Skip to main content
Erschienen in: Inflammation 5/2021

12.04.2021 | Original Article

CTHRC1 Knockdown Promotes Inflammatory Responses Partially by p38 MAPK Activation in Human Periodontal Ligament Cells

verfasst von: Yi Guo, Chenxi Jiang, Siqi Yao, Li Ma, Huihui Zhang, Xiaoxuan Wang, Shihan Xu, Zhengguo Cao

Erschienen in: Inflammation | Ausgabe 5/2021

Einloggen, um Zugang zu erhalten

Abstract

Collagen triple helix repeat containing 1 (CTHRC1), a secreted glycoprotein, is widely expressed in many tissues. It has been recently defined as a novel marker for rheumatoid arthritis (RA), a systemic inflammatory disorder. However, the precise role of CTHRC1 in other chronic inflammatory diseases, like periodontal disease, remains unclear. This research aimed to explore the presence of CTHRC1 in periodontal inflammation, determine the precise role in inflammatory response modulation in periodontal ligament cells (PDLCs), and explore its underlying mechanisms. In vivo gingival crevicular fluid (GCF) and gingivae were obtained from healthy people and chronic periodontitis patients. Maxillary tissues of mice with or without ligature-induced periodontitis were immunostained for CTHRC1. In vitro human PDLCs were treated with tumor necrosis factor alpha (TNF-α) to mimic the inflammatory environment. Small interfering RNA (siRNA) was used to silence CTHRC1. SB203580 was used to inhibit the p38 mitogen-activated protein kinase (MAPK) pathway. CTHRC1 was highly expressed in GCF and gingival tissues of periodontitis patients. Animal models also revealed the same tendency. CTHRC1 knockdown promoted inflammatory cytokine production and activated the p38 MAPK signaling pathway in PDLCs. Inhibiting the p38 MAPK signaling pathway partially attenuated the inflammatory responses. This study revealed that CTHRC1 was highly expressed in periodontitis and suggested that CTHRC1 might play an important role in modulating periodontal inflammation.
Literatur
1.
Zurück zum Zitat Kinane, D.F., P.G. Stathopoulou, and P.N. Papapanou. 2017. Periodontal diseases. Nature Reviews. Disease Primers 3: 17038.CrossRef Kinane, D.F., P.G. Stathopoulou, and P.N. Papapanou. 2017. Periodontal diseases. Nature Reviews. Disease Primers 3: 17038.CrossRef
2.
Zurück zum Zitat Hajishengallis, G. 2015. Periodontitis: from microbial immune subversion to systemic inflammation. Nature Reviews. Immunology 15: 30–44.CrossRef Hajishengallis, G. 2015. Periodontitis: from microbial immune subversion to systemic inflammation. Nature Reviews. Immunology 15: 30–44.CrossRef
3.
Zurück zum Zitat Lekic, P., and C.A. McCulloch. 1996. Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. The Anatomical Record 245 (2): 327–341.CrossRef Lekic, P., and C.A. McCulloch. 1996. Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. The Anatomical Record 245 (2): 327–341.CrossRef
4.
Zurück zum Zitat Jönsson, D., D. Nebel, G. Bratthall, and B.O. Nilsson. 2011. The human periodontal ligament cell: a fibroblast-like cell acting as an immune cell. Journal of Periodontal Research 46 (2): 153–157.CrossRef Jönsson, D., D. Nebel, G. Bratthall, and B.O. Nilsson. 2011. The human periodontal ligament cell: a fibroblast-like cell acting as an immune cell. Journal of Periodontal Research 46 (2): 153–157.CrossRef
5.
Zurück zum Zitat El-Awady, A.R., R.L. Messer, A.Y. Gamal, M.M. Sharawy, K.H. Wenger, and C.A. Lapp. 2010. Periodontal ligament fibroblasts sustain destructive immune modulators of chronic periodontitis. Journal of Periodontology 81 (9): 1324–1335.CrossRef El-Awady, A.R., R.L. Messer, A.Y. Gamal, M.M. Sharawy, K.H. Wenger, and C.A. Lapp. 2010. Periodontal ligament fibroblasts sustain destructive immune modulators of chronic periodontitis. Journal of Periodontology 81 (9): 1324–1335.CrossRef
6.
