Skip to main content
Erschienen in: Pediatric Nephrology 9/2011

01.09.2011 | Review

Defining and redefining the nephron progenitor population

verfasst von: Caroline Hendry, Bree Rumballe, Karen Moritz, Melissa H. Little

Erschienen in: Pediatric Nephrology | Ausgabe 9/2011

Einloggen, um Zugang zu erhalten

Abstract

It has long been appreciated that the mammalian kidney arises via reciprocal interactions between an epithelial ureteric epithelium and the surrounding metanephric mesenchyme. More recently, lineage tracing has confirmed that the portion of the metanephric mesenchyme closest to the advancing ureteric tips, the cap mesenchyme, represents the progenitor population for the nephron epithelia. This Six2+Cited1+ population undergoes self-renewal throughout nephrogenesis while retaining the potential to epithelialize. In contrast, the Foxd1+ portion of the metanephric mesenchyme shows no epithelial potential, developing instead into the interstitial, perivascular, and possibly endothelial elements of the kidney. The cap mesenchyme rests within a nephrogenic niche, surrounded by the stroma and the ureteric tip. While the role of Wnt signaling in nephron induction is known, there remains a lack of clarity over the intrinsic and extrinsic regulation of cap mesenchyme specification, self-renewal, and nephron potential. It is also not known what regulates cessation of nephrogenesis, but there is no nephron generation in response to injury during the postnatal period. In this review, we will examine what is and is not known about this nephron progenitor population and discuss how an increased understanding of the regulation of this population may better explain the observed variation in final nephron number and potentially facilitate the reinitiation or prolongation of nephron formation.
Literatur
1.
2.
Zurück zum Zitat Mugford JW, Yu J, Kobayashi A, McMahon AP (2009) High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol 333(2):312–323CrossRefPubMedPubMedCentral Mugford JW, Yu J, Kobayashi A, McMahon AP (2009) High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol 333(2):312–323CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Georgas KM, Rumballe BA, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, Aronow BJ, Brunskill EW, Combes AN, Tang D, Taylor D, Grimmond SM, Potter SS, McMahon AP, Little MH (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332(2):273–286CrossRefPubMed Georgas KM, Rumballe BA, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, Aronow BJ, Brunskill EW, Combes AN, Tang D, Taylor D, Grimmond SM, Potter SS, McMahon AP, Little MH (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332(2):273–286CrossRefPubMed
5.
Zurück zum Zitat Little MH (2006) Regrow or repair – potential regenerative therapies for the kidney. J Am Soc Nephrol 17(9):2390–2401CrossRefPubMed Little MH (2006) Regrow or repair – potential regenerative therapies for the kidney. J Am Soc Nephrol 17(9):2390–2401CrossRefPubMed
6.
Zurück zum Zitat Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3(2):169–181CrossRefPubMedPubMedCentral Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3(2):169–181CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Hughson M, Farris AB 3rd, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63:2113–2122CrossRefPubMed Hughson M, Farris AB 3rd, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63:2113–2122CrossRefPubMed
9.
Zurück zum Zitat Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, Oliver G (2006) Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 25:5214–5228CrossRefPubMedPubMedCentral Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, Oliver G (2006) Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 25:5214–5228CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Boyle S, Misfeldt A, Chandler KJ, Deal KK, Southard-Smith EM, Mortlock DP, Baldwin HS, de Caestecker M (2008) Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol 313:234–245CrossRefPubMed Boyle S, Misfeldt A, Chandler KJ, Deal KK, Southard-Smith EM, Mortlock DP, Baldwin HS, de Caestecker M (2008) Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol 313:234–245CrossRefPubMed
11.
Zurück zum Zitat Dressler GR (2006) The cellular basis of kidney development. Ann Rev Cell Dev Biol 22:509–529CrossRef Dressler GR (2006) The cellular basis of kidney development. Ann Rev Cell Dev Biol 22:509–529CrossRef
12.
13.
