Skip to main content
Erschienen in: Medical Oncology 5/2021

Open Access 01.05.2021 | Original Paper

Development of alternative splicing signature in lung squamous cell carcinoma

verfasst von: Jia-qing Yan, Min Liu, Ying-lin Ma, Kai-di Le, Bin Dong, Guo-hui Li

Erschienen in: Medical Oncology | Ausgabe 5/2021

Abstract

Increasing evidence demonstrated that alternative splicing (AS) plays a vital role in tumorigenesis and clinical outcome of patient. However, systematical analysis of AS in lung squamous cell carcinoma (LUSC) is lacking and greatly necessary. Thus, this study was to systematically estimate the function of AS events served as prognostic indicators in LUSC. Among 31,345 mRNA AS events in 9633 genes, we detected 1996 AS in 1409 genes which have significant connection with overall survival (OS) of LUSC patients. Then, prognostic model based on seven types of AS events was established and we further constructed a combined prognostic model. The Kaplan–Meier curve results suggested that seven types of AS signatures and the combined prognostic model could exhibit robust performance in predicting prognosis. Patients in the high-risk group had significantly shorter OS than those in the low-risk group. The ROC showed all prognostic models had high accuracy and powerful predictive performance with different AUC ranging from 0.837 to 0.978. Moreover, the combined prognostic model had highest performance in risk stratification and predictive accuracy than single prognostic models and had higher accuracy than other mRNA model. Finally, a significant correlation network between survival-related AS genes and prognostic splicing factors (SFs) was established. In conclusion, our study provided several potential prognostic AS models and constructed splicing network between AS and SFs in LUSC, which could be used as potential indicators and treatment targets for LUSC patients.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s12032-021-01490-1.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Lung cancer is one of the common human malignancies and is the leading cause of cancer-associated deaths worldwide, resulting in approximately 1.7 million deaths (18.4%) worldwide in 2018 [1] and about 140,000 deaths per year in the USA in 2019 and 2020 [2, 3]. The non-small cell lung cancer (NSCLC) mainly included lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and large cell lung carcinoma (LCLC) [4]. LUSC accounts for approximately 30% of all lung cancer cases [4]. Unfortunately, Patients tend to be older, typically diagnosed at advanced stage, and lack of effective molecular-targeted drugs [5]. Thus, they have a poor prognosis with five-year survival rate of < 15% [6]. Currently, the pathogenesis and progressive mechanisms of LUSC remain unclear. Though great progress has been made in diagnosis and targeted treatment of lung cancer, its clinical outcome is still unsatisfactory [79]. Therefore, it is necessary to further systematically understand the biological mechanisms in LUSC, which could facilitate the development of target therapy and prognostic biomarkers of LUSC patients.
Alternative splicing (AS) is the process of removing introns from most human multi-exon genes and alternatively including or excluding specific exons. AS of pre-mRNA is one of the most extensive and sophisticated mechanisms to interpret proteome diversity and produce mature mRNAs and protein variants structurally and functionally [10]. In addition to protein diversity, the translation of mRNA isomer was also downregulated by AS events through resulting in degradation of premature stop codon [11]. Hence, AS was an indispensable procedure and alterations in splicing patterns had a close relationship with protein functions. In the past few years, extensive genomic and functional investigations had found that initiation of specific isoforms and splicing defects were driving factors for cancer [12, 13]. For the past few years, accumulating evidence has illustrated that unusual AS events could exert a straight role in the process of biogenesis and deterioration of cancers by involving in cell proliferation, migration, immune escape and other process [14].
Recently, many studies have described the perturbation of AS events in various cancer, including lung cancer. For example, Kong-Beltran et al. observed met exon 14 in lung cancer which could contribute to protein regions' deletion that restricts its kinase catalytic activity [15]. More recently, analyses of AS have also shown prognostic value for a variety of cancer types, including non-small cell lung cancer [7], ovarian cancer [16], breast cancer [17] and so on. Currently, several studies have mainly concentrated on identifying different AS events between cancer tissues and normal controls or prognostic AS events [18, 19]. Nevertheless, few articles systematically reported the LUSC-specific AS events associated with survival of patients.
Moreover, several studies have shown that alteration in splicing factors might facilitate to activate oncogenes and tumor pathways or alternatively destruct the effect of tumor suppressors [20, 21]. Hence, it is imperative to draw a comprehensive regulatory network of SFs [22, 23]. Considering the close connection between AS and SFs and the fact that they are only superficially understood, it is imperative to investigate their prognostic property, as well as the regulatory mechanism in LUSC.
The Cancer Genome Atlas (TCGA) project provides abundant resources, such as Exon, splice, and transcript isoform expression levels, to investigate AS patterns of cancers [24]. We systematically profiled the genome-wide LUSC-specific alternative splicing events from TCGA. The purpose of this study is to explore the roles of alternative splicing events that could be considered as prognostic biomarkers in LUSC. Findings in this study would contribute to exploit novel and appropriate therapeutic treatments for LUSC.

