Skip to main content
Erschienen in: Brain Structure and Function 9/2017

06.06.2017 | Original Article

Traumatic brain injury causes long-term behavioral changes related to region-specific increases of cerebral blood flow

verfasst von: Bruno Pöttker, Franziska Stöber, Regina Hummel, Frank Angenstein, Konstantin Radyushkin, Jürgen Goldschmidt, Michael K. E. Schäfer

Erschienen in: Brain Structure and Function | Ausgabe 9/2017

Einloggen, um Zugang zu erhalten

Abstract

Traumatic brain injury (TBI) is a leading cause of disability and death and survivors often suffer from long-lasting motor impairment, cognitive deficits, anxiety disorders and epilepsy. Few experimental studies have investigated long-term sequelae after TBI and relations between behavioral changes and neural activity patterns remain elusive. We examined these issues in a murine model of TBI combining histology, behavioral analyses and single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (CBF) as a proxy for neural activity. Adult C57Bl/6N mice were subjected to unilateral cortical impact injury and investigated at early (15–57 days after lesion, dal) and late (184–225 dal) post-traumatic time points. TBI caused pronounced tissue loss of the parietal cortex and subcortical structures and enduring neurological deficits. Marked perilesional astro- and microgliosis was found at 57 dal and declined at 225 dal. Motor and gait pattern deficits occurred at early time points after TBI and improved over the time. In contrast, impaired performance in the Morris water maze test and decreased anxiety-like behavior persisted together with an increased susceptibility to pentylenetetrazole-induced seizures suggesting alterations in neural activity patterns. Accordingly, SPECT imaging of CBF indicated asymmetric hemispheric baseline neural activity patterns. In the ipsilateral hemisphere, increased baseline neural activity was found in the amygdala. In the contralateral hemisphere, homotopic to the structural brain damage, the hippocampus and distinct cortex regions displayed increased baseline neural activity. Thus, regionally elevated CBF along with behavioral alterations indicate that increased neural activity is critically involved in the long-lasting consequences of TBI.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Acosta SA, Tajiri N, Shinozuka K, Ishikawa H, Grimmig B, Diamond DM, Sanberg PR, Bickford PC, Kaneko Y, Borlongan CV (2013) Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model. PLoS One 8:3CrossRef Acosta SA, Tajiri N, Shinozuka K, Ishikawa H, Grimmig B, Diamond DM, Sanberg PR, Bickford PC, Kaneko Y, Borlongan CV (2013) Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model. PLoS One 8:3CrossRef
Zurück zum Zitat Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, Eiden LE, Braga MFM (2014) Reduced GABAergic inhibition in the basolateral amygdala and the development of anxiety-like behaviors after mild traumatic brain injury. PLoS One 9:e102627CrossRefPubMedPubMedCentral Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, Eiden LE, Braga MFM (2014) Reduced GABAergic inhibition in the basolateral amygdala and the development of anxiety-like behaviors after mild traumatic brain injury. PLoS One 9:e102627CrossRefPubMedPubMedCentral
Zurück zum Zitat Axelson HW, Winkler T, Flygt J, Djupsjo A, Hanell A, Marklund N (2013) Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restor Neurol Neurosci 31:73–85PubMed Axelson HW, Winkler T, Flygt J, Djupsjo A, Hanell A, Marklund N (2013) Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restor Neurol Neurosci 31:73–85PubMed
Zurück zum Zitat Bhattacharya S, Herrera-Molina R, Sabanov V, Ahmed T, Iscru E, Stober F, Richter K, Fischer KD, Angenstein F, Goldschmidt J, Beesley PW, Balschun D, Smalla KH, Gundelfinger ED, Montag D (2017) Genetically induced retrograde amnesia of associative memories after neuroplastin ablation. Biol Psychiatry 81:124–135CrossRefPubMed Bhattacharya S, Herrera-Molina R, Sabanov V, Ahmed T, Iscru E, Stober F, Richter K, Fischer KD, Angenstein F, Goldschmidt J, Beesley PW, Balschun D, Smalla KH, Gundelfinger ED, Montag D (2017) Genetically induced retrograde amnesia of associative memories after neuroplastin ablation. Biol Psychiatry 81:124–135CrossRefPubMed
