Skip to main content
Erschienen in: Pediatric Nephrology 9/2011

01.09.2011 | Review

Control of mammalian kidney development by the Hedgehog signaling pathway

verfasst von: Jason E. Cain, Norman D. Rosenblum

Erschienen in: Pediatric Nephrology | Ausgabe 9/2011

Einloggen, um Zugang zu erhalten

Abstract

The kidney is the most common site of congenital malformations that result in impaired renal function. Yet, the molecular mechanisms that control renal malformations are poorly understood. The Hedgehog signaling pathway plays critical roles during mammalian organogenesis. Aberrant Hedgehog signaling results in severe congenital abnormalities, including renal malformations. Here, we review the current body of knowledge on Hedgehog signaling during renal morphogenesis and highlight the gaps in our understanding. Furthermore, we propose mechanisms by which Hedgehog signaling contributes to both normal and abnormal renal development.
Literatur
1.
Zurück zum Zitat Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413CrossRefPubMed Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413CrossRefPubMed
2.
Zurück zum Zitat Hu MC, Mo R, Bhella S, Wilson CW, Chuang PT, Hui CC, Rosenblum ND (2006) GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis. Development 133:569–578CrossRefPubMed Hu MC, Mo R, Bhella S, Wilson CW, Chuang PT, Hui CC, Rosenblum ND (2006) GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis. Development 133:569–578CrossRefPubMed
3.
Zurück zum Zitat Litingtung Y, Lei L, Westphal H, Chiang C (1998) Sonic hedgehog is essential to foregut development. Nat Genet 20:58–61CrossRefPubMed Litingtung Y, Lei L, Westphal H, Chiang C (1998) Sonic hedgehog is essential to foregut development. Nat Genet 20:58–61CrossRefPubMed
4.
Zurück zum Zitat Pepicelli CV, Lewis PM, McMahon AP (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8:1083–1086CrossRefPubMed Pepicelli CV, Lewis PM, McMahon AP (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8:1083–1086CrossRefPubMed
5.
Zurück zum Zitat Bayani J, Zielenska M, Marrano P, Kwan Ng Y, Taylor MD, Jay V, Rutka JT, Squire JA (2000) Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J Neurosurg 93:437–448CrossRefPubMed Bayani J, Zielenska M, Marrano P, Kwan Ng Y, Taylor MD, Jay V, Rutka JT, Squire JA (2000) Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J Neurosurg 93:437–448CrossRefPubMed
6.
Zurück zum Zitat Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, Vorechovsky I, Holmberg E, Unden AB, Gillies S, Negus K, Smyth I, Pressman C, Leffell DJ, Gerrard B, Goldstein AM, Dean M, Toftgard R, Chenevix-Trench G, Wainwright B, Bale AE (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851CrossRefPubMed Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, Vorechovsky I, Holmberg E, Unden AB, Gillies S, Negus K, Smyth I, Pressman C, Leffell DJ, Gerrard B, Goldstein AM, Dean M, Toftgard R, Chenevix-Trench G, Wainwright B, Bale AE (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851CrossRefPubMed
7.
Zurück zum Zitat Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein EH Jr, Scott MP (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671CrossRefPubMed Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein EH Jr, Scott MP (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671CrossRefPubMed
8.
