Skip to main content
Erschienen in: Pediatric Radiology 10/2016

Open Access 23.06.2016 | Technical Innovation

Curved reformat of the paediatric brain MRI into a ‘flat-earth map’ — standardised method for demonstrating cortical surface atrophy resulting from hypoxic–ischaemic encephalopathy

verfasst von: Ewan Simpson, Savvas Andronikou, Schadie Vedajallam, Anith Chacko, Ngoc Jade Thai

Erschienen in: Pediatric Radiology | Ausgabe 10/2016

Abstract

Hypoxic–ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic–ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic–ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic–ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties.

Introduction

MRI of the brain in term neonates with hypoxic–ischaemic encephalopathy reveals damage to the cerebral cortex with characteristic morphology (i.e. ulegyria) in characteristic locations, depending on the severity and duration of the insult [1]. Communicating the bilateral symmetrical geographic involvement of the brain to parents and the legal fraternity contesting compensation rights using standard cross-sectional images is challenging. An overview map of the whole brain surface generated from a curved reconstruction of the MR images may be useful for demonstrating the damage in such scenarios.
Previous work on curved reconstruction of the brain surface centred around demonstrating focal cortical lesions [2, 3]. We hypothesised that the characteristic regional cortical atrophy seen in hypoxic–ischaemic encephalopathy might be well-demonstrated using this method. This paper describes a standardised method of generating curved reconstruction of the paediatric brain from 3-D MRI in order to demonstrate the surface atrophy of the cerebral hemispheres in children with who sustained hypoxic–ischaemic encephalopathy at term delivery. We have dubbed the resulting images “flat-earth maps”. By comparing 10 children who sustained hypoxic–ischaemic encephalopathy at term delivery with age-matched normal cases, we demonstrate that the characteristic findings of hypoxic–ischaemic encephalopathy are visible on these maps.

Description

We employed the OsiriX freeware (Pixmeo SARL, Bernex, Switzerland) image-viewing platform to generate a standardised method of producing curved reconstructions of the paediatric brain.
MRI scans of 10 children with known cortical atrophy caused by hypoxic–ischaemic encephalopathy sustained during term delivery were selected alongside 8 age-matched controls who had normal MRI findings. The research was approved by the University of Bristol Ethics Committee (case reference 27741) and has been performed in accordance with the ethics standards laid down in the 1964 Declaration of Helsinki and its later amendments.
We selected data from T1-weighted 3-D turbo spin-echo or 3-D fluid-attenuated inversion recovery (FLAIR) imaging. Using the 3-D curved MPR function in OsiriX, multiple curved reformatting techniques were tested, then formalised and standardised. We performed reconstructions from all three planes (coronal, sagittal and axial) using different landmark slices (e.g., foramen of Monro, pineal gland), angles of reconstruction (e.g., following the course of the Sylvian fissure, central sulcus) and at various depths to the cortical surface.
Two images (one reconstructed from the coronal plane and one from the sagittal plane) were determined to give the best overview of the cortical regions most frequently damaged in hypoxic–ischaemic encephalopathy sustained at term delivery (i.e. the watershed zones, and perisylvian and perirolandic regions). We describe an optimal method for creating these reconstructions.
For reconstructions from the coronal 3-D T1-weighted data set, the slice demonstrating the foramina of Monro is selected for generating the flat-earth map. The pathway for generating the curved reconstructions is plotted 1-cm deep to the surface of the brain by depositing cursors at 12 landmarks (6 on either side of the midline) as described in Fig. 1. The resultant image has been likened to a Mercator map of the earth [3, 4].
For reconstructions from the sagittal 3-D T1-weighted data, the landmark midline slice demonstrating the aqueduct of Sylvius is selected. The pathway for generating the curved reconstructions is plotted 1-cm deep to the cortical surface by depositing cursors at 8 points starting anteriorly and ending posteriorly as described in Fig. 1. The resultant image derived from sagittal images is likened to unrolling a scroll.
The cerebral sulcal anatomy of children in the control group from the Mercator brain maps was identified using work by Wagner et al. [4]. No equivalent anatomical work exists for scroll brain maps, and the sulcal anatomy was identified de novo from an online anatomy atlas [5]. The sulcal anatomy and expected regions of abnormality were then plotted on the Mercator and scroll maps in one of the control patients as a reference source (Fig. 2).
Flat-earth maps (Mercator and scroll projections) of the brain were then generated for 10 children with previous hypoxic–ischaemic encephalopathy. These were displayed alongside those of age-matched healthy controls for comparison. Two readers (S.A., a paediatric radiologist with 15 years’ experience in neuroimaging, and E.S., a 5th-year radiology trainee) assessed each flat-earth map for the presence of (1) widening of the Sylvian fissure; (2) widening of the longitudinal fissure, noting whether such widening was localised (indicating regional watershed-zone, or perisylvian or perirolandic volume loss) or generalised; (3) cortical atrophy in characteristic locations (perirolandic, perisylvian or watershed distribution), and (4) ulegyria. Discrepancies were arbitrated by a third reader (A.C., a qualified general radiologist 3 years post completion of training).