Zurück zum Zitat Bolkvadze T, Pitkanen A (2012) Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. J Neurotrauma 29:789–812CrossRefPubMed Bolkvadze T, Pitkanen A (2012) Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. J Neurotrauma 29:789–812CrossRefPubMed
Zurück zum Zitat Bramlett HM, Dietrich WD (2007) Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res 161:125–141CrossRefPubMed Bramlett HM, Dietrich WD (2007) Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res 161:125–141CrossRefPubMed
Zurück zum Zitat Burda JE, Bernstein AM, Sofroniew MV (2016) Astrocyte roles in traumatic brain injury. Exp Neurol 275(Pt 3):305–315CrossRefPubMed Burda JE, Bernstein AM, Sofroniew MV (2016) Astrocyte roles in traumatic brain injury. Exp Neurol 275(Pt 3):305–315CrossRefPubMed
Zurück zum Zitat Cantu D, Walker K, Andresen L, Taylor-Weiner A, Hampton D, Tesco G, Dulla CG (2015) Traumatic brain injury increases cortical glutamate network activity by compromising GABAergic control. Cereb Cortex 25:2306–2320CrossRefPubMed Cantu D, Walker K, Andresen L, Taylor-Weiner A, Hampton D, Tesco G, Dulla CG (2015) Traumatic brain injury increases cortical glutamate network activity by compromising GABAergic control. Cereb Cortex 25:2306–2320CrossRefPubMed
Zurück zum Zitat Chauhan NB (2014) Chronic neurodegenerative consequences of traumatic brain injury. Restor Neurol Neurosci 32:337–365PubMed Chauhan NB (2014) Chronic neurodegenerative consequences of traumatic brain injury. Restor Neurol Neurosci 32:337–365PubMed
Zurück zum Zitat Collins R, Pastorek N, Tharp A, Kent T (2012) Behavioral and psychiatric comorbidities of TBI. In: Tsao JW (ed) Traumatic brain injury. Springer, New York, pp 223–244CrossRef Collins R, Pastorek N, Tharp A, Kent T (2012) Behavioral and psychiatric comorbidities of TBI. In: Tsao JW (ed) Traumatic brain injury. Springer, New York, pp 223–244CrossRef
Zurück zum Zitat Dixon CE, Kochanek PM, Yan HQ, Schiding JK, Griffith RG, Baum E, Marion DW, DeKosky ST (1999) One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats. J Neurotrauma 16:109–122CrossRefPubMed Dixon CE, Kochanek PM, Yan HQ, Schiding JK, Griffith RG, Baum E, Marion DW, DeKosky ST (1999) One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats. J Neurotrauma 16:109–122CrossRefPubMed
Zurück zum Zitat Endepols H, Sommer S, Backes H, Wiedermann D, Graf R, Hauber W (2010) Effort-based decision making in the rat: an [18F] fluorodeoxyglucose micro positron emission tomography study. J Neurosci 30:9708–9714CrossRefPubMed Endepols H, Sommer S, Backes H, Wiedermann D, Graf R, Hauber W (2010) Effort-based decision making in the rat: an [18F] fluorodeoxyglucose micro positron emission tomography study. J Neurosci 30:9708–9714CrossRefPubMed
Zurück zum Zitat Erturk A, Mentz S, Stout EE, Hedehus M, Dominguez SL, Neumaier L, Krammer F, Llovera G, Srinivasan K, Hansen DV, Liesz A, Scearce-Levie KA, Sheng M (2016) Interfering with the chronic immune response rescues chronic degeneration after traumatic brain injury. J Neurosci 36:9962–9975CrossRefPubMed Erturk A, Mentz S, Stout EE, Hedehus M, Dominguez SL, Neumaier L, Krammer F, Llovera G, Srinivasan K, Hansen DV, Liesz A, Scearce-Levie KA, Sheng M (2016) Interfering with the chronic immune response rescues chronic degeneration after traumatic brain injury. J Neurosci 36:9962–9975CrossRefPubMed
Zurück zum Zitat Ferraro TN, Golden GT, Smith GG, Jean PS, Schork NJ, Mulholland N, Ballas C, Schill J, Buono RJ, Berrettini WH (1999) Mapping loci for pentylenetetrazol-induced seizure susceptibility in mice. J Neurosci 19:6733–6739PubMed Ferraro TN, Golden GT, Smith GG, Jean PS, Schork NJ, Mulholland N, Ballas C, Schill J, Buono RJ, Berrettini WH (1999) Mapping loci for pentylenetetrazol-induced seizure susceptibility in mice. J Neurosci 19:6733–6739PubMed
Zurück zum Zitat Gavett B, Stern R, Cantu R, Nowinski C, McKee A (2010) Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimer’s Res Ther 2:18CrossRef Gavett B, Stern R, Cantu R, Nowinski C, McKee A (2010) Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimer’s Res Ther 2:18CrossRef