Zurück zum Zitat Dudley AT, Godin RE, Robertson EJ (1999) Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev 13:1601–1613CrossRefPubMedPubMedCentral Dudley AT, Godin RE, Robertson EJ (1999) Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev 13:1601–1613CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Osafune K, Takasato M, Kispert A, Asashima M, Nishinakamura R (2006) Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development 133:151–161CrossRefPubMed Osafune K, Takasato M, Kispert A, Asashima M, Nishinakamura R (2006) Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development 133:151–161CrossRefPubMed
15.
Zurück zum Zitat Perantoni AO, Timofeeva O, Naillat F, Richman C, Pajni-Underwood S, Wilson C, Vainio S, Dove LF, Lewandoski M (2005) Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 132:3859–3871CrossRefPubMed Perantoni AO, Timofeeva O, Naillat F, Richman C, Pajni-Underwood S, Wilson C, Vainio S, Dove LF, Lewandoski M (2005) Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 132:3859–3871CrossRefPubMed
16.
Zurück zum Zitat Barasch J, Yang J, Ware CB, Taga T, Yoshida K, Erdjument-Bromage H, Tempst P, Parravicini E, Malach S, Aranoff T, Oliver JA (1999) Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell 99:377–386CrossRefPubMed Barasch J, Yang J, Ware CB, Taga T, Yoshida K, Erdjument-Bromage H, Tempst P, Parravicini E, Malach S, Aranoff T, Oliver JA (1999) Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell 99:377–386CrossRefPubMed
17.
Zurück zum Zitat Plisov SY, Yoshino K, Dove LF, Higinbotham KG, Rubin JS, Perantoni AO (2001) TGF beta2, LIF and FGF2 cooperate to induce nephrogenesis. Development 128:1045–1057PubMed Plisov SY, Yoshino K, Dove LF, Higinbotham KG, Rubin JS, Perantoni AO (2001) TGF beta2, LIF and FGF2 cooperate to induce nephrogenesis. Development 128:1045–1057PubMed
18.
Zurück zum Zitat Marlier A, Gilbert T (2004) Expression of retinoic acid-synthesizing and -metabolizing enzymes during nephrogenesis in the rat. Gene Expr Patterns 5:179–185CrossRefPubMed Marlier A, Gilbert T (2004) Expression of retinoic acid-synthesizing and -metabolizing enzymes during nephrogenesis in the rat. Gene Expr Patterns 5:179–185CrossRefPubMed
19.
Zurück zum Zitat Osafune K, Nishinakamura R, Komazaki S, Asashima M (2002) In vitro induction of the pronephric duct in Xenopus explants. Dev Growth Differ 44:161–167CrossRefPubMed Osafune K, Nishinakamura R, Komazaki S, Asashima M (2002) In vitro induction of the pronephric duct in Xenopus explants. Dev Growth Differ 44:161–167CrossRefPubMed
20.
Zurück zum Zitat Kim D, Dressler GR (2005) Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol 16:3527–3534CrossRefPubMed Kim D, Dressler GR (2005) Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol 16:3527–3534CrossRefPubMed
21.
Zurück zum Zitat Grieshammer U, Cebrian C, Ilagan R, Meyers E, Herzlinger D, Martin GR (2005) FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 132:3847–3857CrossRefPubMed Grieshammer U, Cebrian C, Ilagan R, Meyers E, Herzlinger D, Martin GR (2005) FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 132:3847–3857CrossRefPubMed
22.
Zurück zum Zitat Gerber SD, Steinberg F, Beyeler M, Villiger PM, Trueb B (2009) The murine Fgfrl1 receptor is essential for the development of the metanephric kidney. Dev Biology 335:106–119CrossRef Gerber SD, Steinberg F, Beyeler M, Villiger PM, Trueb B (2009) The murine Fgfrl1 receptor is essential for the development of the metanephric kidney. Dev Biology 335:106–119CrossRef
23.
Zurück zum Zitat Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683CrossRefPubMed Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683CrossRefPubMed
24.
Zurück zum Zitat Kispert A, Vainio S, McMahon AP (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125:4225–4234PubMed Kispert A, Vainio S, McMahon AP (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125:4225–4234PubMed
25.