Zurück zum Zitat Liu, J., X. Tang, C. Li, C. Pan, Q. Li, F. Geng, and Y. Pan. 2015. Porphyromonas gingivalis promotes the cell cycle and inflammatory cytokine production in periodontal ligament fibroblasts. Archives of Oral Biology 60 (8): 1153–1161.CrossRef Liu, J., X. Tang, C. Li, C. Pan, Q. Li, F. Geng, and Y. Pan. 2015. Porphyromonas gingivalis promotes the cell cycle and inflammatory cytokine production in periodontal ligament fibroblasts. Archives of Oral Biology 60 (8): 1153–1161.CrossRef
7.
Zurück zum Zitat Abidi, A.H., C.S. Presley, M. Dabbous, D.A. Tipton, S.M. Mustafa, and B.M. Moore 2nd. 2018. Anti-inflammatory activity of cannabinoid receptor 2 ligands in primary hPDL fibroblasts. Archives of Oral Biology 87: 79–85.CrossRef Abidi, A.H., C.S. Presley, M. Dabbous, D.A. Tipton, S.M. Mustafa, and B.M. Moore 2nd. 2018. Anti-inflammatory activity of cannabinoid receptor 2 ligands in primary hPDL fibroblasts. Archives of Oral Biology 87: 79–85.CrossRef
8.
Zurück zum Zitat Zhang, Y., and X. Li. 2015. Lipopolysaccharide-regulated production of bone sialoprotein and interleukin-8 in human periodontal ligament fibroblasts: the role of toll-like receptors 2 and 4 and the MAPK pathway. Journal of Periodontal Research 50 (2): 141–151.CrossRef Zhang, Y., and X. Li. 2015. Lipopolysaccharide-regulated production of bone sialoprotein and interleukin-8 in human periodontal ligament fibroblasts: the role of toll-like receptors 2 and 4 and the MAPK pathway. Journal of Periodontal Research 50 (2): 141–151.CrossRef
9.
Zurück zum Zitat Pyagay, P., M. Heroult, Q. Wang, W. Lehnert, J. Belden, L. Liaw, R.E. Friesel, and V. Lindner. 2005. Collagen triple helix repeat containing 1, a novel secreted protein in injured and diseased arteries, inhibits collagen expression and promotes cell migration. Circulation Research 96 (2): 261–268.CrossRef Pyagay, P., M. Heroult, Q. Wang, W. Lehnert, J. Belden, L. Liaw, R.E. Friesel, and V. Lindner. 2005. Collagen triple helix repeat containing 1, a novel secreted protein in injured and diseased arteries, inhibits collagen expression and promotes cell migration. Circulation Research 96 (2): 261–268.CrossRef
10.
Zurück zum Zitat Stohn, J.P., Q. Wang, M.E. Siviski, K. Kennedy, Y.R. Jin, D. Kacer, V. DeMambro, L. Liaw, C.P. Vary, C.J. Rosen, I. Prudovsky, and V. Lindner. 2015. Cthrc1 controls adipose tissue formation, body composition, and physical activity. Obesity (Silver Spring) 23 (8): 1633–1642.CrossRef Stohn, J.P., Q. Wang, M.E. Siviski, K. Kennedy, Y.R. Jin, D. Kacer, V. DeMambro, L. Liaw, C.P. Vary, C.J. Rosen, I. Prudovsky, and V. Lindner. 2015. Cthrc1 controls adipose tissue formation, body composition, and physical activity. Obesity (Silver Spring) 23 (8): 1633–1642.CrossRef
11.
Zurück zum Zitat Jin, Y.R., J.P. Stohn, Q. Wang, K. Nagano, R. Baron, M.L. Bouxsein, C.J. Rosen, V.A. Adarichev, and V. Lindner. 2017. Inhibition of osteoclast differentiation and collagen antibody-induced arthritis by CTHRC1. Bone. 97: 153–167.CrossRef Jin, Y.R., J.P. Stohn, Q. Wang, K. Nagano, R. Baron, M.L. Bouxsein, C.J. Rosen, V.A. Adarichev, and V. Lindner. 2017. Inhibition of osteoclast differentiation and collagen antibody-induced arthritis by CTHRC1. Bone. 97: 153–167.CrossRef
12.