Results

No abnormal features were identified on any of the eight controls (mean age 3 years 11 months; 5 boys, 3 girls). The abnormal findings that were visible in children with hypoxic–ischaemic encephalopathy sustained at term delivery (mean age 3 years 6 months; 6 boys, 4 girls) are shown in Table 1.
Table 1
Regional volume loss and presence of ulegyria as detected from the flat-earth maps in 10 children who sustained perinatal hypoxic–ischaemic injury at term delivery
Case
Age
Sex
Widening of Sylvian fissure
Widening of longitudinal fissure
Regional atrophy
Ulegyria
Overall
Localised lentiform
Rolandic
Sylvian
Watershed
 
2
2 y 1 m
M
Y
Y
Y
Y
Y
Y
Y
6
5 y 11 m
M
Y
Y
Y
Y
Y
Y
Y
8
2 y 10 m
F
Y
Y
Y
Y
Y
Y
N
10
4 y 10 m
F
Y
Y
N
Y
N
Y
Y
15
7 y
M
Y
Y
Y
Y
Y
Y
Y
18
2 y
F
Y
Y
Y
Y
Y
Y
N
20
4 y
M
Y
Y
Y
Y
Y
Y
Y
21
3 y 10 m
M
Y
Y
Y
Y
Y
Y
Y
24
1 y 10 m
F
Y
Y
Y
N
Y
Y
Y
27
1 y 4 m
M
Y
Y
Y
Y
Y
Y
N
Total
3 y 6 m (mean)
6 M, 4 F
10 (100%)
10 (100%)
9 (90%)
9 (90%)
9 (90%)
10 (100%)
7 (70%)
F female, M male, m months, N no, y years, Y yes
The flat-earth map generated by the curved reconstruction displays the structures along a region adjacent to the plotted path at the expense of structures at the extremes of the axis perpendicular to that path; two maps are generated from perpendicular curved lines, so different structures are seen optimally on each map. The following general observations were made:
  • The perisylvian and perirolandic regions were better demonstrated on the Mercator maps. The scroll maps demonstrated the lateral structures poorly.
  • More of the frontal lobe anatomy was seen consistently on the Mercator maps.
  • The central posterior parietal and occipital lobes were better demonstrated on the scroll maps.
  • Watershed zones were well demonstrated on both Mercator and scroll maps.
The following observations were made from review of flat-earth maps in children who sustained hypoxic–ischaemic injury at term delivery:
  • Widening of the longitudinal fissure was seen on all abnormal cases on Mercator and scroll maps, consistent with parasagittal/parafalcine watershed atrophy. In 9 of 10 instances there was a localised biconvex separation of the hemispheres distinct from the parallel separation of the hemispheres elsewhere (Figs. 3 and 4).
  • Damage to intervascular watershed zones was well seen on both Mercator and scroll maps (anterior watershed zones were better demonstrated on Mercator map and posterior watershed regions on the scroll maps) and was noted in a continuous band-like fashion (as opposed to a wedge of abnormality) (Fig. 4).
  • Perirolandic and perisylvian damage was better demonstrated on Mercator maps (Figs. 3 and 4).
  • Ulegyria was identified in 7 of 10 of cases of hypoxic–ischaemic encephalopathy (Figs. 3 and 4, Table 1).