Zurück zum Zitat Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9:283–292CrossRefPubMed Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9:283–292CrossRefPubMed
26.
Zurück zum Zitat Kispert A, Vainio S, Shen L, Rowitch DH, McMahon AP (1996) Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips. Development 122:3627–3637PubMed Kispert A, Vainio S, Shen L, Rowitch DH, McMahon AP (1996) Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips. Development 122:3627–3637PubMed
27.
Zurück zum Zitat Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130:3175–3185PubMed Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130:3175–3185PubMed
29.
Zurück zum Zitat Mugford JW, Sipila P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324:88–98CrossRefPubMedPubMedCentral Mugford JW, Sipila P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324:88–98CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795PubMed Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795PubMed
32.
Zurück zum Zitat Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065PubMed Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065PubMed
33.
Zurück zum Zitat Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756PubMed Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756PubMed
34.
Zurück zum Zitat Phelps DE, Dressler GR (1993) Aberrant expression of Pax-2 in Danforth's short tail (Sd) mice. Dev Biol 157:251–258CrossRefPubMed Phelps DE, Dressler GR (1993) Aberrant expression of Pax-2 in Danforth's short tail (Sd) mice. Dev Biol 157:251–258CrossRefPubMed
35.
Zurück zum Zitat Patel SR, Kim D, Levitan I, Dressler GR (2007) The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 13:580–592CrossRefPubMedPubMedCentral Patel SR, Kim D, Levitan I, Dressler GR (2007) The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 13:580–592CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Sajithlal G, Zou D, Silvius D, Xu PX (2005) Eya1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol 284:323–336CrossRefPubMed Sajithlal G, Zou D, Silvius D, Xu PX (2005) Eya1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol 284:323–336CrossRefPubMed
37.
Zurück zum Zitat Gong KQ, Yallowitz AR, Sun H, Dressler GR, Wellik DM (2007) A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 27(21):7661–7668CrossRefPubMedPubMedCentral Gong KQ, Yallowitz AR, Sun H, Dressler GR, Wellik DM (2007) A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 27(21):7661–7668CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat James RG, Schultheiss TM (2005) Bmp signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev Biol 288:113–125CrossRefPubMed James RG, Schultheiss TM (2005) Bmp signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev Biol 288:113–125CrossRefPubMed
39.
Zurück zum Zitat James RG, Kamei CN, Wang QR, Jiang R, Schultheiss TM (2006) Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133:2995–3004CrossRefPubMed James RG, Kamei CN, Wang QR, Jiang R, Schultheiss TM (2006) Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133:2995–3004CrossRefPubMed
40.
Zurück zum Zitat Ohto H, Takizawa T, Saito T, Kobayashi M, Ikeda K, Kawakami K (1998) Tissue and developmental distribution of Six family gene products. Int J Dev Biol 42:141–148PubMed Ohto H, Takizawa T, Saito T, Kobayashi M, Ikeda K, Kawakami K (1998) Tissue and developmental distribution of Six family gene products. Int J Dev Biol 42:141–148PubMed
41.
Zurück zum Zitat Boucher CA, Winchester CL, Hamilton GM, Winter AD, Johnson KJ, Bailey ME (2000) Structure, mapping and expression of the human gene encoding the homeodomain protein, SIX2. Gene 247:145–151CrossRefPubMed Boucher CA, Winchester CL, Hamilton GM, Winter AD, Johnson KJ, Bailey ME (2000) Structure, mapping and expression of the human gene encoding the homeodomain protein, SIX2. Gene 247:145–151CrossRefPubMed
42.
Zurück zum Zitat Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130:3085–3094CrossRefPubMed Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130:3085–3094CrossRefPubMed
43.
Zurück zum Zitat Kobayashi H, Kawakami K, Asashima M, Nishinakamura R (2007) Six1 and Six4 are essential for Gdnf expression in metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects. Mech Dev 124:290–303CrossRefPubMed Kobayashi H, Kawakami K, Asashima M, Nishinakamura R (2007) Six1 and Six4 are essential for Gdnf expression in metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects. Mech Dev 124:290–303CrossRefPubMed
44.