Zurück zum Zitat Wang, Y., and D.N. Tatakis. 2017. Human gingiva transcriptome during wound healing. Journal of Clinical Periodontology 44 (4): 394–402.CrossRef Wang, Y., and D.N. Tatakis. 2017. Human gingiva transcriptome during wound healing. Journal of Clinical Periodontology 44 (4): 394–402.CrossRef
13.
Zurück zum Zitat Qin, S., J.H. Zheng, Z.H. Xia, J. Qian, C.L. Deng, and S.L. Yang. 2019. CTHRC1 promotes wound repair by increasing M2 macrophages via regulating the TGF-β and notch pathways. Biomedicine & Pharmacotherapy 113: 108594.CrossRef Qin, S., J.H. Zheng, Z.H. Xia, J. Qian, C.L. Deng, and S.L. Yang. 2019. CTHRC1 promotes wound repair by increasing M2 macrophages via regulating the TGF-β and notch pathways. Biomedicine & Pharmacotherapy 113: 108594.CrossRef
14.
Zurück zum Zitat Wang, C., Z. Li, F. Shao, X. Yang, X. Feng, S. Shi, Y. Gao, and J. He. 2017. High expression of Collagen Triple Helix Repeat Containing 1 (CTHRC1) facilitates progression of oesophageal squamous cell carcinoma through MAPK/MEK/ERK/FRA-1 activation. Journal of Experimental & Clinical Cancer Research 36 (1): 84.CrossRef Wang, C., Z. Li, F. Shao, X. Yang, X. Feng, S. Shi, Y. Gao, and J. He. 2017. High expression of Collagen Triple Helix Repeat Containing 1 (CTHRC1) facilitates progression of oesophageal squamous cell carcinoma through MAPK/MEK/ERK/FRA-1 activation. Journal of Experimental & Clinical Cancer Research 36 (1): 84.CrossRef
15.
Zurück zum Zitat Wang, C., W. Gu, B. Sun, Y. Zhang, Y. Ji, X. Xu, and Y. Wen. 2017. CTHRC1 promotes osteogenic differentiation of periodontal ligament stem cells by regulating TAZ. Journal of Molecular Histology 48 (4): 311–319.CrossRef Wang, C., W. Gu, B. Sun, Y. Zhang, Y. Ji, X. Xu, and Y. Wen. 2017. CTHRC1 promotes osteogenic differentiation of periodontal ligament stem cells by regulating TAZ. Journal of Molecular Histology 48 (4): 311–319.CrossRef
16.
Zurück zum Zitat Wu, Q., Q. Yang, and H. Sun. 2018. Collagen triple helix repeat containing-1: a novel biomarker associated with disease activity in Systemic lupus erythematosus. Lupus. 27 (13): 2076–2085.CrossRef Wu, Q., Q. Yang, and H. Sun. 2018. Collagen triple helix repeat containing-1: a novel biomarker associated with disease activity in Systemic lupus erythematosus. Lupus. 27 (13): 2076–2085.CrossRef
17.
Zurück zum Zitat Duarte CW, Stohn JP, Wang Q, Emery IF, Prueser A, and Lindner V. 2014. Elevated plasma levels of the pituitary hormone Cthrc1 in individuals with red hair but not in patients with solid tumors. PLoS One. 19;9(6): e100449. Duarte CW, Stohn JP, Wang Q, Emery IF, Prueser A, and Lindner V. 2014. Elevated plasma levels of the pituitary hormone Cthrc1 in individuals with red hair but not in patients with solid tumors. PLoS One. 19;9(6): e100449.
18.