Discussion

Perinatal hypoxic–ischaemic encephalopathy

Characteristic cortical abnormalities in hypoxic–ischaemic encephalopathy sustained at term delivery depend on both the severity and duration of the hypoxic–ischaemic insult [1]. MRI is ideally performed in the first 10 days of age, but work in the United Kingdom has shown that adherence to such imaging protocols is suboptimal [6]. Delayed imaging is therefore often performed and demonstrates atrophy of the affected regions. In acute near-total asphyxia at term, cortical abnormality is seen in the perirolandic regions, in addition to the ventrolateral thalami and posterior putamina. Partial prolonged asphyxia in term infants results in volume loss with ulegyria (mushroom-shape gyri) in the parasagittal and other watershed zones of perfusion [1]. These global insults result in damage that is bilateral and symmetrical but not always of equal severity on each side. The two flat-earth maps that we have described give an excellent overview of the regions of cortex that are most commonly affected in hypoxic–ischaemic encephalopathy, allowing the resultant bilateral multifocal atrophy and characteristic ulegyria to be visualised simultaneously.

Curved reformatting of the brain

A method for improved display of brain surface anatomy using curved reconstructions of MRI was described by Bastos et al. [2] in 1995; these authors demonstrated focal cortical dysgenesis better than can be seen on standard multiplanar imaging. Subsequent publications have used the Mercator view to depict surface lesions [3] and sulcal patterns to define gyral anatomy [4]. To our knowledge, ours is the first paper to use curved reconstruction of MRI to display bilateral cortical regional atrophy to advantage.
There are other methods of creating curved reconstructions on the brain surface, some of which are automated and therefore do not require points to be set manually [7]. However these techniques sometimes require dedicated software that is costly to purchase and requires extensive training to use. Our technique can be performed using software bundled with commercially available MRI scanners. It has the advantages of being free, easily taught and quick to perform, each curved reconstruction taking less than a minute to generate. The disadvantage of our method is that no single flat-earth map can demonstrate the entire cortex optimally. Methods that generate 3-D displays of curved reconstruction require image-viewing software (because the brain is presented as a 3-D surface, which must be virtually rotated to view from all angles), but these methods can display the entire brain and therefore merit further research for displaying the cortical changes of hypoxic–ischaemic encephalopathy.

Utility of the flat-earth map for non-radiologists

Several groups of people have a professional or personal interest in the radiology report in cases of hypoxic–ischaemic encephalopathy. Clinicians who require information on neuroimaging include hospital providers such as neonatologists and neurologists, who usually have access to the MR imaging, but also general practitioners in the community, who may not. The parents of children who have sustained brain injury might also value access to the radiology report, but it is known that patients can find it difficult to understand the complex terminology prevalent in radiology reports [8]. Recently Sadigh et al. [9] surveyed more than 200 referring clinicians and found that most would be more likely to discuss a radiology report with patients — and provide them with a copy — if embedded images were available. Embedding the flat-earth map into a report might represent an elegant solution (without the need to provide selected image slices in a variety of planes) to discuss the MRI findings with parents. Furthermore, neuroimaging is now routinely submitted as evidence in the courtroom, and flat-earth images could therefore be used to support allegations of perinatal asphyxia [10]. The flat-earth maps could provide an overview of the brain surface to demonstrate the extent of bilateral regional cortical damage in a way that single slices from an orthogonal plane could not.
In conclusion, a standardised method of curved reconstruction of the brain surface from 3-D MRI allows visualization of key regions of cortical atrophy in cases of term hypoxic–ischaemic encephalopathy. This visualisation takes the form of two flat-earth maps: Mercator and scroll. Each of these maps displays different parts of the cortex to good effect and is complementary to the other. These maps negate the need for viewing the multitude of MRI slices in three planes when communicating multifocal, bilateral cortical regional atrophy to non-medical specialists such as legal professionals and parents, and they can also be easily embedded within a radiology report.

Compliance with ethical standards

Conflicts of interest

None
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Pädiatrie

Kombi-Abonnement

Mit e.Med Pädiatrie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Pädiatrie, den Premium-Inhalten der pädiatrischen Fachzeitschriften, inklusive einer gedruckten Pädiatrie-Zeitschrift Ihrer Wahl.