Zurück zum Zitat Gold EM, Su D, López-Velázquez L, Haus DL, Perez H, Lacuesta GA, Anderson AJ, Cummings BJ (2013) Functional assessment of long-term deficits in rodent models of traumatic brain injury. Regen Med 8:483–516CrossRefPubMed Gold EM, Su D, López-Velázquez L, Haus DL, Perez H, Lacuesta GA, Anderson AJ, Cummings BJ (2013) Functional assessment of long-term deficits in rodent models of traumatic brain injury. Regen Med 8:483–516CrossRefPubMed
Zurück zum Zitat Goldschmidt J, Wanger T, Engelhorn A, Friedrich H, Happel M, Ilango A, Engelmann M, Stuermer IW, Ohl FW, Scheich H (2010) High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: protocol and validation of the method. Neuroimage 49:303–315CrossRefPubMed Goldschmidt J, Wanger T, Engelhorn A, Friedrich H, Happel M, Ilango A, Engelmann M, Stuermer IW, Ohl FW, Scheich H (2010) High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: protocol and validation of the method. Neuroimage 49:303–315CrossRefPubMed
Zurück zum Zitat Gyoneva S, Ransohoff RM (2015) Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines. Trends Pharmacol Sci 36:471–480CrossRefPubMedPubMedCentral Gyoneva S, Ransohoff RM (2015) Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines. Trends Pharmacol Sci 36:471–480CrossRefPubMedPubMedCentral
Zurück zum Zitat Harish G, Mahadevan A, Pruthi N, Sreenivasamurthy SK, Puttamallesh VN, Keshava Prasad TS, Shankar SK, Srinivas Bharath MM (2015) Characterization of traumatic brain injury in human brains reveals distinct cellular and molecular changes in contusion and pericontusion. J Neurochem 134:156–172CrossRefPubMed Harish G, Mahadevan A, Pruthi N, Sreenivasamurthy SK, Puttamallesh VN, Keshava Prasad TS, Shankar SK, Srinivas Bharath MM (2015) Characterization of traumatic brain injury in human brains reveals distinct cellular and molecular changes in contusion and pericontusion. J Neurochem 134:156–172CrossRefPubMed
Zurück zum Zitat Harris NG, Verley DR, Gutman BA, Thompson PM, Yeh HJ, Brown JA (2016) Disconnection and hyper-connectivity underlie reorganization after TBI: a rodent functional connectomic analysis. Exp Neurol 277:124–138CrossRefPubMed Harris NG, Verley DR, Gutman BA, Thompson PM, Yeh HJ, Brown JA (2016) Disconnection and hyper-connectivity underlie reorganization after TBI: a rodent functional connectomic analysis. Exp Neurol 277:124–138CrossRefPubMed
Zurück zum Zitat Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833CrossRefPubMed Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833CrossRefPubMed
Zurück zum Zitat Huang C, Sakry D, Menzel L, Dangel L, Sebastiani A, Kramer T, Karram K, Engelhard K, Trotter J, Schafer MK (2016) Lack of NG2 exacerbates neurological outcome and modulates glial responses after traumatic brain injury. Glia 64:507–523CrossRefPubMed Huang C, Sakry D, Menzel L, Dangel L, Sebastiani A, Kramer T, Karram K, Engelhard K, Trotter J, Schafer MK (2016) Lack of NG2 exacerbates neurological outcome and modulates glial responses after traumatic brain injury. Glia 64:507–523CrossRefPubMed
Zurück zum Zitat Hunt RF, Scheff SW, Smith BN (2010) Regionally localized recurrent excitation in the dentate gyrus of a cortical contusion model of posttraumatic epilepsy. J Neurophysiol 103:1490–1500CrossRefPubMedPubMedCentral Hunt RF, Scheff SW, Smith BN (2010) Regionally localized recurrent excitation in the dentate gyrus of a cortical contusion model of posttraumatic epilepsy. J Neurophysiol 103:1490–1500CrossRefPubMedPubMedCentral
Zurück zum Zitat Johnk K, Kuhtz-Buschbeck JP, Stolze H, Serocki G, Kalwa S, Ritz A, Benz B, Illert M (1999) Assessment of sensorimotor functions after traumatic brain injury (TBI) in childhood—methodological aspects. Restor Neurol Neurosci 14:143–152 Johnk K, Kuhtz-Buschbeck JP, Stolze H, Serocki G, Kalwa S, Ritz A, Benz B, Illert M (1999) Assessment of sensorimotor functions after traumatic brain injury (TBI) in childhood—methodological aspects. Restor Neurol Neurosci 14:143–152