Zurück zum Zitat Shekhani, M.T., T.S. Forde, A. Adilbayeva, M. Ramez, A. Myngbay, Y. Bexeitov, V. Lindner, and V.A. Adarichev. 2016. Collagen triple helix repeat containing 1 is a new promigratory marker of arthritic pannus. Arthritis Research & Therapy 18: 171.CrossRef Shekhani, M.T., T.S. Forde, A. Adilbayeva, M. Ramez, A. Myngbay, Y. Bexeitov, V. Lindner, and V.A. Adarichev. 2016. Collagen triple helix repeat containing 1 is a new promigratory marker of arthritic pannus. Arthritis Research & Therapy 18: 171.CrossRef
19.
Zurück zum Zitat Li, Y.K., Y.M. Li, Y. Li, Y.R. Wei, J. Zhang, B. Li, Z.R. You, Y. Chen, B.Y. Huang, Q. Miao, Q.X. Wang, Y.S. Peng, M.E. Gershwin, R.Q. Tang, Z.L. Bian, and X. Ma. 2019. CTHRC1 expression in primary biliary cholangitis. Journal of Digestive Diseases 20 (7): 371–376.CrossRef Li, Y.K., Y.M. Li, Y. Li, Y.R. Wei, J. Zhang, B. Li, Z.R. You, Y. Chen, B.Y. Huang, Q. Miao, Q.X. Wang, Y.S. Peng, M.E. Gershwin, R.Q. Tang, Z.L. Bian, and X. Ma. 2019. CTHRC1 expression in primary biliary cholangitis. Journal of Digestive Diseases 20 (7): 371–376.CrossRef
20.
Zurück zum Zitat Chamberlain, C.S., S.H. Brounts, D.G. Sterken, K.I. Rolnick, G.S. Baer, and R. Vanderby. 2011. Gene profiling of the rat medial collateral ligament during early healing using microarray analysis. Journal of Applied Physiology (Bethesda, MD: 1985) 111 (2): 552–565.CrossRef Chamberlain, C.S., S.H. Brounts, D.G. Sterken, K.I. Rolnick, G.S. Baer, and R. Vanderby. 2011. Gene profiling of the rat medial collateral ligament during early healing using microarray analysis. Journal of Applied Physiology (Bethesda, MD: 1985) 111 (2): 552–565.CrossRef
21.
Zurück zum Zitat Patil, C.S., and K.L. Kirkwood. 2007. p38 MAPK signaling in oral-related diseases. Journal of Dental Research 86 (9): 812–825.CrossRef Patil, C.S., and K.L. Kirkwood. 2007. p38 MAPK signaling in oral-related diseases. Journal of Dental Research 86 (9): 812–825.CrossRef
22.
Zurück zum Zitat Lee, H.J., J.W. Cho, S.C. Kim, K.H. Kang, S.K. Lee, S.H. Pi, S.K. Lee, and E.C. Kim. 2006. Roles of p38 and ERK MAP kinases in IL-8 expression in TNF-alpha- and dexamethasone-stimulated human periodontal ligament cells. Cytokine. 35 (1-2): 67–76.CrossRef Lee, H.J., J.W. Cho, S.C. Kim, K.H. Kang, S.K. Lee, S.H. Pi, S.K. Lee, and E.C. Kim. 2006. Roles of p38 and ERK MAP kinases in IL-8 expression in TNF-alpha- and dexamethasone-stimulated human periodontal ligament cells. Cytokine. 35 (1-2): 67–76.CrossRef
23.
Zurück zum Zitat Xu, S., C. Jiang, H. Liu, H. Zhang, H. Liao, X. Wang, S. Yao, L. Ma, Y. Guo, and Z. Cao. 2020. Integrin-α9 and its corresponding ligands play regulatory roles in chronic periodontitis. Inflammation. 43 (4): 1488–1497.CrossRef Xu, S., C. Jiang, H. Liu, H. Zhang, H. Liao, X. Wang, S. Yao, L. Ma, Y. Guo, and Z. Cao. 2020. Integrin-α9 and its corresponding ligands play regulatory roles in chronic periodontitis. Inflammation. 43 (4): 1488–1497.CrossRef
24.