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Literatur
2.
Zurück zum Zitat Bastos AC, Korah IP, Cendes F et al (1995) Curvilinear reconstruction of 3D magnetic resonance imaging in patients with partial epilepsy: a pilot study. Magn Reson Imaging 13:1107–1112CrossRefPubMed Bastos AC, Korah IP, Cendes F et al (1995) Curvilinear reconstruction of 3D magnetic resonance imaging in patients with partial epilepsy: a pilot study. Magn Reson Imaging 13:1107–1112CrossRefPubMed
3.
Zurück zum Zitat Hattingen E, Good C, Weidauer S et al (2005) Brain surface reformatted images for fast and easy localization of perirolandic lesions. J Neurosurg 102:302–310CrossRefPubMed Hattingen E, Good C, Weidauer S et al (2005) Brain surface reformatted images for fast and easy localization of perirolandic lesions. J Neurosurg 102:302–310CrossRefPubMed
4.
Zurück zum Zitat Wagner M, Jurcoane A, Hattingen E (2013) The U sign: tenth landmark to the central region on brain surface reformatted MR imaging. AJR Am J Neuroradiol 34:323–326CrossRef Wagner M, Jurcoane A, Hattingen E (2013) The U sign: tenth landmark to the central region on brain surface reformatted MR imaging. AJR Am J Neuroradiol 34:323–326CrossRef
6.
Zurück zum Zitat Azzopardi D, Strohm B, Edwards AD et al (2009) Treatment of asphyxiated newborns with moderate hypothermia in routine clinical practice: how cooling is managed in the UK outside a clinical trial. Arch Dis Child Fetal Neonatal Ed 94:F260–F264CrossRefPubMed Azzopardi D, Strohm B, Edwards AD et al (2009) Treatment of asphyxiated newborns with moderate hypothermia in routine clinical practice: how cooling is managed in the UK outside a clinical trial. Arch Dis Child Fetal Neonatal Ed 94:F260–F264CrossRefPubMed
7.
Zurück zum Zitat Shin-Ting W, Yasuda CL, Cendes F (2012) Interactive curvilinear reformatting in native space. IEEE Trans Vis Comput Graph 18:299–308CrossRefPubMed Shin-Ting W, Yasuda CL, Cendes F (2012) Interactive curvilinear reformatting in native space. IEEE Trans Vis Comput Graph 18:299–308CrossRefPubMed
8.
Zurück zum Zitat Gunn A, Mangano M, Sahani D et al (2014) Structured feedback from patients on actual radiology reports: a novel approach to improve reporting practices. Radiological Society of North America 2014 Scientific Assembly and Annual Meeting, Nov. 30–Dec. 5, 2014, Chicago IL. rsna2014.rsna.org/program/details/?emID = 14011827. Accessed 21 Feb 21 Gunn A, Mangano M, Sahani D et al (2014) Structured feedback from patients on actual radiology reports: a novel approach to improve reporting practices. Radiological Society of North America 2014 Scientific Assembly and Annual Meeting, Nov. 30–Dec. 5, 2014, Chicago IL. rsna2014.rsna.org/program/details/?emID = 14011827. Accessed 21 Feb 21
9.
Zurück zum Zitat Sadigh G, Hertweck T, Kao C et al (2015) Traditional text-only versus multimedia-enhanced radiology reporting: referring physicians’ perceptions of value. J Am Coll Radiol 12:519–524CrossRefPubMed Sadigh G, Hertweck T, Kao C et al (2015) Traditional text-only versus multimedia-enhanced radiology reporting: referring physicians’ perceptions of value. J Am Coll Radiol 12:519–524CrossRefPubMed
10.
Zurück zum Zitat Moriarty JC (2008) Flickering admissibility: neuroimaging evidence in the U.S. courts. Behav Sci Law 26:29–49CrossRefPubMed Moriarty JC (2008) Flickering admissibility: neuroimaging evidence in the U.S. courts. Behav Sci Law 26:29–49CrossRefPubMed
Metadaten
Titel
Curved reformat of the paediatric brain MRI into a ‘flat-earth map’ — standardised method for demonstrating cortical surface atrophy resulting from hypoxic–ischaemic encephalopathy
verfasst von
Ewan Simpson
Savvas Andronikou
Schadie Vedajallam
Anith Chacko
Ngoc Jade Thai
Publikationsdatum
23.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Radiology / Ausgabe 10/2016
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-016-3638-3

Weitere Artikel der Ausgabe 10/2016

Pediatric Radiology 10/2016 Zur Ausgabe

Hermes

Hermes

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.