Zurück zum Zitat Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, Gilbert DJ, Jenkins NA, Scully S, Lacey DL, Katsuki M, Asashima M, Yokota T (2001) Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128:3105–3115PubMed Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, Gilbert DJ, Jenkins NA, Scully S, Lacey DL, Katsuki M, Asashima M, Yokota T (2001) Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128:3105–3115PubMed
45.
Zurück zum Zitat Chai L, Yang J, Di C, Cui W, Kawakami K, Lai R, Ma Y (2006) Transcriptional activation of the Sall1 by the human Six1 homeodomain during kidney development. J Biol Chem 281:18918–18926CrossRefPubMed Chai L, Yang J, Di C, Cui W, Kawakami K, Lai R, Ma Y (2006) Transcriptional activation of the Sall1 by the human Six1 homeodomain during kidney development. J Biol Chem 281:18918–18926CrossRefPubMed
46.
Zurück zum Zitat Jiang Q, Fujimura S, Kobayashi C, Nishinakamura R (2010) Overexpression of Sall1 in vivo leads to reduced body weight without affecting kidney development. J Biochem 147:445–450CrossRefPubMed Jiang Q, Fujimura S, Kobayashi C, Nishinakamura R (2010) Overexpression of Sall1 in vivo leads to reduced body weight without affecting kidney development. J Biochem 147:445–450CrossRefPubMed
47.
48.
Zurück zum Zitat Mugford JW, Sipila P, Kobayashi A, Behringer RR, McMahon AP (2008) Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo. Dev Biol 319:396–405CrossRefPubMedPubMedCentral Mugford JW, Sipila P, Kobayashi A, Behringer RR, McMahon AP (2008) Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo. Dev Biol 319:396–405CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Fogelgren B, Yang S, Sharp IC, Huckstep OJ, Ma W, Somponpun SJ, Carlson EC, Uyehara CF, Lozanoff S (2009) Deficiency in Six2 during prenatal development is associated with reduced nephron number, chronic renal failure and hypertension in Br/+ adult mice. Am J Physiol Renal Physiol 296:F1166–F1178CrossRefPubMedPubMedCentral Fogelgren B, Yang S, Sharp IC, Huckstep OJ, Ma W, Somponpun SJ, Carlson EC, Uyehara CF, Lozanoff S (2009) Deficiency in Six2 during prenatal development is associated with reduced nephron number, chronic renal failure and hypertension in Br/+ adult mice. Am J Physiol Renal Physiol 296:F1166–F1178CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Yallowitz AR, Gong KQ, Swinehart IT, Nelson LT, Wellik DM (2009) Non-homeodomain regions of Hox proteins mediate activation versus repression of Six2 via a single enhancer site in vivo. Dev Biol 335:156–165CrossRefPubMedPubMedCentral Yallowitz AR, Gong KQ, Swinehart IT, Nelson LT, Wellik DM (2009) Non-homeodomain regions of Hox proteins mediate activation versus repression of Six2 via a single enhancer site in vivo. Dev Biol 335:156–165CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Boyle S, Shioda T, Perantoni AO, de Caestecker M (2007) Cited1 and Cited2 are differentially expressed in the developing kidney but are not required for nephrogenesis. Dev Dyn 236:2321–2330CrossRefPubMed Boyle S, Shioda T, Perantoni AO, de Caestecker M (2007) Cited1 and Cited2 are differentially expressed in the developing kidney but are not required for nephrogenesis. Dev Dyn 236:2321–2330CrossRefPubMed
52.
Zurück zum Zitat Couillard M, Trudel M (2009) C-myc as a modulator of renal stem/progenitor cell population. Dev Dyn 238:405–414CrossRefPubMed Couillard M, Trudel M (2009) C-myc as a modulator of renal stem/progenitor cell population. Dev Dyn 238:405–414CrossRefPubMed
53.