Zurück zum Zitat Schmittgen, T.D., and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols 3 (6): 1101–1108.CrossRef Schmittgen, T.D., and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols 3 (6): 1101–1108.CrossRef
25.
Zurück zum Zitat Yli-Karjanmaa, M., K.S. Larsen, C.D. Fenger, L.K. Kristensen, N.A. Martin, P.T. Jensen, A. Breton, L. Nathanson, P.V. Nielsen, M.C. Lund, S.L. Carlsen, J.B. Gramsbergen, B. Finsen, J. Stubbe, L.H. Frich, H. Stolp, R. Brambilla, D.C. Anthony, M. Meyer, and K.L. Lambertsen. 2019. TNF deficiency causes alterations in the spatial organization of neurogenic zones and alters the number of microglia and neurons in the cerebral cortex. Brain, Behavior, and Immunity 82: 279–297.CrossRef Yli-Karjanmaa, M., K.S. Larsen, C.D. Fenger, L.K. Kristensen, N.A. Martin, P.T. Jensen, A. Breton, L. Nathanson, P.V. Nielsen, M.C. Lund, S.L. Carlsen, J.B. Gramsbergen, B. Finsen, J. Stubbe, L.H. Frich, H. Stolp, R. Brambilla, D.C. Anthony, M. Meyer, and K.L. Lambertsen. 2019. TNF deficiency causes alterations in the spatial organization of neurogenic zones and alters the number of microglia and neurons in the cerebral cortex. Brain, Behavior, and Immunity 82: 279–297.CrossRef
26.
Zurück zum Zitat Kudryavtseva, E., T.S. Forde, A.D. Pucker, and V.A. Adarichev. 2012. Wnt signaling genes of murine chromosome 15 are involved in sex-affected pathways of inflammatory arthritis. Arthritis and Rheumatism 64 (4): 1057–1068.CrossRef Kudryavtseva, E., T.S. Forde, A.D. Pucker, and V.A. Adarichev. 2012. Wnt signaling genes of murine chromosome 15 are involved in sex-affected pathways of inflammatory arthritis. Arthritis and Rheumatism 64 (4): 1057–1068.CrossRef
27.
Zurück zum Zitat Myngbay, A., Y. Bexeitov, A. Adilbayeva, Z. Assylbekov, B.P. Yevstratenko, R.M. Aitzhanova, B. Matkarimov, V.A. Adarichev, and J. Kunz. 2019. CTHRC1: a new candidate biomarker for improved rheumatoid arthritis diagnosis. Frontiers in Immunology 10: 1353.CrossRef Myngbay, A., Y. Bexeitov, A. Adilbayeva, Z. Assylbekov, B.P. Yevstratenko, R.M. Aitzhanova, B. Matkarimov, V.A. Adarichev, and J. Kunz. 2019. CTHRC1: a new candidate biomarker for improved rheumatoid arthritis diagnosis. Frontiers in Immunology 10: 1353.CrossRef
28.
Zurück zum Zitat Buduneli, N., and D.F. Kinane. 2011. Host-derived diagnostic markers related to soft tissue destruction and bone degradation in periodontitis. Journal of Clinical Periodontology 8 (Suppl 11): 85–105.CrossRef Buduneli, N., and D.F. Kinane. 2011. Host-derived diagnostic markers related to soft tissue destruction and bone degradation in periodontitis. Journal of Clinical Periodontology 8 (Suppl 11): 85–105.CrossRef
29.
Zurück zum Zitat Stadler, A.F., P.D. Angst, R.M. Arce, S.C. Gomes, R.V. Oppermann, and C. Susin. 2016. Gingival crevicular fluid levels of cytokines/chemokines in chronic periodontitis: a meta-analysis. Journal of Clinical Periodontology 43 (9): 727–745.CrossRef Stadler, A.F., P.D. Angst, R.M. Arce, S.C. Gomes, R.V. Oppermann, and C. Susin. 2016. Gingival crevicular fluid levels of cytokines/chemokines in chronic periodontitis: a meta-analysis. Journal of Clinical Periodontology 43 (9): 727–745.CrossRef
30.