Zurück zum Zitat Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136:28–42CrossRefPubMedPubMedCentral Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136:28–42CrossRefPubMedPubMedCentral
Zurück zum Zitat Jones TA, Kleim JA, Greenough WT (1996) Synaptogenesis and dendritic growth in the cortex opposite unilateral sensorimotor cortex damage in adult rats: a quantitative electron microscopic examination. Brain Res 733:142–148CrossRefPubMed Jones TA, Kleim JA, Greenough WT (1996) Synaptogenesis and dendritic growth in the cortex opposite unilateral sensorimotor cortex damage in adult rats: a quantitative electron microscopic examination. Brain Res 733:142–148CrossRefPubMed
Zurück zum Zitat Jones NC, Cardamone L, Williams JP, Salzberg MR, Myers D, O’Brien TJ (2008) Experimental traumatic brain injury induces a pervasive hyperanxious phenotype in rats. J Neurotrauma 25:1367–1374CrossRefPubMed Jones NC, Cardamone L, Williams JP, Salzberg MR, Myers D, O’Brien TJ (2008) Experimental traumatic brain injury induces a pervasive hyperanxious phenotype in rats. J Neurotrauma 25:1367–1374CrossRefPubMed
Zurück zum Zitat Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173:692–702CrossRefPubMed Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173:692–702CrossRefPubMed
Zurück zum Zitat Kochanek PM, Hendrich KS, Dixon CE, Schiding JK, Williams DS, Ho C (2002) Cerebral blood flow at one year after controlled cortical impact in rats: assessment by magnetic resonance imaging. J Neurotrauma 19:1029–1037CrossRefPubMed Kochanek PM, Hendrich KS, Dixon CE, Schiding JK, Williams DS, Ho C (2002) Cerebral blood flow at one year after controlled cortical impact in rats: assessment by magnetic resonance imaging. J Neurotrauma 19:1029–1037CrossRefPubMed
Zurück zum Zitat Kolodziej A, Lippert M, Angenstein F, Neubert J, Pethe A, Grosser OS, Amthauer H, Schroeder UH, Reymann KG, Scheich H, Ohl FW, Goldschmidt J (2014) SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice. Neuroimage 103:171–180CrossRefPubMed Kolodziej A, Lippert M, Angenstein F, Neubert J, Pethe A, Grosser OS, Amthauer H, Schroeder UH, Reymann KG, Scheich H, Ohl FW, Goldschmidt J (2014) SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice. Neuroimage 103:171–180CrossRefPubMed
Zurück zum Zitat Kozlowski DA, Schallert T (1998) Relationship between dendritic pruning and behavioral recovery following sensorimotor cortex lesions. Behav Brain Res 97:89–98CrossRefPubMed Kozlowski DA, Schallert T (1998) Relationship between dendritic pruning and behavioral recovery following sensorimotor cortex lesions. Behav Brain Res 97:89–98CrossRefPubMed
Zurück zum Zitat Laitinen T, Sierra A, Bolkvadze T, Pitkanen A, Grohn O (2015) Diffusion tensor imaging detects chronic microstructural changes in white and gray matter after traumatic brain injury in rat. Front Neurosci 9:128CrossRefPubMedPubMedCentral Laitinen T, Sierra A, Bolkvadze T, Pitkanen A, Grohn O (2015) Diffusion tensor imaging detects chronic microstructural changes in white and gray matter after traumatic brain injury in rat. Front Neurosci 9:128CrossRefPubMedPubMedCentral
Zurück zum Zitat Lee S, Park J-Y, Lee W-H, Kim H, Park H-C, Mori K, Suk K (2009) Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J Neurosci 29:234–249CrossRefPubMed Lee S, Park J-Y, Lee W-H, Kim H, Park H-C, Mori K, Suk K (2009) Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J Neurosci 29:234–249CrossRefPubMed
Zurück zum Zitat Lindner MD, Plone MA, Cain CK, Frydel B, Francis JM, Emerich DF, Sutton RL (1998) Dissociable long-term cognitive deficits after frontal versus sensorimotor cortical contusions. J Neurotrauma 15:199–216CrossRefPubMed Lindner MD, Plone MA, Cain CK, Frydel B, Francis JM, Emerich DF, Sutton RL (1998) Dissociable long-term cognitive deficits after frontal versus sensorimotor cortical contusions. J Neurotrauma 15:199–216CrossRefPubMed
Zurück zum Zitat Loane DJ, Kumar A, Stoica BA, Cabatbat R, Faden AI (2014) Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol 73:14–29CrossRefPubMedPubMedCentral Loane DJ, Kumar A, Stoica BA, Cabatbat R, Faden AI (2014) Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol 73:14–29CrossRefPubMedPubMedCentral