Zurück zum Zitat Mugrauer G, Ekblom P (1991) Contrasting expression patterns of three members of the myc family of protooncogenes in the developing and adult mouse kidney. J Cell Biol 112:13–25CrossRefPubMed Mugrauer G, Ekblom P (1991) Contrasting expression patterns of three members of the myc family of protooncogenes in the developing and adult mouse kidney. J Cell Biol 112:13–25CrossRefPubMed
54.
Zurück zum Zitat Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691CrossRefPubMed Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691CrossRefPubMed
55.
Zurück zum Zitat Sims-Lucas S, Young R, Martinez G, Taylor D, Grimmond SM, Teasdale R, Little MH, Bertram J, Caruana G (2010) Redirection of renal mesenchyme to stromal and chondrocytic fates in the presence of TGF-β2. Differentiation 79:272–284CrossRefPubMed Sims-Lucas S, Young R, Martinez G, Taylor D, Grimmond SM, Teasdale R, Little MH, Bertram J, Caruana G (2010) Redirection of renal mesenchyme to stromal and chondrocytic fates in the presence of TGF-β2. Differentiation 79:272–284CrossRefPubMed
56.
Zurück zum Zitat Lusis M, Li J, Ineson J, Li J, Little MH (2010) Isolation and culture of metanephric mesenchyme-derived nephrospheres reinforces evidence that embryonic renal progenitors are multipotent and exhaust during cessation of nephron formation. Stem Cell Research 5:23–39CrossRefPubMed Lusis M, Li J, Ineson J, Li J, Little MH (2010) Isolation and culture of metanephric mesenchyme-derived nephrospheres reinforces evidence that embryonic renal progenitors are multipotent and exhaust during cessation of nephron formation. Stem Cell Research 5:23–39CrossRefPubMed
57.
Zurück zum Zitat Zhuang Z, Merino MJ, Vortmeyer AO, Bryant B, Lash AE, Wang C, Deavers MT, Shelton WF, Kapur S, Chandra RS (1997) Identical genetic changes in different histologic components of Wilms' tumors. J Natl Cancer Inst 89:1148–1152CrossRefPubMed Zhuang Z, Merino MJ, Vortmeyer AO, Bryant B, Lash AE, Wang C, Deavers MT, Shelton WF, Kapur S, Chandra RS (1997) Identical genetic changes in different histologic components of Wilms' tumors. J Natl Cancer Inst 89:1148–1152CrossRefPubMed
58.
Zurück zum Zitat Fuchs E (2009) Finding one's niche in the skin. Cell Stem Cel 4:499–502CrossRef Fuchs E (2009) Finding one's niche in the skin. Cell Stem Cel 4:499–502CrossRef
59.
60.
Zurück zum Zitat Eliasson P, Jönsson JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222:17–22CrossRefPubMed Eliasson P, Jönsson JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222:17–22CrossRefPubMed
61.
Zurück zum Zitat Mathur D, Bost A, Driver I, Ohlstein B (2010) A transient niche regulates the specification of Drosophila intestinal stem cells. Science 8327(5962):210–213CrossRef Mathur D, Bost A, Driver I, Ohlstein B (2010) A transient niche regulates the specification of Drosophila intestinal stem cells. Science 8327(5962):210–213CrossRef
62.
Zurück zum Zitat Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, McMahon AP, Bonventre JV (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–291CrossRefPubMed Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, McMahon AP, Bonventre JV (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–291CrossRefPubMed
63.
Zurück zum Zitat Hoy WE, Bertram JF, Denton RD, Zimanyi M, Samuel T, Hughson MD (2008) Nephron number, glomerular volume, renal disease and hypertension. Curr Opin Nephrol Hypertens 17:258–265CrossRefPubMed Hoy WE, Bertram JF, Denton RD, Zimanyi M, Samuel T, Hughson MD (2008) Nephron number, glomerular volume, renal disease and hypertension. Curr Opin Nephrol Hypertens 17:258–265CrossRefPubMed
64.