Zurück zum Zitat Smyth I, Narang MA, Evans T, Heimann C, Nakamura Y, Chenevix-Trench G, Pietsch T, Wicking C, Wainwright BJ (1999) Isolation and characterization of human patched 2 (PTCH2), a putative tumour suppressor gene inbasal cell carcinoma and medulloblastoma on chromosome 1p32. Hum Mol Genet 8:291–297CrossRefPubMed Smyth I, Narang MA, Evans T, Heimann C, Nakamura Y, Chenevix-Trench G, Pietsch T, Wicking C, Wainwright BJ (1999) Isolation and characterization of human patched 2 (PTCH2), a putative tumour suppressor gene inbasal cell carcinoma and medulloblastoma on chromosome 1p32. Hum Mol Genet 8:291–297CrossRefPubMed
9.
Zurück zum Zitat Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer SW, Dura WT, Wainwright B, Squire JA, Rutka JT, Hogg D (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31:306–310CrossRefPubMed Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer SW, Dura WT, Wainwright B, Squire JA, Rutka JT, Hogg D (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31:306–310CrossRefPubMed
11.
Zurück zum Zitat Chen CH, von Kessler DP, Park W, Wang B, Ma Y, Beachy PA (1999) Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell 98:305–316CrossRefPubMed Chen CH, von Kessler DP, Park W, Wang B, Ma Y, Beachy PA (1999) Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell 98:305–316CrossRefPubMed
12.
Zurück zum Zitat Lum L, Zhang C, Oh S, Mann RK, von Kessler DP, Taipale J, Weis-Garcia F, Gong R, Wang B, Beachy PA (2003) Hedgehog signal transduction via Smoothened association with a cytoplasmic complex scaffolded by the atypical kinesin, Costal-2. Mol Cell 12:1261–1274CrossRefPubMed Lum L, Zhang C, Oh S, Mann RK, von Kessler DP, Taipale J, Weis-Garcia F, Gong R, Wang B, Beachy PA (2003) Hedgehog signal transduction via Smoothened association with a cytoplasmic complex scaffolded by the atypical kinesin, Costal-2. Mol Cell 12:1261–1274CrossRefPubMed
13.
Zurück zum Zitat Zhang W, Zhao Y, Tong C, Wang G, Wang B, Jia J, Jiang J (2005) Hedgehog-regulated Costal2-kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev Cell 8:267–278CrossRefPubMed Zhang W, Zhao Y, Tong C, Wang G, Wang B, Jia J, Jiang J (2005) Hedgehog-regulated Costal2-kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev Cell 8:267–278CrossRefPubMed
14.
Zurück zum Zitat Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL (2002) Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129:4753–4761CrossRefPubMed Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL (2002) Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129:4753–4761CrossRefPubMed
15.
Zurück zum Zitat Park HL, Bai C, Platt KA, Matise MP, Beeghly A, Hui CC, Nakashima M, Joyner AL (2000) Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127:1593–1605PubMed Park HL, Bai C, Platt KA, Matise MP, Beeghly A, Hui CC, Nakashima M, Joyner AL (2000) Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127:1593–1605PubMed
16.
Zurück zum Zitat Yu J, Carroll TJ, McMahon AP (2002) Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129:5301–5312PubMed Yu J, Carroll TJ, McMahon AP (2002) Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129:5301–5312PubMed
17.
