Skip to main content
Erschienen in: Brain Structure and Function 9/2017

23.06.2017 | Original Article

Delineating function and connectivity of optokinetic hubs in the cerebellum and the brainstem

verfasst von: Ria Maxine Ruehl, Carolin Hinkel, Thomas Bauermann, Peter zu Eulenburg

Erschienen in: Brain Structure and Function | Ausgabe 9/2017

Einloggen, um Zugang zu erhalten

Abstract

Optokinetic eye movements are crucial for keeping a stable image on the retina during movements of the head. These eye movements can be differentiated into a cortically generated response (optokinetic look nystagmus) and the highly reflexive optokinetic stare nystagmus, which is controlled by circuits in the brainstem and cerebellum. The contributions of these infratentorial networks and their functional connectivity with the cortical eye fields are still poorly understood in humans. To map ocular motor centres in the cerebellum and brainstem, we studied stare nystagmus using small-field optokinetic stimuli in the horizontal and vertical directions in 22 healthy subjects. We were able to differentiate ocular motor areas of the pontine brainstem and midbrain in vivo for the first time. Direction and velocity-dependent activations were found in the pontine brainstem (nucleus reticularis, tegmenti pontis, and paramedian pontine reticular formation), the uvula, flocculus, and cerebellar tonsils. The ocular motor vermis, on the other hand, responded to constant and accelerating velocity stimulation. Moreover, deactivation patterns depict a governing role for the cerebellar tonsils in ocular motor control. Functional connectivity results of these hubs reveal the close integration of cortico-cerebellar ocular motor and vestibular networks in humans. Adding to the cortical concept of a right-hemispheric predominance for visual-spatial processing, we found a complementary left-sided cerebellar dominance for our ocular motor task. A deeper understanding of the role of the cerebellum and especially the cerebellar tonsils for eye movement control in a clinical context seems vitally important and is now feasible with functional neuroimaging.
Literatur
Zurück zum Zitat Afshar F, Watkins ES, Yap JC (1978) Stereotaxic atlas of the human brainstem and cerebellar nuclei: a variability study. vol Bd. 17. Raven Press Afshar F, Watkins ES, Yap JC (1978) Stereotaxic atlas of the human brainstem and cerebellar nuclei: a variability study. vol Bd. 17. Raven Press
Zurück zum Zitat Barmack NH, Pettorossi VE (1985) Effects of unilateral lesions of the flocculus on optokinetic and vestibuloocular reflexes of the rabbit. J Neurophysiol 53:481–496PubMed Barmack NH, Pettorossi VE (1985) Effects of unilateral lesions of the flocculus on optokinetic and vestibuloocular reflexes of the rabbit. J Neurophysiol 53:481–496PubMed
Zurück zum Zitat Bense S et al (2006b) Brainstem and cerebellar fMRI-activation during horizontal and vertical optokinetic stimulation experimental brain research 174:312–323PubMed Bense S et al (2006b) Brainstem and cerebellar fMRI-activation during horizontal and vertical optokinetic stimulation experimental brain research 174:312–323PubMed
Zurück zum Zitat Boileau I, Beauregar M, Beuter A, Breault C, Lecours AR (2002) Optokinetic stimulation and the egocentred midsagittal plane: an fMRI study. NeuroReport 13:61–65CrossRefPubMed Boileau I, Beauregar M, Beuter A, Breault C, Lecours AR (2002) Optokinetic stimulation and the egocentred midsagittal plane: an fMRI study. NeuroReport 13:61–65CrossRefPubMed
Zurück zum Zitat Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain J Neurol 121(Pt 9):1749–1758CrossRef Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain J Neurol 121(Pt 9):1749–1758CrossRef
