommendations for gastrointestinal procedures during the COVID-19 pandemic. Gastroenterology. 2020;159(2):739-758.e734.CrossRef
9.
Zurück zum Zitat Gralnek IM, Hassan C, Beilenhoff U, Antonelli G, Ebigbo A, Pellisè M, Arvanitakis M, Bhandari P, Bisschops R, Van Hooft JE, et al. ESGE and ESGENA Position Statement on gastrointestinal endoscopy and the COVID-19 pandemic. Endoscopy. 2020;52(6):483–90.CrossRef Gralnek IM, Hassan C, Beilenhoff U, Antonelli G, Ebigbo A, Pellisè M, Arvanitakis M, Bhandari P, Bisschops R, Van Hooft JE, et al. ESGE and ESGENA Position Statement on gastrointestinal endoscopy and the COVID-19 pandemic. Endoscopy. 2020;52(6):483–90.CrossRef
10.
Zurück zum Zitat Chiu PWY, Ng SC, Inoue H, Reddy DN, Ling HuE, Cho JY, Ho LK, Hewett DG, Chiu HM, Rerknimitr R, et al. Practice of endoscopy during COVID-19 pandemic: position statements of the Asian Pacific Society for Digestive Endoscopy (APSDE-COVID statements). Gut. 2020;69(6):991–6.CrossRef Chiu PWY, Ng SC, Inoue H, Reddy DN, Ling HuE, Cho JY, Ho LK, Hewett DG, Chiu HM, Rerknimitr R, et al. Practice of endoscopy during COVID-19 pandemic: position statements of the Asian Pacific Society for Digestive Endoscopy (APSDE-COVID statements). Gut. 2020;69(6):991–6.CrossRef
11.
Zurück zum Zitat Schoenfeld P, Cash B, Flood A, Dobhan R, Eastone J, Coyle W, Kikendall JW, Kim HM, Weiss DG, Emory T, et al. Colonoscopic screening of average-risk women for colorectal neoplasia. N Engl J Med. 2005;352(20):2061–8.CrossRef Schoenfeld P, Cash B, Flood A, Dobhan R, Eastone J, Coyle W, Kikendall JW, Kim HM, Weiss DG, Emory T, et al. Colonoscopic screening of average-risk women for colorectal neoplasia. N Engl J Med. 2005;352(20):2061–8.CrossRef
12.
Zurück zum Zitat Levin B, Lieberman DA, McFarland B, Andrews KS, Brooks D, Bond J, Dash C, Giardiello FM, Glick S, Johnson D, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology. 2008;134(5):1570–95.CrossRef Levin B, Lieberman DA, McFarland B, Andrews KS, Brooks D, Bond J, Dash C, Giardiello FM, Glick S, Johnson D, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology. 2008;134(5):1570–95.CrossRef
13.
Zurück zum Zitat Kaminski MF, Regula J, Kraszewska E, Polkowski M, Wojciechowska U, Didkowska J, Zwierko M, Rupinski M, Nowacki MP, Butruk E. Quality indicators for colonoscopy and the risk of interval cancer. N Engl J Med. 2010;362(19):1795–803.CrossRef Kaminski MF, Regula J, Kraszewska E, Polkowski M, Wojciechowska U, Didkowska J, Zwierko M, Rupinski M, Nowacki MP, Butruk E. Quality indicators for colonoscopy and the risk of interval cancer. N Engl J Med. 2010;362(19):1795–803.CrossRef
14.
Zurück zum Zitat Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, Doubeni CA, Zauber AG, de Boer J, Fireman BH, Schottinger JE, et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med. 2014;370(14):1298–306.CrossRef Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, Doubeni CA, Zauber AG, de Boer J, Fireman BH, Schottinger JE, et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med. 2014;370(14):1298–306.CrossRef
15.