Zurück zum Zitat Han, P., T. Lloyd, Z. Chen, and Y. Xiao. 2016. Proinflammatory cytokines regulate cementogenic differentiation of periodontal ligament cells by Wnt/Ca (2+) signaling pathway. Journal of Interferon & Cytokine Research 36 (5): 328–337.CrossRef Han, P., T. Lloyd, Z. Chen, and Y. Xiao. 2016. Proinflammatory cytokines regulate cementogenic differentiation of periodontal ligament cells by Wnt/Ca (2+) signaling pathway. Journal of Interferon & Cytokine Research 36 (5): 328–337.CrossRef
31.
Zurück zum Zitat Baker, P.J., M. Dixon, R.T. Evans, L. Dufour, E. Johnson, and D.C. Roopenian. 1999. CD4(+) T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infection and Immunity 67 (6): 2804–2809.CrossRef Baker, P.J., M. Dixon, R.T. Evans, L. Dufour, E. Johnson, and D.C. Roopenian. 1999. CD4(+) T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infection and Immunity 67 (6): 2804–2809.CrossRef
32.
Zurück zum Zitat Silva, T.A., G.P. Garlet, S.Y. Fukada, J.S. Silva, and F.Q. Cunha. 2007. Chemokines in oral inflammatory diseases: apical periodontitis and periodontal disease. Journal of Dental Research 86 (4): 306–319.CrossRef Silva, T.A., G.P. Garlet, S.Y. Fukada, J.S. Silva, and F.Q. Cunha. 2007. Chemokines in oral inflammatory diseases: apical periodontitis and periodontal disease. Journal of Dental Research 86 (4): 306–319.CrossRef
33.
Zurück zum Zitat Pan, W., Q. Wang, and Q. Chen. 2019. The cytokine network involved in the host immune response to periodontitis. International Journal of Oral Science 11 (3): 30.CrossRef Pan, W., Q. Wang, and Q. Chen. 2019. The cytokine network involved in the host immune response to periodontitis. International Journal of Oral Science 11 (3): 30.CrossRef
34.
Zurück zum Zitat Mao, C.Y., Y.G. Wang, X. Zhang, X.Y. Zheng, T.T. Tang, and E.Y. Lu. 2016. Double-edged-sword effect of IL-1β on the osteogenesis of periodontal ligament stem cells via crosstalk between the NF-κB, MAPK and BMP/Smad signaling pathways. Cell Death & Disease 7 (7): e2296.CrossRef Mao, C.Y., Y.G. Wang, X. Zhang, X.Y. Zheng, T.T. Tang, and E.Y. Lu. 2016. Double-edged-sword effect of IL-1β on the osteogenesis of periodontal ligament stem cells via crosstalk between the NF-κB, MAPK and BMP/Smad signaling pathways. Cell Death & Disease 7 (7): e2296.CrossRef
35.
Zurück zum Zitat Mei, D., Y. Zhu, L. Zhang, and W. Wei. 2020. The role of CTHRC1 in regulation of multiple signaling and tumor progression and metastasis. Mediators of Inflammation 2020: 9578701.CrossRef Mei, D., Y. Zhu, L. Zhang, and W. Wei. 2020. The role of CTHRC1 in regulation of multiple signaling and tumor progression and metastasis. Mediators of Inflammation 2020: 9578701.CrossRef
36.
Zurück zum Zitat Kumar, S., J. Boehm, and J.C. Lee. 2003. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nature Reviews. Drug Discovery 2 (9): 717–726.CrossRef Kumar, S., J. Boehm, and J.C. Lee. 2003. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nature Reviews. Drug Discovery 2 (9): 717–726.CrossRef
37.
Zurück zum Zitat Guan, S.M., M. Zhang, J.J. He, and J.Z. Wu. 2009. Mitogen-activated protein kinases and phosphatidylinositol 3-kinase are involved in Prevotella intermedia-induced proinflammatory cytokines expression in human periodontal ligament cells. Biochemical and Biophysical Research Communications 386 (3): 471–476.CrossRef Guan, S.M., M. Zhang, J.J. He, and J.Z. Wu. 2009. Mitogen-activated protein kinases and phosphatidylinositol 3-kinase are involved in Prevotella intermedia-induced proinflammatory cytokines expression in human periodontal ligament cells. Biochemical and Biophysical Research Communications 386 (3): 471–476.CrossRef
38.