Zurück zum Zitat Luh C, Gierth K, Timaru-Kast R, Engelhard K, Werner C, Thal SC (2011) Influence of a brief episode of anesthesia during the induction of experimental brain trauma on secondary brain damage and inflammation. PLoS One 6:19CrossRef Luh C, Gierth K, Timaru-Kast R, Engelhard K, Werner C, Thal SC (2011) Influence of a brief episode of anesthesia during the induction of experimental brain trauma on secondary brain damage and inflammation. PLoS One 6:19CrossRef
Zurück zum Zitat Ma Y, Hof PR, Grant SC, Blackband SJ, Bennett R, Slatest L, McGuigan MD, Benveniste H (2005) A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135:1203–1215CrossRefPubMed Ma Y, Hof PR, Grant SC, Blackband SJ, Bennett R, Slatest L, McGuigan MD, Benveniste H (2005) A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135:1203–1215CrossRefPubMed
Zurück zum Zitat Marklund N, Hillered L (2011) Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol 164:1207–1229CrossRefPubMedPubMedCentral Marklund N, Hillered L (2011) Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol 164:1207–1229CrossRefPubMedPubMedCentral
Zurück zum Zitat McConeghy KW, Hatton J, Hughes L, Cook AM (2012) A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs 26:613–636CrossRefPubMed McConeghy KW, Hatton J, Hughes L, Cook AM (2012) A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs 26:613–636CrossRefPubMed
Zurück zum Zitat Menzel L, Paterka M, Bittner S, White R, Bobkiewicz W, van Horssen J, Schachner M, Witsch E, Kuhlmann T, Zipp F, Schafer MK (2016) Down-regulation of neuronal L1 cell adhesion molecule expression alleviates inflammatory neuronal injury. Acta Neuropathol 132:703–720CrossRefPubMed Menzel L, Paterka M, Bittner S, White R, Bobkiewicz W, van Horssen J, Schachner M, Witsch E, Kuhlmann T, Zipp F, Schafer MK (2016) Down-regulation of neuronal L1 cell adhesion molecule expression alleviates inflammatory neuronal injury. Acta Neuropathol 132:703–720CrossRefPubMed
Zurück zum Zitat Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, Schmitz K, Tegeder I, Schafer MK (2017) Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia 65:278–292CrossRefPubMed Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, Schmitz K, Tegeder I, Schafer MK (2017) Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia 65:278–292CrossRefPubMed
Zurück zum Zitat Mishra AM, Bai X, Sanganahalli BG, Waxman SG, Shatillo O, Grohn O, Hyder F, Pitkanen A, Blumenfeld H (2014) Decreased resting functional connectivity after traumatic brain injury in the rat. PLoS One 9:e95280CrossRefPubMedPubMedCentral Mishra AM, Bai X, Sanganahalli BG, Waxman SG, Shatillo O, Grohn O, Hyder F, Pitkanen A, Blumenfeld H (2014) Decreased resting functional connectivity after traumatic brain injury in the rat. PLoS One 9:e95280CrossRefPubMedPubMedCentral
Zurück zum Zitat Mukherjee S, Zeitouni S, Cavarsan CF, Shapiro LA (2013) Increased seizure susceptibility in mice 30 days after fluid percussion injury. Front Neurol 4:28CrossRefPubMedPubMedCentral Mukherjee S, Zeitouni S, Cavarsan CF, Shapiro LA (2013) Increased seizure susceptibility in mice 30 days after fluid percussion injury. Front Neurol 4:28CrossRefPubMedPubMedCentral
Zurück zum Zitat Neumann M, Wang Y, Kim S, Hong SM, Jeng L, Bilgen M, Liu J (2009) Assessing gait impairment following experimental traumatic brain injury in mice. J Neurosci Methods 176:34–44CrossRefPubMed Neumann M, Wang Y, Kim S, Hong SM, Jeng L, Bilgen M, Liu J (2009) Assessing gait impairment following experimental traumatic brain injury in mice. J Neurosci Methods 176:34–44CrossRefPubMed
Zurück zum Zitat Nissinen J, Halonen T, Koivisto E, Pitkanen A (2000) A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res 38:177–205CrossRefPubMed Nissinen J, Halonen T, Koivisto E, Pitkanen A (2000) A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res 38:177–205CrossRefPubMed
Zurück zum Zitat Ochi F, Esquenazi A, Hirai B, Talaty M (1999) Temporal-spatial feature of gait after traumatic brain injury. J Head Trauma Rehabil 14:105–115CrossRefPubMed Ochi F, Esquenazi A, Hirai B, Talaty M (1999) Temporal-spatial feature of gait after traumatic brain injury. J Head Trauma Rehabil 14:105–115CrossRefPubMed