Zurück zum Zitat Bremmer F, Klam F, Duhamel JR, Ben Hamed S, Graf W (2002) Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1569–1586CrossRefPubMed Bremmer F, Klam F, Duhamel JR, Ben Hamed S, Graf W (2002) Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1569–1586CrossRefPubMed
Zurück zum Zitat Buttner U, Buttner-Ennever JA, Henn V (1977) Vertical eye movement related unit activity in the rostral mesencephalic reticular formation of the alert monkey. Brain Res 130:239–252CrossRefPubMed Buttner U, Buttner-Ennever JA, Henn V (1977) Vertical eye movement related unit activity in the rostral mesencephalic reticular formation of the alert monkey. Brain Res 130:239–252CrossRefPubMed
Zurück zum Zitat Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol 270:321–344CrossRefPubMedPubMedCentral Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol 270:321–344CrossRefPubMedPubMedCentral
Zurück zum Zitat Crossland WJ, Hu XJ, Rafols JA (1994) Morphological study of the rostral interstitial nucleus of the medial longitudinal fasciculus in the monkey, Macaca mulatta, by Nissl, Golgi, and computer reconstruction and rotation methods. J Comp Neurol 347:47–63. doi:10.1002/cne.903470105 CrossRefPubMed Crossland WJ, Hu XJ, Rafols JA (1994) Morphological study of the rostral interstitial nucleus of the medial longitudinal fasciculus in the monkey, Macaca mulatta, by Nissl, Golgi, and computer reconstruction and rotation methods. J Comp Neurol 347:47–63. doi:10.​1002/​cne.​903470105 CrossRefPubMed
Zurück zum Zitat de Jong BM, Shipp S, Skidmore B, Frackowiak RS, Zeki S (1994) The cerebral activity related to the visual perception of forward motion in depth. Brain J Neurol 117(Pt 5):1039–1054CrossRef de Jong BM, Shipp S, Skidmore B, Frackowiak RS, Zeki S (1994) The cerebral activity related to the visual perception of forward motion in depth. Brain J Neurol 117(Pt 5):1039–1054CrossRef
Zurück zum Zitat Dieterich M, Bucher SF, Seelos KC, Brandt T (1998) Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. Brain J Neurol 121(Pt 8):1479–1495CrossRef Dieterich M, Bucher SF, Seelos KC, Brandt T (1998) Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. Brain J Neurol 121(Pt 8):1479–1495CrossRef
Zurück zum Zitat Dieterich M, Bucher SF, Seelos KC, Brandt T (2000) Cerebellar activation during optokinetic stimulation and saccades. Neurology 54:148–155CrossRefPubMed Dieterich M, Bucher SF, Seelos KC, Brandt T (2000) Cerebellar activation during optokinetic stimulation and saccades. Neurology 54:148–155CrossRefPubMed
Zurück zum Zitat Dieterich M, Bense S, Lutz S, Drzezga A, Stephan T, Bartenstein P, Brandt T (2003a) Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex 13:994–1007CrossRefPubMed Dieterich M, Bense S, Lutz S, Drzezga A, Stephan T, Bartenstein P, Brandt T (2003a) Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex 13:994–1007CrossRefPubMed
Zurück zum Zitat Dieterich M, Bense S, Stephan T, Yousry TA, Brandt T (2003b) fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Exp Brain Res 148:117–127. doi:10.1007/s00221-002-1267-6 CrossRefPubMed Dieterich M, Bense S, Stephan T, Yousry TA, Brandt T (2003b) fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Exp Brain Res 148:117–127. doi:10.​1007/​s00221-002-1267-6 CrossRefPubMed
Zurück zum Zitat Friston KJ, Frith C, Turner R, Frackowiak RSJ (1995a) Characterizing evoked hemodynamics with fMRI NeuroImage 2:157–165PubMed Friston KJ, Frith C, Turner R, Frackowiak RSJ (1995a) Characterizing evoked hemodynamics with fMRI NeuroImage 2:157–165PubMed
Zurück zum Zitat Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith C, Frackowiak RSJ (1995b) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRef Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith C, Frackowiak RSJ (1995b) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRef
Zurück zum Zitat Galati G, Pappata S, Pantano P, Lenzi GL, Samson Y, Pizzamiglio L (1999) Cortical control of optokinetic nystagmus in humans: a positron emission tomography study. Exp Brain Res 126:149–159CrossRefPubMed Galati G, Pappata S, Pantano P, Lenzi GL, Samson Y, Pizzamiglio L (1999) Cortical control of optokinetic nystagmus in humans: a positron emission tomography study. Exp Brain Res 126:149–159CrossRefPubMed
Zurück zum Zitat Gaymard B, Rivaud S, Cassarini JF, Dubard T, Rancurel G, Agid Y, Pierrot-Deseilligny C (1998) Effects of anterior cingulate cortex lesions on ocular saccades in humans. Exp Brain Res 120:173–183CrossRefPubMed Gaymard B, Rivaud S, Cassarini JF, Dubard T, Rancurel G, Agid Y, Pierrot-Deseilligny C (1998) Effects of anterior cingulate cortex lesions on ocular saccades in humans. Exp Brain Res 120:173–183CrossRefPubMed
Zurück zum Zitat Gerrits N (1990) Vestibular nuclear complex. The human nervous system. Academic, Philadelphia, pp 863–888CrossRef Gerrits N (1990) Vestibular nuclear complex. The human nervous system. Academic, Philadelphia, pp 863–888CrossRef
Zurück zum Zitat Giaschi D et al (2003) Conscious visual abilities in a patient with early bilateral occipital damage. Dev Med Child Neurol 45:772–781CrossRefPubMed Giaschi D et al (2003) Conscious visual abilities in a patient with early bilateral occipital damage. Dev Med Child Neurol 45:772–781CrossRefPubMed
Zurück zum Zitat Glasauer S, Stephan T, Kalla R, Marti S, Straumann D (2009) Up-down asymmetry of cerebellar activation during vertical pursuit eye movements. Cerebellum (London, England) 8:385–388. doi:10.1007/s12311-009-0109-5 Glasauer S, Stephan T, Kalla R, Marti S, Straumann D (2009) Up-down asymmetry of cerebellar activation during vertical pursuit eye movements. Cerebellum (London, England) 8:385–388. doi:10.​1007/​s12311-009-0109-5
Zurück zum Zitat Hasegawa T, Kato I, Harada K, Ikarashi T, Yoshida M, Koike Y (1994) The effect of uvulonodular lesions on horizontal optokinetic nystagmus and optokinetic after-nystagmus in cats. Acta Otolaryngol Suppl 511:126–130CrossRefPubMed Hasegawa T, Kato I, Harada K, Ikarashi T, Yoshida M, Koike Y (1994) The effect of uvulonodular lesions on horizontal optokinetic nystagmus and optokinetic after-nystagmus in cats. Acta Otolaryngol Suppl 511:126–130CrossRefPubMed
Zurück zum Zitat Heinen SJ, Keller EL (1996) The function of the cerebellar uvula in monkey during optokinetic and pursuit eye movements: single-unit responses and lesion effects. Exp Brain Res 110:1–14CrossRefPubMed Heinen SJ, Keller EL (1996) The function of the cerebellar uvula in monkey during optokinetic and pursuit eye movements: single-unit responses and lesion effects. Exp Brain Res 110:1–14CrossRefPubMed
Zurück zum Zitat Horn AK, Buttner U, Buttner-Ennever JA (1999) Brainstem and cerebellar structures for eye movement generation. Adv Otorhinolaryngol 55:1–25PubMed Horn AK, Buttner U, Buttner-Ennever JA (1999) Brainstem and cerebellar structures for eye movement generation. Adv Otorhinolaryngol 55:1–25PubMed
Zurück zum Zitat Igarashi M, Takeda N, Chae S (1992) Uvula-nodulus and gravity direction (a study on vertical optokinetic-oculomotor functions). Acta Astronaut 27:25–30CrossRefPubMed Igarashi M, Takeda N, Chae S (1992) Uvula-nodulus and gravity direction (a study on vertical optokinetic-oculomotor functions). Acta Astronaut 27:25–30CrossRefPubMed
Zurück zum Zitat Ilg UJ, Hoffmann KP (1991) Responses of monkey nucleus of the optic tract neurons during pursuit and fixation. Neurosci Res 12:101–110CrossRefPubMed Ilg UJ, Hoffmann KP (1991) Responses of monkey nucleus of the optic tract neurons during pursuit and fixation. Neurosci Res 12:101–110CrossRefPubMed
Zurück zum Zitat Ilg UJ, Hoffmann KP (1996) Responses of neurons of the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic tract in the awake monkey. Eur J Neurosci 8:92–105CrossRefPubMed Ilg UJ, Hoffmann KP (1996) Responses of neurons of the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic tract in the awake monkey. Eur J Neurosci 8:92–105CrossRefPubMed