Zurück zum Zitat Moritz KM, Cullen-McEwen LA (2006) Kidney Development and Fetal Programming. In: Early Life Origins of Health and Adult Disease. Eds Wintour-Coghlan EM, Owens JA. Landes Bioscience, pp.130-144 Moritz KM, Cullen-McEwen LA (2006) Kidney Development and Fetal Programming. In: Early Life Origins of Health and Adult Disease. Eds Wintour-Coghlan EM, Owens JA. Landes Bioscience, pp.130-144
65.
Zurück zum Zitat Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347CrossRefPubMed Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347CrossRefPubMed
66.
Zurück zum Zitat Moritz KM, Wintour EM, Dodic M (2006) Renal development and programming. In: Gluckman PD, Hanson MA (eds) Developmental Origins of Health and Disease – A Biomedical Perspective, 23rd edn. University Press, Cambridge, pp 310–322CrossRef Moritz KM, Wintour EM, Dodic M (2006) Renal development and programming. In: Gluckman PD, Hanson MA (eds) Developmental Origins of Health and Disease – A Biomedical Perspective, 23rd edn. University Press, Cambridge, pp 310–322CrossRef
67.
Zurück zum Zitat Brenner BM, Anderson S (1992) The interrelationships among filtration surface area, blood pressure, and chronic renal disease. J Cardiovasc Pharmacol 19(Suppl 6):S1–S7CrossRefPubMed Brenner BM, Anderson S (1992) The interrelationships among filtration surface area, blood pressure, and chronic renal disease. J Cardiovasc Pharmacol 19(Suppl 6):S1–S7CrossRefPubMed
68.
Zurück zum Zitat Hoppe CC, Evans RG, Bertram JF, Moritz KM (2007) The effects of dietary protein restriction on nephron number in the mouse. Am J Physiol Regul Integr Comp Physiol 292:R1768–R1774CrossRefPubMed Hoppe CC, Evans RG, Bertram JF, Moritz KM (2007) The effects of dietary protein restriction on nephron number in the mouse. Am J Physiol Regul Integr Comp Physiol 292:R1768–R1774CrossRefPubMed
69.
Zurück zum Zitat Wlodek ME, Mibus A, Tan A, Siebel AL, Owens JA, Moritz KM (2007) Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J Am Soc Nephrol 18:1688–1696CrossRefPubMed Wlodek ME, Mibus A, Tan A, Siebel AL, Owens JA, Moritz KM (2007) Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J Am Soc Nephrol 18:1688–1696CrossRefPubMed
70.
Zurück zum Zitat Singh R, Cullen-McEwen LA, Kett KM, Boon WM, Dowling J, Bertram JF, Moritz KM (2007) Prenatal corticosterone exposure results in altered AT1/AT2, nephron deficit and hypertension in the rat offspring. J Physiol 579:503–513CrossRefPubMedPubMedCentral Singh R, Cullen-McEwen LA, Kett KM, Boon WM, Dowling J, Bertram JF, Moritz KM (2007) Prenatal corticosterone exposure results in altered AT1/AT2, nephron deficit and hypertension in the rat offspring. J Physiol 579:503–513CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Rodríguez MM, Gómez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE (2004) Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 7:17–25CrossRefPubMed Rodríguez MM, Gómez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE (2004) Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 7:17–25CrossRefPubMed
72.
Zurück zum Zitat Rodriguez MM, Gomez A, Abitbol C, Chandar J, Montané B, Zilleruelo G (2005) Comparative renal histomorphometry: a case study of oligonephropathy of prematurity. Pediatr Nephrol 20:945–949CrossRefPubMed Rodriguez MM, Gomez A, Abitbol C, Chandar J, Montané B, Zilleruelo G (2005) Comparative renal histomorphometry: a case study of oligonephropathy of prematurity. Pediatr Nephrol 20:945–949CrossRefPubMed
73.
Zurück zum Zitat Douglas-Denton R, Moritz KM, Bertram JF, Wintour EM (2002) Compensatory renal growth after unilateral nephrectomy in the ovine fetus. J Am Soc Nephrol 13:406–410PubMed Douglas-Denton R, Moritz KM, Bertram JF, Wintour EM (2002) Compensatory renal growth after unilateral nephrectomy in the ovine fetus. J Am Soc Nephrol 13:406–410PubMed
74.