Material and methods

Data curation process

SpliceSeq data of TCGA-LUSC and corresponding clinical information were downloaded from the TCGA data portal (https://​portal.​gdc.​cancer.​gov/​) [24]. SpliceSeq tool, a java-based application, was usually used to unambiguously quantify the mRNA splicing levels of samples in TCGA. A novel value could be calculated by SpliceSeq based on seven types of AS events about each protein-coding gene provided from Ensemble gene database [16, 25]. For the following seven kinds of AS events, the Percent Spliced In (PSI) value was calculated, quantifying splicing event levels are ranging from 0 to 1.

Establishment of prognostic model

A total of 487 LUSC patients were included in this study (Table S1). The PSI value of AS events in samples were collected and subjected to univariate Cox analysis. All the AS events were screened out having P value < 0.05, and these events was considered as a candidate prognosis-related events. We performed the least absolute shrinkage and selection operator (LASSO) Cox regression model using “glmnet R” package to select the most valuable and concise AS events in all AS events filtered in univariate Cox analysis (P < 0.05) and then constructed predictive models based on survival-related AS events by multivariate Cox analysis. Then, Based on the coefficient of each above AS event, each patients' risk score could be calculated by the signature, respectively. Meanwhile, all patients were divided into distinct subgroups based on the median value of risk scores.

Survival analysis

The Kaplan–Meier curve was performed to analyze differential survival. The receiver operating characteristic curves (ROC) were conducted to explore sensitivity and specificity of prognostic signatures using “survivalROC” R package (https://​www.​r-project.​org/​, v.3.5.3). Univariate and multivariate Cox regression analysis were performed to investigate the prognostic independence of AS signature and clinical characteristics using forest plot R package.

Upset plot and splicing factor-regulated network establishment

The Upset intersective plot, a more scalable visualizing diagrams to Venn, was used to explore the interactive sets of those AS events and “UpSet” R package was used to visualize their potential interrelationship. Expression data of the Splicing factors (SFs) were extracted from TCGA-LUSC mRNA-seq data. All SF genes were subjected to univariate Cox analysis and when their P < 0.05, these SFs were considered as the survival-associated splicing factors. The relationship closeness between SFs expression value and AS’s PSI value was calculated by spearman test. Meanwhile, a network of the interaction between these SFs and prognostic AS events was illustrated by Cytoscape 3.7.0 (https://​cytoscape.​org/​).

Results

Overview of AS events in TCGA-LUSC

Integrated AS events were analyzed in 487 TCGA-LUSC data set (Fig. 1a). A total of 31,345 AS events from 9633 genes were detected including 12,416 ES in 5554 genes, 6073 AP in 3369 genes, 5579 AT in 3167 genes, 2675 AA in 1996 genes, 2323 AD in 1722 genes, 2129 RI in 1474 genes, and 150 ME in 144 genes (Fig. 1b). Among them, ES events were the most common type, accounting for more than one-third of all events, followed by AP and AT events, while ME was the least. Notably, the amount of AS events far exceeded the number of genes. Furthermore, a subset of overlapping AS events among the seven types of AS in LUSC was illustrated by UpSet plot diagram (Fig. 1c).