Zurück zum Zitat Lee SH, Park SH, Kim JS, Kim HJ, Yunusov F, Zee DS (2014) Isolated unilateral infarction of the cerebellar tonsil: ocular motor findings. Ann Neurol 75:429–434CrossRefPubMed Lee SH, Park SH, Kim JS, Kim HJ, Yunusov F, Zee DS (2014) Isolated unilateral infarction of the cerebellar tonsil: ocular motor findings. Ann Neurol 75:429–434CrossRefPubMed
Zurück zum Zitat Leigh RJ, Zee DS (2006) The neurology of eye movements. Contemporary neurology series, 4th edn, vol 70. Oxford Univ Press, Oxford Leigh RJ, Zee DS (2006) The neurology of eye movements. Contemporary neurology series, 4th edn, vol 70. Oxford Univ Press, Oxford
Zurück zum Zitat Mustari MJ, Fuchs AF (1990) Discharge patterns of neurons in the pretectal nucleus of the optic tract (NOT) in the behaving primate. J Neurophysiol 64:77–90PubMed Mustari MJ, Fuchs AF (1990) Discharge patterns of neurons in the pretectal nucleus of the optic tract (NOT) in the behaving primate. J Neurophysiol 64:77–90PubMed
Zurück zum Zitat Nagao S, Kitamura T, Nakamura N, Hiramatsu T, Yamada J (1997) Location of efferent terminals of the primate flocculus and ventral paraflocculus revealed by anterograde axonal transport methods. Neurosci Res 27:257–269. doi:10.1016/S0168-0102(97)01160-7 CrossRefPubMed Nagao S, Kitamura T, Nakamura N, Hiramatsu T, Yamada J (1997) Location of efferent terminals of the primate flocculus and ventral paraflocculus revealed by anterograde axonal transport methods. Neurosci Res 27:257–269. doi:10.​1016/​S0168-0102(97)01160-7 CrossRefPubMed
Zurück zum Zitat Ohki M, Kitazawa H, Hiramatsu T, Kaga K, Kitamura T, Yamada J, Nagao S (2009) Role of primate cerebellar hemisphere in voluntary eye movement control revealed by lesion effects. J Neurophysiol 101:934–947. doi:10.1152/jn.90440.2009 CrossRefPubMed Ohki M, Kitazawa H, Hiramatsu T, Kaga K, Kitamura T, Yamada J, Nagao S (2009) Role of primate cerebellar hemisphere in voluntary eye movement control revealed by lesion effects. J Neurophysiol 101:934–947. doi:10.​1152/​jn.​90440.​2009 CrossRefPubMed
Zurück zum Zitat Pierrot-Deseilligny C, Milea D, Muri RM (2004) Eye movement control by the cerebral cortex. Curr Opin Neurol 17:17–25CrossRefPubMed Pierrot-Deseilligny C, Milea D, Muri RM (2004) Eye movement control by the cerebral cortex. Curr Opin Neurol 17:17–25CrossRefPubMed
Zurück zum Zitat Schmahmann JD (2000) MRI atlas of the human cerebellum. Academic Press, San Diego Schmahmann JD (2000) MRI atlas of the human cerebellum. Academic Press, San Diego
Zurück zum Zitat Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI Atlas of the human cerebellum. Academic Press, San Diego Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI Atlas of the human cerebellum. Academic Press, San Diego
Zurück zum Zitat Schraa-Tam CK, van der Lugt A, Smits M, Frens MA, van Broekhoven PC, van der Geest JN (2008) fMRI of optokinetic eye movements with and without a contribution of smooth pursuit. J Neuroimaging Off J Am Soc Neuroimaging 18:158–167. doi:10.1111/j.1552-6569.2007.00204.x Schraa-Tam CK, van der Lugt A, Smits M, Frens MA, van Broekhoven PC, van der Geest JN (2008) fMRI of optokinetic eye movements with and without a contribution of smooth pursuit. J Neuroimaging Off J Am Soc Neuroimaging 18:158–167. doi:10.​1111/​j.​1552-6569.​2007.​00204.​x
Zurück zum Zitat Tan HS, Collewijn H, Van der Steen J (1992) Optokinetic nystagmus in the rabbit and its modulation by bilateral microinjection of carbachol in the cerebellar flocculus. Exp Brain Res 90:456–468CrossRefPubMed Tan HS, Collewijn H, Van der Steen J (1992) Optokinetic nystagmus in the rabbit and its modulation by bilateral microinjection of carbachol in the cerebellar flocculus. Exp Brain Res 90:456–468CrossRefPubMed