Zurück zum Zitat Metsuyanim S, Harari-Steinberg O, Buzhor E, Omer D, Pode-Shakked N, Ben-Hur H, Halperin R, Schneider D, Dekel B (2009) Expression of stem cell markers in the human fetal kidney. PLoS ONE 4:e6709PubMedPubMedCentral Metsuyanim S, Harari-Steinberg O, Buzhor E, Omer D, Pode-Shakked N, Ben-Hur H, Halperin R, Schneider D, Dekel B (2009) Expression of stem cell markers in the human fetal kidney. PLoS ONE 4:e6709PubMedPubMedCentral
75.
Zurück zum Zitat Irion S, Nostro MC, Kattman SJ, Keller GM (2008) Directed differentiation of pluripotent stem cells: from developmental biology to therapeutic applications. Cold Spring Harb Symp Quant Biol 73:101–110CrossRefPubMed Irion S, Nostro MC, Kattman SJ, Keller GM (2008) Directed differentiation of pluripotent stem cells: from developmental biology to therapeutic applications. Cold Spring Harb Symp Quant Biol 73:101–110CrossRefPubMed
76.
Zurück zum Zitat Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680CrossRefPubMed Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680CrossRefPubMed
77.
Zurück zum Zitat Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMed Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMed
78.
79.
Zurück zum Zitat Bussmann LH, Schubert A, Vu Manh TP, De Andres L, Desbordes SC, Parra M, Zimmermann T, Rapino F, Rodriguez-Ubreva J, Ballestar E, Graf T (2009) A robust and highly efficient immune cell reprogramming system. Cell Stem Cell 5:554–566CrossRefPubMed Bussmann LH, Schubert A, Vu Manh TP, De Andres L, Desbordes SC, Parra M, Zimmermann T, Rapino F, Rodriguez-Ubreva J, Ballestar E, Graf T (2009) A robust and highly efficient immune cell reprogramming system. Cell Stem Cell 5:554–566CrossRefPubMed
80.
Zurück zum Zitat Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455:627–632CrossRefPubMedPubMedCentral Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455:627–632CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Challen GA, Ivan Bertoncello I, Deane J, Ricardo S, Little MH (2006) Kidney side population cells represent a non-haematopoietic but heterogeneous population with multilineage and renal potential. J Amer Society Nephrol 17:1896–1912CrossRef Challen GA, Ivan Bertoncello I, Deane J, Ricardo S, Little MH (2006) Kidney side population cells represent a non-haematopoietic but heterogeneous population with multilineage and renal potential. J Amer Society Nephrol 17:1896–1912CrossRef
82.
Zurück zum Zitat Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, Utsunomiya Y, Takahashi M, Terada Y, Eto Y, Kawamura T, Osumi N, Hosoya T (2005) Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci USA 102:3296–3300CrossRefPubMedPubMedCentral Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, Utsunomiya Y, Takahashi M, Terada Y, Eto Y, Kawamura T, Osumi N, Hosoya T (2005) Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci USA 102:3296–3300CrossRefPubMedPubMedCentral
83.
Zurück zum Zitat Elger M, Hentschel H, Litteral J, Wellner M, Kirsch T, Luft FC, Haller H (2003) Nephrogenesis is induced by partial nephrectomy in the elasmobranch Leucoraja erinacea. J Am Soc Nephrol 14:1506–1518CrossRefPubMed Elger M, Hentschel H, Litteral J, Wellner M, Kirsch T, Luft FC, Haller H (2003) Nephrogenesis is induced by partial nephrectomy in the elasmobranch Leucoraja erinacea. J Am Soc Nephrol 14:1506–1518CrossRefPubMed
84.