Zurück zum Zitat Kaminski MF, Wieszczy P, Rupinski M, Wojciechowska U, Didkowska J, Kraszewska E, Kobiela J, Franczyk R, Rupinska M, Kocot B, et al. Increased rate of adenoma detection associates with reduced risk of colorectal cancer and death. Gastroenterology. 2017;153(1):98–105.CrossRef Kaminski MF, Wieszczy P, Rupinski M, Wojciechowska U, Didkowska J, Kraszewska E, Kobiela J, Franczyk R, Rupinska M, Kocot B, et al. Increased rate of adenoma detection associates with reduced risk of colorectal cancer and death. Gastroenterology. 2017;153(1):98–105.CrossRef
16.
Zurück zum Zitat Jrebi NY, Hefty M, Jalouta T, Ogilvie J, Davis AT, Asgeirsson T, Luchtefeld M. High-definition colonoscopy increases adenoma detection rate. Surg Endosc. 2017;31(1):78–84.CrossRef Jrebi NY, Hefty M, Jalouta T, Ogilvie J, Davis AT, Asgeirsson T, Luchtefeld M. High-definition colonoscopy increases adenoma detection rate. Surg Endosc. 2017;31(1):78–84.CrossRef
17.
Zurück zum Zitat Bond A, O’Toole P, Fisher G, Subramanian S, Haslam N, Probert C, Cox T, Sarkar S. New-generation high-definition colonoscopes increase adenoma detection when screening a moderate-risk population for colorectal cancer. Clin Colorectal Cancer. 2017;16(1):44–50.CrossRef Bond A, O’Toole P, Fisher G, Subramanian S, Haslam N, Probert C, Cox T, Sarkar S. New-generation high-definition colonoscopes increase adenoma detection when screening a moderate-risk population for colorectal cancer. Clin Colorectal Cancer. 2017;16(1):44–50.CrossRef
18.
Zurück zum Zitat Lee JY, Koh M, Lee JH. Latest generation high-definition colonoscopy increases adenoma detection rate by trainee endoscopists. Dig Dis Sci. 2021;66(8):2756–62.CrossRef Lee JY, Koh M, Lee JH. Latest generation high-definition colonoscopy increases adenoma detection rate by trainee endoscopists. Dig Dis Sci. 2021;66(8):2756–62.CrossRef
19.
Zurück zum Zitat Kakushima N, Ono H, Tanaka M, Takizawa K, Yamaguchi Y, Matsubayashi H. Factors related to lateral margin positivity for cancer in gastric specimens of endoscopic submucosal dissection. Dig Endosc. 2011;23(3):227–32.CrossRef Kakushima N, Ono H, Tanaka M, Takizawa K, Yamaguchi Y, Matsubayashi H. Factors related to lateral margin positivity for cancer in gastric specimens of endoscopic submucosal dissection. Dig Endosc. 2011;23(3):227–32.CrossRef
20.
Zurück zum Zitat Sekiguchi M, Suzuki H, Oda I, Abe S, Nonaka S, Yoshinaga S, Taniguchi H, Sekine S, Kushima R, Saito Y. Risk of recurrent gastric cancer after endoscopic resection with a positive lateral margin. Endoscopy. 2014;46(4):273–8.CrossRef Sekiguchi M, Suzuki H, Oda I, Abe S, Nonaka S, Yoshinaga S, Taniguchi H, Sekine S, Kushima R, Saito Y. Risk of recurrent gastric cancer after endoscopic resection with a positive lateral margin. Endoscopy. 2014;46(4):273–8.CrossRef
21.
Zurück zum Zitat Dixon MF. Gastrointestinal epithelial neoplasia: Vienna revisited. Gut. 2002;51(1):130–1.CrossRef Dixon MF. Gastrointestinal epithelial neoplasia: Vienna revisited. Gut. 2002;51(1):130–1.CrossRef
22.
Zurück zum Zitat Ofori E, Ramai D, John F, Reddy M, Ghevariya V. Occupation-associated health hazards for the gastroenterologist/endoscopist. Ann Gastroenterol. 2018;31(4):448–55.PubMedPubMedCentral Ofori E, Ramai D, John F, Reddy M, Ghevariya V. Occupation-associated health hazards for the gastroenterologist/endoscopist. Ann Gastroenterol. 2018;31(4):448–55.PubMedPubMedCentral
23.