Zurück zum Zitat Huang, W., Y. Zhan, Y. Zheng, Y. Han, W. Hu, and J. Hou. Up-regulated ferritin in periodontitis promotes inflammatory cytokine expression in human periodontal ligament cells through transferrin receptor via ERK/P38 MAPK pathways. Clinical Science (London, England) 133 (1): 135–148. Huang, W., Y. Zhan, Y. Zheng, Y. Han, W. Hu, and J. Hou. Up-regulated ferritin in periodontitis promotes inflammatory cytokine expression in human periodontal ligament cells through transferrin receptor via ERK/P38 MAPK pathways. Clinical Science (London, England) 133 (1): 135–148.
39.
Zurück zum Zitat Tang, L., X. Li, Y. Bai, P. Wang, and Y. Zhao. 2019. MicroRNA-146a negatively regulates the inflammatory response to Porphyromonas gingivalis in human periodontal ligament fibroblasts via TRAF6/p38 pathway. Journal of Periodontology 90 (4): 391–399.CrossRef Tang, L., X. Li, Y. Bai, P. Wang, and Y. Zhao. 2019. MicroRNA-146a negatively regulates the inflammatory response to Porphyromonas gingivalis in human periodontal ligament fibroblasts via TRAF6/p38 pathway. Journal of Periodontology 90 (4): 391–399.CrossRef
40.
Zurück zum Zitat Francis, M., G. Gopinathan, A. Salapatas, S. Nares, M. Gonzalez, T.G.H. Diekwisch, and X. Luan. 2020. SETD1 and NF-κB regulate periodontal inflammation through H3K4 trimethylation. Journal of Dental Research 99 (13): 1486–1493.CrossRef Francis, M., G. Gopinathan, A. Salapatas, S. Nares, M. Gonzalez, T.G.H. Diekwisch, and X. Luan. 2020. SETD1 and NF-κB regulate periodontal inflammation through H3K4 trimethylation. Journal of Dental Research 99 (13): 1486–1493.CrossRef
41.
Zurück zum Zitat Du, L., Y. Li, and W. Liu. 2018. Maresin 1 regulates autophagy and inflammation in human periodontal ligament cells through glycogen synthase kinase-3β/β-catenin pathway under inflammatory conditions. Archives of Oral Biology 87: 242–247.CrossRef Du, L., Y. Li, and W. Liu. 2018. Maresin 1 regulates autophagy and inflammation in human periodontal ligament cells through glycogen synthase kinase-3β/β-catenin pathway under inflammatory conditions. Archives of Oral Biology 87: 242–247.CrossRef
42.
Zurück zum Zitat Song, H.K., E.M. Noh, J.M. Kim, Y.O. You, K.B. Kwon, and Y.R. Lee. 2019. Reversine inhibits MMP-3, IL-6 and IL-8 expression through suppression of ROS and JNK/AP-1 activation in interleukin-1β-stimulated human gingival fibroblasts. Archives of Oral Biology 108: 104530.CrossRef Song, H.K., E.M. Noh, J.M. Kim, Y.O. You, K.B. Kwon, and Y.R. Lee. 2019. Reversine inhibits MMP-3, IL-6 and IL-8 expression through suppression of ROS and JNK/AP-1 activation in interleukin-1β-stimulated human gingival fibroblasts. Archives of Oral Biology 108: 104530.CrossRef
Metadaten
Titel
CTHRC1 Knockdown Promotes Inflammatory Responses Partially by p38 MAPK Activation in Human Periodontal Ligament Cells
verfasst von
Yi Guo
Chenxi Jiang
Siqi Yao
Li Ma
Huihui Zhang
Xiaoxuan Wang
Shihan Xu
Zhengguo Cao
Publikationsdatum
12.04.2021
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2021
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01461-8

Weitere Artikel der Ausgabe 5/2021

Inflammation 5/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.