Zurück zum Zitat Thielert CD, Thier P (1993) Patterns of projections from the pontine nuclei and the nucleus reticularis tegmenti pontis to the posterior vermis in the rhesus monkey: a study using retrograde tracers. J Comp Neurol 337:113–126. doi:10.1002/cne.903370108 CrossRefPubMed Thielert CD, Thier P (1993) Patterns of projections from the pontine nuclei and the nucleus reticularis tegmenti pontis to the posterior vermis in the rhesus monkey: a study using retrograde tracers. J Comp Neurol 337:113–126. doi:10.​1002/​cne.​903370108 CrossRefPubMed
Zurück zum Zitat Vahedi K, Rivaud S, Amarenco P, Pierrot-Deseilligny C (1995) Horizontal eye movement disorders after posterior vermis infarctions. J Neurol Neurosurg Psychiatry 58:91–94CrossRefPubMedPubMedCentral Vahedi K, Rivaud S, Amarenco P, Pierrot-Deseilligny C (1995) Horizontal eye movement disorders after posterior vermis infarctions. J Neurol Neurosurg Psychiatry 58:91–94CrossRefPubMedPubMedCentral
Zurück zum Zitat Voogd J, Schraa-Tam CK, van der Geest JN, De Zeeuw CI (2012) Visuomotor cerebellum in human and nonhuman primates. Cerebellum (London, England) 11:392–410. doi:10.1007/s12311-010-0204-7 Voogd J, Schraa-Tam CK, van der Geest JN, De Zeeuw CI (2012) Visuomotor cerebellum in human and nonhuman primates. Cerebellum (London, England) 11:392–410. doi:10.​1007/​s12311-010-0204-7
Zurück zum Zitat Waespe W, Cohen B (1983) Flocculectomy and unit activity in the vestibular nuclei during visual–vestibular interactions. Exp Brain Res 51:23–35CrossRefPubMed Waespe W, Cohen B (1983) Flocculectomy and unit activity in the vestibular nuclei during visual–vestibular interactions. Exp Brain Res 51:23–35CrossRefPubMed
Zurück zum Zitat Xiong G, Nagao S (2002) The lobulus petrosus of the paraflocculus relays cortical visual inputs to the posterior interposed and lateral cerebellar nuclei: an anterograde and retrograde tracing study in the monkey. Exp Brain Res 147:252–263. doi:10.1007/s00221-002-1241-3 CrossRefPubMed Xiong G, Nagao S (2002) The lobulus petrosus of the paraflocculus relays cortical visual inputs to the posterior interposed and lateral cerebellar nuclei: an anterograde and retrograde tracing study in the monkey. Exp Brain Res 147:252–263. doi:10.​1007/​s00221-002-1241-3 CrossRefPubMed
Zurück zum Zitat Yakushin SB, Gizzi M, Reisine H, Raphan T, Buttner-Ennever J, Cohen B (2000) Functions of the nucleus of the optic tract (NOT). II. Control of ocular pursuit. Exp Brain Res 131:433–447CrossRefPubMedPubMedCentral Yakushin SB, Gizzi M, Reisine H, Raphan T, Buttner-Ennever J, Cohen B (2000) Functions of the nucleus of the optic tract (NOT). II. Control of ocular pursuit. Exp Brain Res 131:433–447CrossRefPubMedPubMedCentral
Zurück zum Zitat Zee DS, Yamazaki A, Butler PH, Gucer G (1981) Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol 46:878–899PubMed Zee DS, Yamazaki A, Butler PH, Gucer G (1981) Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol 46:878–899PubMed
Zurück zum Zitat Zhang Y, Partsalis AM, Highstein SM (1993) Properties of superior vestibular nucleus neurons projecting to the cerebellar flocculus in the squirrel monkey. J Neurophysiol 69:642–645PubMed Zhang Y, Partsalis AM, Highstein SM (1993) Properties of superior vestibular nucleus neurons projecting to the cerebellar flocculus in the squirrel monkey. J Neurophysiol 69:642–645PubMed
Metadaten
Titel
Delineating function and connectivity of optokinetic hubs in the cerebellum and the brainstem
verfasst von
Ria Maxine Ruehl
Carolin Hinkel
Thomas Bauermann
Peter zu Eulenburg
Publikationsdatum
23.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 9/2017
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1461-8

Weitere Artikel der Ausgabe 9/2017

Brain Structure and Function 9/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.