Zurück zum Zitat St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086CrossRefPubMedPubMedCentral St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Cain JE, Islam E, Haxho F, Chen L, Bridgewater D, Nieuwenhuis E, Hui CC, Rosenblum ND (2009) GLI3 repressor controls nephron number via regulation of Wnt11 and Ret in ureteric tip cells. PLoS One 4:e7313CrossRefPubMedPubMedCentral Cain JE, Islam E, Haxho F, Chen L, Bridgewater D, Nieuwenhuis E, Hui CC, Rosenblum ND (2009) GLI3 repressor controls nephron number via regulation of Wnt11 and Ret in ureteric tip cells. PLoS One 4:e7313CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Jenkins D, Winyard PJ, Woolf AS (2007) Immunohistochemical analysis of Sonic hedgehog signalling in normal human urinary tract development. J Anat 211:620–629CrossRefPubMedPubMedCentral Jenkins D, Winyard PJ, Woolf AS (2007) Immunohistochemical analysis of Sonic hedgehog signalling in normal human urinary tract development. J Anat 211:620–629CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Hall JG, Pallister PD, Clarren SK, Beckwith JB, Wiglesworth FW, Fraser FC, Cho S, Benke PJ, Reed SD (1980) Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus and postaxial polydactyly—a new syndrome? Part I: clinical, causal, and pathogenetic considerations. Am J Med Genet 7:47–74CrossRefPubMed Hall JG, Pallister PD, Clarren SK, Beckwith JB, Wiglesworth FW, Fraser FC, Cho S, Benke PJ, Reed SD (1980) Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus and postaxial polydactyly—a new syndrome? Part I: clinical, causal, and pathogenetic considerations. Am J Med Genet 7:47–74CrossRefPubMed
21.
Zurück zum Zitat Pallister PD, Hecht F, Herrman J (1989) Three additional cases of the congenital hypothalamic "hamartoblastoma" (Pallister–Hall) syndrome. Am J Med Genet 33:500–501CrossRefPubMed Pallister PD, Hecht F, Herrman J (1989) Three additional cases of the congenital hypothalamic "hamartoblastoma" (Pallister–Hall) syndrome. Am J Med Genet 33:500–501CrossRefPubMed
23.
Zurück zum Zitat Johnston JJ, Olivos-Glander I, Killoran C, Elson E, Turner JT, Peters KF, Abbott MH, Aughton DJ, Aylsworth AS, Bamshad MJ, Booth C, Curry CJ, David A, Dinulos MB, Flannery DB, Fox MA, Graham JM, Grange DK, Guttmacher AE, Hannibal MC, Henn W, Hennekam RC, Holmes LB, Hoyme HE, Leppig KA, Lin AE, Macleod P, Manchester DK, Marcelis C, Mazzanti L, McCann E, McDonald MT, Mendelsohn NJ, Moeschler JB, Moghaddam B, Neri G, Newbury-Ecob R, Pagon RA, Phillips JA, Sadler LS, Stoler JM, Tilstra D, Walsh Vockley CM, Zackai EH, Zadeh TM, Brueton L, Black GC, Biesecker LG (2005) Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet 76:609–622CrossRefPubMedPubMedCentral Johnston JJ, Olivos-Glander I, Killoran C, Elson E, Turner JT, Peters KF, Abbott MH, Aughton DJ, Aylsworth AS, Bamshad MJ, Booth C, Curry CJ, David A, Dinulos MB, Flannery DB, Fox MA, Graham JM, Grange DK, Guttmacher AE, Hannibal MC, Henn W, Hennekam RC, Holmes LB, Hoyme HE, Leppig KA, Lin AE, Macleod P, Manchester DK, Marcelis C, Mazzanti L, McCann E, McDonald MT, Mendelsohn NJ, Moeschler JB, Moghaddam B, Neri G, Newbury-Ecob R, Pagon RA, Phillips JA, Sadler LS, Stoler JM, Tilstra D, Walsh Vockley CM, Zackai EH, Zadeh TM, Brueton L, Black GC, Biesecker LG (2005) Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet 76:609–622CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Kang S, Graham JM Jr, Olney AH, Biesecker LG (1997) GLI3 frameshift mutations cause autosomal dominant Pallister–Hall syndrome. Nat Genet 15:266–268CrossRefPubMed Kang S, Graham JM Jr, Olney AH, Biesecker LG (1997) GLI3 frameshift mutations cause autosomal dominant Pallister–Hall syndrome. Nat Genet 15:266–268CrossRefPubMed
25.