Zurück zum Zitat Osier ND, Carlson SW, DeSana A, Dixon CE (2015) Chronic histopathological and behavioral outcomes of experimental traumatic brain injury in adult male animals. J Neurotrauma 32:1861–1882CrossRefPubMedPubMedCentral Osier ND, Carlson SW, DeSana A, Dixon CE (2015) Chronic histopathological and behavioral outcomes of experimental traumatic brain injury in adult male animals. J Neurotrauma 32:1861–1882CrossRefPubMedPubMedCentral
Zurück zum Zitat Palmer LM, Schulz JM, Murphy SC, Ledergerber D, Murayama M, Larkum ME (2012) The cellular basis of GABA(B)-mediated interhemispheric inhibition. Science 335:989–993CrossRefPubMed Palmer LM, Schulz JM, Murphy SC, Ledergerber D, Murayama M, Larkum ME (2012) The cellular basis of GABA(B)-mediated interhemispheric inhibition. Science 335:989–993CrossRefPubMed
Zurück zum Zitat Palmer CP, Metheny HE, Elkind JA, Cohen AS (2016) Diminished amygdala activation and behavioral threat response following traumatic brain injury. Exp Neurol 277:215–226CrossRefPubMedPubMedCentral Palmer CP, Metheny HE, Elkind JA, Cohen AS (2016) Diminished amygdala activation and behavioral threat response following traumatic brain injury. Exp Neurol 277:215–226CrossRefPubMedPubMedCentral
Zurück zum Zitat Peterson TC, Maass WR, Anderson JR, Anderson GD, Hoane MR (2015) A behavioral and histological comparison of fluid percussion injury and controlled cortical impact injury to the rat sensorimotor cortex. Behav Brain Res 294:254–263CrossRefPubMedPubMedCentral Peterson TC, Maass WR, Anderson JR, Anderson GD, Hoane MR (2015) A behavioral and histological comparison of fluid percussion injury and controlled cortical impact injury to the rat sensorimotor cortex. Behav Brain Res 294:254–263CrossRefPubMedPubMedCentral
Zurück zum Zitat Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285CrossRefPubMed Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285CrossRefPubMed
Zurück zum Zitat Pierce JE, Smith DH, Trojanowski JQ, McIntosh TK (1998) Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. Neuroscience 87:359–369CrossRefPubMed Pierce JE, Smith DH, Trojanowski JQ, McIntosh TK (1998) Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. Neuroscience 87:359–369CrossRefPubMed
Zurück zum Zitat Pitkanen A, Kemppainen S, Ndode-Ekane XE, Huusko N, Huttunen JK, Grohn O, Immonen R, Sierra A, Bolkvadze T (2014) Posttraumatic epilepsy—disease or comorbidity? Epilepsy Behav 38:19–24CrossRefPubMed Pitkanen A, Kemppainen S, Ndode-Ekane XE, Huusko N, Huttunen JK, Grohn O, Immonen R, Sierra A, Bolkvadze T (2014) Posttraumatic epilepsy—disease or comorbidity? Epilepsy Behav 38:19–24CrossRefPubMed
Zurück zum Zitat Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA, Gunanayagam K, Gelosa G, Sharp DJ (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70:374–383CrossRefPubMed Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA, Gunanayagam K, Gelosa G, Sharp DJ (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70:374–383CrossRefPubMed
Zurück zum Zitat Ratcliff G, Colantonio A, Escobar M, Chase S, Vernich L (2005) Long-term survival following traumatic brain injury. Disabil Rehabil 27:305–314CrossRefPubMed Ratcliff G, Colantonio A, Escobar M, Chase S, Vernich L (2005) Long-term survival following traumatic brain injury. Disabil Rehabil 27:305–314CrossRefPubMed
Zurück zum Zitat Reger ML, Poulos AM, Buen F, Giza CC, Hovda DA, Fanselow MS (2012) Concussive brain injury enhances fear learning and excitatory processes in the amygdala. Biol Psychiatry 71:335–343CrossRefPubMed Reger ML, Poulos AM, Buen F, Giza CC, Hovda DA, Fanselow MS (2012) Concussive brain injury enhances fear learning and excitatory processes in the amygdala. Biol Psychiatry 71:335–343CrossRefPubMed
Zurück zum Zitat Roozenbeek B, Maas AIR, Menon DK (2013) Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol 9:231–236CrossRefPubMed Roozenbeek B, Maas AIR, Menon DK (2013) Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol 9:231–236CrossRefPubMed