Zurück zum Zitat Reimschuessel R, Bennett RO, May EB, Lipsky MM (1990) Development of newly formed nephrons in the goldfish kidney following hexachlorobutadiene-induced nephrotoxicity. Toxicol Pathol 18:32–38CrossRefPubMed Reimschuessel R, Bennett RO, May EB, Lipsky MM (1990) Development of newly formed nephrons in the goldfish kidney following hexachlorobutadiene-induced nephrotoxicity. Toxicol Pathol 18:32–38CrossRefPubMed
85.
Zurück zum Zitat Salice CJ, Rokous JS, Kane AS, Reimschuessel R (2001) New nephron development in goldfish (Carassius auratus) kidneys following repeated gentamicin-induced nephrotoxicosis. Comp Med 51:56–59PubMed Salice CJ, Rokous JS, Kane AS, Reimschuessel R (2001) New nephron development in goldfish (Carassius auratus) kidneys following repeated gentamicin-induced nephrotoxicosis. Comp Med 51:56–59PubMed
86.
Zurück zum Zitat Cormier SM, Neiheisel TW, Racine RN, Reimschuessel R (1995) New nephron development in fish from polluted waters: A possible biomarker. Ecotoxicology 4:157–168CrossRefPubMed Cormier SM, Neiheisel TW, Racine RN, Reimschuessel R (1995) New nephron development in fish from polluted waters: A possible biomarker. Ecotoxicology 4:157–168CrossRefPubMed
87.
Zurück zum Zitat Zhou W, Boucher RC, Bollig F, Englert C, Hildebrandt F (2010) Characterization of mesonephric development and regenaration using transgenic zebrafish. Am J Physiol Renal Physiol 229(5):F1040–F1047CrossRef Zhou W, Boucher RC, Bollig F, Englert C, Hildebrandt F (2010) Characterization of mesonephric development and regenaration using transgenic zebrafish. Am J Physiol Renal Physiol 229(5):F1040–F1047CrossRef
88.
Zurück zum Zitat Watanabe N, Kato M, Suzuki N, Inoue C, Fedorova S, Hashimoto H, Maruyama S, Matsuo S, Wakamatsu Y (2009) Kidney regeneration through nephron neogenesis in medaka. Dev Growth Differ 51:135–143CrossRefPubMed Watanabe N, Kato M, Suzuki N, Inoue C, Fedorova S, Hashimoto H, Maruyama S, Matsuo S, Wakamatsu Y (2009) Kidney regeneration through nephron neogenesis in medaka. Dev Growth Differ 51:135–143CrossRefPubMed
89.
Zurück zum Zitat Reimschuessel R (2001) A fish model of renal regeneration and development. ILAR J 42:285–291CrossRefPubMed Reimschuessel R (2001) A fish model of renal regeneration and development. ILAR J 42:285–291CrossRefPubMed
90.
Zurück zum Zitat Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov D, Grimmond S, Hume DA, Ricardo S, Little MH (2007) Characterisation and trophic functions of murine embryonic macrophages based upon the use of a CSF-1R-EGFP transgene reporter. Dev Biol 308:232–246CrossRefPubMed Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov D, Grimmond S, Hume DA, Ricardo S, Little MH (2007) Characterisation and trophic functions of murine embryonic macrophages based upon the use of a CSF-1R-EGFP transgene reporter. Dev Biol 308:232–246CrossRefPubMed
Metadaten
Titel
Defining and redefining the nephron progenitor population
verfasst von
Caroline Hendry
Bree Rumballe
Karen Moritz
Melissa H. Little
Publikationsdatum
01.09.2011
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Nephrology / Ausgabe 9/2011
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-010-1750-4

Weitere Artikel der Ausgabe 9/2011

Pediatric Nephrology 9/2011 Zur Ausgabe

Kinder mit anhaltender Sinusitis profitieren häufig von Antibiotika

30.04.2024 Rhinitis und Sinusitis Nachrichten

Persistieren Sinusitisbeschwerden bei Kindern länger als zehn Tage, ist eine Antibiotikatherapie häufig gut wirksam: Ein Therapieversagen ist damit zu über 40% seltener zu beobachten als unter Placebo.

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.