Zurück zum Zitat Dubourg C, Lazaro L, Pasquier L, Bendavid C, Blayau M, Le Duff F, Durou MR, Odent S, David V (2004) Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosencephaly spectrum: Mutation review and genotype-phenotype correlations. Hum Mutat 24:43–51CrossRefPubMed Dubourg C, Lazaro L, Pasquier L, Bendavid C, Blayau M, Le Duff F, Durou MR, Odent S, David V (2004) Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosencephaly spectrum: Mutation review and genotype-phenotype correlations. Hum Mutat 24:43–51CrossRefPubMed
26.
Zurück zum Zitat Benzacken B, Siffroi JP, Le Bourhis C, Krabchi K, Joye N, Maschino F, Viguie F, Soulie J, Gonzales M, Migne G, Bucourt M, Encha-Razavi F, Carbillon L, Taillemite JL (1997) Different proximal and distal rearrangements of chromosome 7q associated with holoprosencephaly. J Med Genet 34:899–903CrossRefPubMedPubMedCentral Benzacken B, Siffroi JP, Le Bourhis C, Krabchi K, Joye N, Maschino F, Viguie F, Soulie J, Gonzales M, Migne G, Bucourt M, Encha-Razavi F, Carbillon L, Taillemite JL (1997) Different proximal and distal rearrangements of chromosome 7q associated with holoprosencephaly. J Med Genet 34:899–903CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Masuno M, Fukushima Y, Sugio Y, Ikeda M, Kuroki Y (1990) Two unrelated cases of single maxillary central incisor with 7q terminal deletion. Jinrui Idengaku Zasshi 35:311–317CrossRefPubMed Masuno M, Fukushima Y, Sugio Y, Ikeda M, Kuroki Y (1990) Two unrelated cases of single maxillary central incisor with 7q terminal deletion. Jinrui Idengaku Zasshi 35:311–317CrossRefPubMed
28.
Zurück zum Zitat Wang J, Spitz L, Hayward R, Kiely E, Hall CM, O'Donoghue DP, Palmer R, Goodman FR, Scambler PJ, Winter RM, Reardon W (1999) Sacral dysgenesis associated with terminal deletion of chromosome 7q: a report of two families. Eur J Pediatr 158:902–905CrossRefPubMed Wang J, Spitz L, Hayward R, Kiely E, Hall CM, O'Donoghue DP, Palmer R, Goodman FR, Scambler PJ, Winter RM, Reardon W (1999) Sacral dysgenesis associated with terminal deletion of chromosome 7q: a report of two families. Eur J Pediatr 158:902–905CrossRefPubMed
29.
Zurück zum Zitat Weber S, Landwehr C, Renkert M, Hoischen A, Wuhl E, Denecke J, Radlwimmer B, Haffner D, Schaefer F, Weber RG (2010) Mapping candidate regions and genes for congenital anomalies of the kidneys and urinary tract (CAKUT) by array-based comparative genomic hybridization. Nephrol Dial Transplant. doi:https://doi.org/10.1093/ndt/gfq400 Weber S, Landwehr C, Renkert M, Hoischen A, Wuhl E, Denecke J, Radlwimmer B, Haffner D, Schaefer F, Weber RG (2010) Mapping candidate regions and genes for congenital anomalies of the kidneys and urinary tract (CAKUT) by array-based comparative genomic hybridization. Nephrol Dial Transplant. doi:https://​doi.​org/​10.​1093/​ndt/​gfq400
30.
Zurück zum Zitat Donnai D, Young ID, Owen WG, Clark SA, Miller PF, Knox WF (1986) The lethal multiple congenital anomaly syndrome of polydactyly, sex reversal, renal hypoplasia, and unilobular lungs. J Med Genet 23:64–71CrossRefPubMedPubMedCentral Donnai D, Young ID, Owen WG, Clark SA, Miller PF, Knox WF (1986) The lethal multiple congenital anomaly syndrome of polydactyly, sex reversal, renal hypoplasia, and unilobular lungs. J Med Genet 23:64–71CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Neri G, Gurrieri F, Zanni G, Lin A (1998) Clinical and molecular aspects of the Simpson–Golabi–Behmel syndrome. Am J Med Genet 79:279–283CrossRefPubMed Neri G, Gurrieri F, Zanni G, Lin A (1998) Clinical and molecular aspects of the Simpson–Golabi–Behmel syndrome. Am J Med Genet 79:279–283CrossRefPubMed