Zurück zum Zitat Sashindranath M, Daglas M, Medcalf RL (2015) Evaluation of gait impairment in mice subjected to craniotomy and traumatic brain injury. Behav Brain Res 286:33–38CrossRefPubMed Sashindranath M, Daglas M, Medcalf RL (2015) Evaluation of gait impairment in mice subjected to craniotomy and traumatic brain injury. Behav Brain Res 286:33–38CrossRefPubMed
Zurück zum Zitat Schaible E-V, Windschügl J, Bobkiewicz W, Kaburov Y, Dangel L, Krämer T, Huang C, Sebastiani A, Luh C, Werner C, Engelhard K, Thal SC, Schäfer MKE (2014) 2-Methoxyestradiol confers neuroprotection and inhibits a maladaptive HIF-1α response after traumatic brain injury in mice. J Neurochem 129:940–954CrossRefPubMed Schaible E-V, Windschügl J, Bobkiewicz W, Kaburov Y, Dangel L, Krämer T, Huang C, Sebastiani A, Luh C, Werner C, Engelhard K, Thal SC, Schäfer MKE (2014) 2-Methoxyestradiol confers neuroprotection and inhibits a maladaptive HIF-1α response after traumatic brain injury in mice. J Neurochem 129:940–954CrossRefPubMed
Zurück zum Zitat Shively SB, Horkayne-Szakaly I, Jones RV, Kelly JP, Armstrong RC, Perl DP (2016) Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurol 9:944–953CrossRef Shively SB, Horkayne-Szakaly I, Jones RV, Kelly JP, Armstrong RC, Perl DP (2016) Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurol 9:944–953CrossRef
Zurück zum Zitat Sierra A, Laitinen T, Grohn O, Pitkanen A (2015) Diffusion tensor imaging of hippocampal network plasticity. Brain Struct Funct 220:781–801CrossRefPubMed Sierra A, Laitinen T, Grohn O, Pitkanen A (2015) Diffusion tensor imaging of hippocampal network plasticity. Brain Struct Funct 220:781–801CrossRefPubMed
Zurück zum Zitat Soblosky JS, Matthews MA, Davidson JF, Tabor SL, Carey ME (1996) Traumatic brain injury of the forelimb and hindlimb sensorimotor areas in the rat: physiological, histological and behavioral correlates. Behav Brain Res 79:79–92CrossRefPubMed Soblosky JS, Matthews MA, Davidson JF, Tabor SL, Carey ME (1996) Traumatic brain injury of the forelimb and hindlimb sensorimotor areas in the rat: physiological, histological and behavioral correlates. Behav Brain Res 79:79–92CrossRefPubMed
Zurück zum Zitat Takeuchi N, Ikoma K, Chuma T, Matsuo Y (2006) Measurement of transcallosal inhibition in traumatic brain injury by transcranial magnetic stimulation. Brain Inj 20:991–996CrossRefPubMed Takeuchi N, Ikoma K, Chuma T, Matsuo Y (2006) Measurement of transcallosal inhibition in traumatic brain injury by transcranial magnetic stimulation. Brain Inj 20:991–996CrossRefPubMed
Zurück zum Zitat Thanos PK, Robison L, Nestler EJ, Kim R, Michaelides M, Lobo MK, Volkow ND (2013) Mapping brain metabolic connectivity in awake rats with muPET and optogenetic stimulation. J Neurosci 33:6343–6349CrossRefPubMedPubMedCentral Thanos PK, Robison L, Nestler EJ, Kim R, Michaelides M, Lobo MK, Volkow ND (2013) Mapping brain metabolic connectivity in awake rats with muPET and optogenetic stimulation. J Neurosci 33:6343–6349CrossRefPubMedPubMedCentral
Zurück zum Zitat Timaru-Kast R, Luh C, Gotthardt P, Huang C, Schäfer MK, Engelhard K, Thal SC (2012) Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice. PLoS One 7:e43829CrossRefPubMedPubMedCentral Timaru-Kast R, Luh C, Gotthardt P, Huang C, Schäfer MK, Engelhard K, Thal SC (2012) Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice. PLoS One 7:e43829CrossRefPubMedPubMedCentral
Zurück zum Zitat Titianova EB, Peurala SH, Pitkanen K, Tarkka IM (2008) Gait reveals bilateral adaptation of motor control in patients with chronic unilateral stroke. Aging Clin Exp Res 20:131–138CrossRefPubMed Titianova EB, Peurala SH, Pitkanen K, Tarkka IM (2008) Gait reveals bilateral adaptation of motor control in patients with chronic unilateral stroke. Aging Clin Exp Res 20:131–138CrossRefPubMed
Zurück zum Zitat Tsenter J, Beni-Adani L, Assaf Y, Alexandrovich AG, Trembovler V, Shohami E (2008) Dynamic changes in the recovery after traumatic brain injury in mice: effect of injury severity on T2-weighted MRI abnormalities, and motor and cognitive functions. J Neurotrauma 25:324–333CrossRefPubMed Tsenter J, Beni-Adani L, Assaf Y, Alexandrovich AG, Trembovler V, Shohami E (2008) Dynamic changes in the recovery after traumatic brain injury in mice: effect of injury severity on T2-weighted MRI abnormalities, and motor and cognitive functions. J Neurotrauma 25:324–333CrossRefPubMed