Zurück zum Zitat Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. The Lancet. 2020;395(10223):470–3.CrossRef Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. The Lancet. 2020;395(10223):470–3.CrossRef
24.
Zurück zum Zitat Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831-1833.e1833.CrossRef Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831-1833.e1833.CrossRef
25.
Zurück zum Zitat Hormati A, Ghadir MR, Zamani F, Khodadadi J, Afifian M, Ahmadpour S. Preventive strategies used by GI physicians during the COVID-19 pandemic. New Microbes New Infect. 2020;35:100676.CrossRef Hormati A, Ghadir MR, Zamani F, Khodadadi J, Afifian M, Ahmadpour S. Preventive strategies used by GI physicians during the COVID-19 pandemic. New Microbes New Infect. 2020;35:100676.CrossRef
26.
Zurück zum Zitat Johnston ER, Habib-Bein N, Dueker JM, Quiroz B, Corsaro E, Ambrogio M, Kingsley M, Papachristou GI, Kreiss C, Khalid A. Risk of bacterial exposure to the endoscopist’s face during endoscopy. Gastrointest Endosc. 2019;89(4):818–24.CrossRef Johnston ER, Habib-Bein N, Dueker JM, Quiroz B, Corsaro E, Ambrogio M, Kingsley M, Papachristou GI, Kreiss C, Khalid A. Risk of bacterial exposure to the endoscopist’s face during endoscopy. Gastrointest Endosc. 2019;89(4):818–24.CrossRef
27.
Zurück zum Zitat Perencevich EN, Diekema DJ, Edmond MB. Moving personal protective equipment into the community: face shields and containment of COVID-19. JAMA. 2020;323(22):2252–3.CrossRef Perencevich EN, Diekema DJ, Edmond MB. Moving personal protective equipment into the community: face shields and containment of COVID-19. JAMA. 2020;323(22):2252–3.CrossRef
28.
Zurück zum Zitat Bhaskar ME, Arun S. SARS-CoV-2 infection among community health workers in India before and after use of face shields. JAMA. 2020;324(13):1348–9.CrossRef Bhaskar ME, Arun S. SARS-CoV-2 infection among community health workers in India before and after use of face shields. JAMA. 2020;324(13):1348–9.CrossRef
29.
Zurück zum Zitat Lee JW, Lee HJ, Kim DS, Yoon J, Hong SW, Hwang HW, Lee JS, Kim GU, Lee S, Choe J et al. The influence of face shields on the quality of colonoscopy in the era of the COVID-19 pandemic. Gut Liver. 2021. Lee JW, Lee HJ, Kim DS, Yoon J, Hong SW, Hwang HW, Lee JS, Kim GU, Lee S, Choe J et al. The influence of face shields on the quality of colonoscopy in the era of the COVID-19 pandemic. Gut Liver. 2021.
30.
Zurück zum Zitat Garg MS, Patel P, Blackwood M, Munigala S, Thakkar P, Field J, Wallace D, Agarwal S, Aoun E, Kulkarni A, et al. Ocular radiation threshold projection based off of fluoroscopy time during ERCP. Am J Gastroenterol. 2017;112(5):716–21.CrossRef Garg MS, Patel P, Blackwood M, Munigala S, Thakkar P, Field J, Wallace D, Agarwal S, Aoun E, Kulkarni A, et al. Ocular radiation threshold projection based off of fluoroscopy time during ERCP. Am J Gastroenterol. 2017;112(5):716–21.CrossRef
31.
Zurück zum Zitat Kiyotoki S, Nishikawa J, Satake M, Fukagawa Y, Shirai Y, Hamabe K, Saito M, Okamoto T, Sakaida I. Usefulness of magnifying endoscopy with narrow-band imaging for determining gastric tumor margin. J Gastroenterol Hepatol. 2010;25(10):1636–41.CrossRef Kiyotoki S, Nishikawa J, Satake M, Fukagawa Y, Shirai Y, Hamabe K, Saito M, Okamoto T, Sakaida I. Usefulness of magnifying endoscopy with narrow-band imaging for determining gastric tumor margin. J Gastroenterol Hepatol. 2010;25(10):1636–41.CrossRef
32.