32.
Zurück zum Zitat Pilia G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, Neri G, Cao A, Forabosco A, Schlessinger D (1996) Mutations in GPC3, a glypican gene, cause the Simpson–Golabi–Behmel overgrowth syndrome. Nat Genet 12:241–247CrossRefPubMed Pilia G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, Neri G, Cao A, Forabosco A, Schlessinger D (1996) Mutations in GPC3, a glypican gene, cause the Simpson–Golabi–Behmel overgrowth syndrome. Nat Genet 12:241–247CrossRefPubMed
33.
Zurück zum Zitat Capurro MI, Li F, Filmus J (2009) Overgrowth of a mouse model of Simpson–Golabi–Behmel syndrome is partly mediated by Indian hedgehog. EMBO Rep 10:901–907CrossRefPubMedPubMedCentral Capurro MI, Li F, Filmus J (2009) Overgrowth of a mouse model of Simpson–Golabi–Behmel syndrome is partly mediated by Indian hedgehog. EMBO Rep 10:901–907CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Capurro MI, Xu P, Shi W, Li F, Jia A, Filmus J (2008) Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell 14:700–711CrossRefPubMed Capurro MI, Xu P, Shi W, Li F, Jia A, Filmus J (2008) Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell 14:700–711CrossRefPubMed
35.
Zurück zum Zitat Gershoni-Baruch R, Nachlieli T, Leibo R, Degani S, Weissman I (1992) Cystic kidney dysplasia and polydactyly in 3 sibs with Bardet–Biedl syndrome. Am J Med Genet 44:269–273CrossRefPubMed Gershoni-Baruch R, Nachlieli T, Leibo R, Degani S, Weissman I (1992) Cystic kidney dysplasia and polydactyly in 3 sibs with Bardet–Biedl syndrome. Am J Med Genet 44:269–273CrossRefPubMed
36.
Zurück zum Zitat Pan J, Wang Q, Snell WJ (2005) Cilium-generated signaling and cilia-related disorders. Lab Invest 85:452–463CrossRefPubMed Pan J, Wang Q, Snell WJ (2005) Cilium-generated signaling and cilia-related disorders. Lab Invest 85:452–463CrossRefPubMed
37.
Zurück zum Zitat Bose J, Grotewold L, Ruther U (2002) Pallister-Hall syndrome phenotype in mice mutant for Gli3. Hum Mol Genet 11:1129–1135CrossRefPubMed Bose J, Grotewold L, Ruther U (2002) Pallister-Hall syndrome phenotype in mice mutant for Gli3. Hum Mol Genet 11:1129–1135CrossRefPubMed
38.
Zurück zum Zitat Tripathi P, Guo Q, Wang Y, Coussens M, Liapis H, Jain S, Kuehn MR, Capecchi MR, Chen F (2010) Midline signaling regulates kidney positioning but not nephrogenesis through Shh. Dev Biol 340:518–527CrossRefPubMedPubMedCentral Tripathi P, Guo Q, Wang Y, Coussens M, Liapis H, Jain S, Kuehn MR, Capecchi MR, Chen F (2010) Midline signaling regulates kidney positioning but not nephrogenesis through Shh. Dev Biol 340:518–527CrossRefPubMedPubMedCentral
39.
Metadaten
Titel
Control of mammalian kidney development by the Hedgehog signaling pathway
verfasst von
Jason E. Cain
Norman D. Rosenblum
Publikationsdatum
01.09.2011
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Nephrology / Ausgabe 9/2011
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-010-1704-x

Weitere Artikel der Ausgabe 9/2011

Pediatric Nephrology 9/2011 Zur Ausgabe

Kinder mit anhaltender Sinusitis profitieren häufig von Antibiotika

30.04.2024 Rhinitis und Sinusitis Nachrichten

Persistieren Sinusitisbeschwerden bei Kindern länger als zehn Tage, ist eine Antibiotikatherapie häufig gut wirksam: Ein Therapieversagen ist damit zu über 40% seltener zu beobachten als unter Placebo.

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.