Zurück zum Zitat Velazquez A, Ortega M, Rojas S, Gonzalez-Olivan FJ, Rodriguez-Baeza A (2015) Widespread microglial activation in patients deceased from traumatic brain injury. Brain Inj 29:1126–1133CrossRefPubMed Velazquez A, Ortega M, Rojas S, Gonzalez-Olivan FJ, Rodriguez-Baeza A (2015) Widespread microglial activation in patients deceased from traumatic brain injury. Brain Inj 29:1126–1133CrossRefPubMed
Zurück zum Zitat Villapol S, Byrnes KR, Symes AJ (2014) Temporal dynamics of cerebral blood flow, cortical damage, apoptosis, astrocyte-vasculature interaction and astrogliosis in the pericontusional region after traumatic brain injury. Front Neurol 5:82CrossRefPubMedPubMedCentral Villapol S, Byrnes KR, Symes AJ (2014) Temporal dynamics of cerebral blood flow, cortical damage, apoptosis, astrocyte-vasculature interaction and astrogliosis in the pericontusional region after traumatic brain injury. Front Neurol 5:82CrossRefPubMedPubMedCentral
Zurück zum Zitat Walker WC, Pickett TC (2007) Motor impairment after severe traumatic brain injury: a longitudinal multicenter study. J Rehabil Res Dev 44:975–982CrossRefPubMed Walker WC, Pickett TC (2007) Motor impairment after severe traumatic brain injury: a longitudinal multicenter study. J Rehabil Res Dev 44:975–982CrossRefPubMed
Zurück zum Zitat Washington PM, Forcelli PA, Wilkins T, Zapple DN, Parsadanian M, Burns MP (2012) The effect of injury severity on behavior: a phenotypic study of cognitive and emotional deficits after mild, moderate, and severe controlled cortical impact injury in mice. J Neurotrauma 29:2283–2296CrossRefPubMedPubMedCentral Washington PM, Forcelli PA, Wilkins T, Zapple DN, Parsadanian M, Burns MP (2012) The effect of injury severity on behavior: a phenotypic study of cognitive and emotional deficits after mild, moderate, and severe controlled cortical impact injury in mice. J Neurotrauma 29:2283–2296CrossRefPubMedPubMedCentral
Zurück zum Zitat Wyckhuys T, Staelens S, Van Nieuwenhuyse B, Deleye S, Hallez H, Vonck K, Raedt R, Wadman W, Boon P (2010) Hippocampal deep brain stimulation induces decreased rCBF in the hippocampal formation of the rat. Neuroimage 52:55–61CrossRefPubMed Wyckhuys T, Staelens S, Van Nieuwenhuyse B, Deleye S, Hallez H, Vonck K, Raedt R, Wadman W, Boon P (2010) Hippocampal deep brain stimulation induces decreased rCBF in the hippocampal formation of the rat. Neuroimage 52:55–61CrossRefPubMed
Zurück zum Zitat Yang L, Afroz S, Michelson HB, Goodman JH, Valsamis HA, Ling DSF (2010) Spontaneous epileptiform activity in rat neocortex after controlled cortical impact injury. J Neurotrauma 27:1541–1548CrossRefPubMed Yang L, Afroz S, Michelson HB, Goodman JH, Valsamis HA, Ling DSF (2010) Spontaneous epileptiform activity in rat neocortex after controlled cortical impact injury. J Neurotrauma 27:1541–1548CrossRefPubMed
Zurück zum Zitat Yu S, Kaneko Y, Bae E, Stahl CE, Wang Y, van Loveren H, Sanberg PR, Borlongan CV (2009) Severity of controlled cortical impact traumatic brain injury in rats and mice dictates degree of behavioral deficits. Brain Res 1:157–163CrossRef Yu S, Kaneko Y, Bae E, Stahl CE, Wang Y, van Loveren H, Sanberg PR, Borlongan CV (2009) Severity of controlled cortical impact traumatic brain injury in rats and mice dictates degree of behavioral deficits. Brain Res 1:157–163CrossRef
Metadaten
Titel
Traumatic brain injury causes long-term behavioral changes related to region-specific increases of cerebral blood flow
verfasst von
Bruno Pöttker
Franziska Stöber
Regina Hummel
Frank Angenstein
Konstantin Radyushkin
Jürgen Goldschmidt
Michael K. E. Schäfer
Publikationsdatum
06.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 9/2017
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1452-9

Weitere Artikel der Ausgabe 9/2017

Brain Structure and Function 9/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.