Zurück zum Zitat Kawahara Y, Takenaka R, Okada H, Kawano S, Inoue M, Tsuzuki T, Tanioka D, Hori K, Yamamoto K. Novel chromoendoscopic method using an acetic acid-indigocarmine mixture for diagnostic accuracy in delineating the margin of early gastric cancers. Dig Endosc. 2009;21(1):14–9.CrossRef Kawahara Y, Takenaka R, Okada H, Kawano S, Inoue M, Tsuzuki T, Tanioka D, Hori K, Yamamoto K. Novel chromoendoscopic method using an acetic acid-indigocarmine mixture for diagnostic accuracy in delineating the margin of early gastric cancers. Dig Endosc. 2009;21(1):14–9.CrossRef
33.
Zurück zum Zitat Ezoe Y, Muto M, Horimatsu T, Minashi K, Yano T, Sano Y, Chiba T, Ohtsu A. Magnifying narrow-band imaging versus magnifying white-light imaging for the differential diagnosis of gastric small depressive lesions: a prospective study. Gastrointest Endosc. 2010;71(3):477–84.CrossRef Ezoe Y, Muto M, Horimatsu T, Minashi K, Yano T, Sano Y, Chiba T, Ohtsu A. Magnifying narrow-band imaging versus magnifying white-light imaging for the differential diagnosis of gastric small depressive lesions: a prospective study. Gastrointest Endosc. 2010;71(3):477–84.CrossRef
34.
Zurück zum Zitat Asada-Hirayama I, Kodashima S, Sakaguchi Y, Ono S, Niimi K, Mochizuki S, Tsuji Y, Minatsuki C, Shichijo S, Matsuzaka K, et al. Magnifying endoscopy with narrow-band imaging is more accurate for determination of horizontal extent of early gastric cancers than chromoendoscopy. Endosc Int Open. 2016;4(6):E690-698.CrossRef Asada-Hirayama I, Kodashima S, Sakaguchi Y, Ono S, Niimi K, Mochizuki S, Tsuji Y, Minatsuki C, Shichijo S, Matsuzaka K, et al. Magnifying endoscopy with narrow-band imaging is more accurate for determination of horizontal extent of early gastric cancers than chromoendoscopy. Endosc Int Open. 2016;4(6):E690-698.CrossRef
35.
Zurück zum Zitat Numata N, Oka S, Tanaka S, Yoshifuku Y, Miwata T, Sanomura Y, Arihiro K, Shimamoto F, Chayama K. Useful condition of chromoendoscopy with indigo carmine and acetic acid for identifying a demarcation line prior to endoscopic submucosal dissection for early gastric cancer. BMC Gastroenterol. 2016;16(1):72.CrossRef Numata N, Oka S, Tanaka S, Yoshifuku Y, Miwata T, Sanomura Y, Arihiro K, Shimamoto F, Chayama K. Useful condition of chromoendoscopy with indigo carmine and acetic acid for identifying a demarcation line prior to endoscopic submucosal dissection for early gastric cancer. BMC Gastroenterol. 2016;16(1):72.CrossRef
36.
Zurück zum Zitat Shapiro M, Brandt LJ. Endoscopy in the age of HIV: a study of current practices and attitudes. Gastrointest Endosc. 1994;40(4):477–80.CrossRef Shapiro M, Brandt LJ. Endoscopy in the age of HIV: a study of current practices and attitudes. Gastrointest Endosc. 1994;40(4):477–80.CrossRef
Metadaten
Titel
The impact of face shields on the quality of gastrointestinal endoscopy during the COVID-19 pandemic
verfasst von
Jong Yoon Lee
Yeo Wool Kang
Myeongseok Koh
Dong Kyun Kim
Jin Seok Jang
Jong Hoon Lee
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
BMC Gastroenterology / Ausgabe 1/2022
Elektronische ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-022-02114-2

Weitere Artikel der Ausgabe 1/2022

BMC Gastroenterology 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.