Identification of prognosis-related AS events in LUSC

First of all, we conducted a univariate Cox analysis of the 31,345 AS events in 487 LUSC patients to evaluate the relationship between AS events and overall survival (OS) status in LUSC. Consequently, 1996 AS events within 1409 genes were obviously related to overall survival of LUSC patients (Fig. 2a). As shown in Fig. 2b–h, the top 20 AS events were significantly related to OS among seven types of AS events. Interestingly, some of survival-associated AS genes underwent multiple types of AS events. For example, AA, AD, RI, and ES of ATXN2L and AA, AP, and RI of NPIPB4 were conspicuously related to OS of LUSC patients.

Establishment of prognostic AS signatures for LUSC patients

The important prognostic-related AS events in all AS events in univariate Cox analysis were selected as candidates to select the most significant AS events by LASSO Cox regression model analysis (Fig. 3). Further, several prediction signatures based on these prognostic-associated AS events were constructed by multivariate Cox analyses. Eventually, a combined prognostic model was built integrated from different types of AS events (Table S2). As shown in Fig. 4a–h, Kaplan–Meier curves showed that LUSC patients in high-risk group had appreciably shorter OS than patients in low-risk group, demonstrating that these AS signatures could be powerful biomarkers to distinguish patients’ prognosis. Obviously, the combined prognostic indicator showed better performance than single type of AS events (Fig. 4h). Then, ROC curve was performed to appraise the prognostic efficiency of prognostic AS models. The results show that all signatures had a robust predictive property with AUC values from 0.837 to 0.978 (Fig. 4i). Conceivably, the combined model with all types of AS events had highest efficiency with 0.978 (AUC) than single prognostic models. Furthermore, we also explored the predictive effect of this combined prognostic model for RFS and found it had same powerful prognostic value and high accuracy (AUC = 0.793) in LUSC (Figure S1A-B). The distribution of patients’ risk score, survival status, and expression profiles of all AS models are shown in Fig. 5.

The combined prognostic model exhibit better predictive ability than other model

We compared the predictive ability between our combined prognostic model and other model to verify the superiority of our model [26]. The Kaplan–Meier curve and ROC results showed that other mRNA had significantly predictive ability in LUSC, but our model had higher sensitivity and specificity than other mRNA model (Figure S2). Taken together, our combined prognostic model had superior prognostic value in LUSC patients.
More importantly, extensive dysregulated AS events in many types of cancers are easily programmed by some specific SFs. Hence, an important issue is that whether several key SFs could potentially regulate these prognosis-associated AS events in LUSC. To determine those specific SFs which had close connection with the prognosis-associated AS events in LUSC, univariate Cox analysis of SFs were implemented according to gene expression level of LUSC patients. Consequently, there were 25 SFs obviously related to OS of LUSC patients shown in Table S3. Furthermore, correlations between SFs and prognostic AS events were tested in LUSC using Spearman’s test (Fig. 6a). In correlation networks, 22 SFs (purple dots) were obviously related to 546 prognosis-related AS events, including 202 favorable AS events (green dots) and 344 adverse AS events (red dots). Interestingly, there was a positive correlation (red lines) between majority of poor prognostic AS events (red dots) and SFs (purple dots), while there was a negative correlation (green lines) between majority of favorable prognostic AS events (green dots) and SFs. For example, splicing factors SNRNP48 and DDX39B had adverse survival for LUSC patients (Figs. 6b–c). ES of NADSYN1 and AP of TMEM25 were adverse factors, whereas AT of TNFRSF1A and AT of FBXL12 were related to favorable prognosis. Correlation between SNRNP48 and AT of TNFRSF1A or AP of TMEM25 were shown in dot plots, suggesting high expression of SNRNP48 had positive association with poor overall survival (Fig. 6d–e). Similarly, correlation between DDX39B and ES of NADSYN1 or AT of FBXL12 were shown in dot plots, implicating high expression of DDX39B had negative association with favorable prognosis (Fig. 6f–g).

Discussion

Alternative splicing (AS) is an important process by which a single pre-mRNA precursor generates a large number of mature mRNAs and protein isoforms structurally and functionally [27, 28]. Accumulated evidence revealed that the plasticity of AS participated in cell metastasis, apoptosis, invasion, proliferation, immune evasion, and drug reliance of tumors by promoting cancer cells to produce isoform conversion [2931]. So far, majority of studies focused on the exploration of AS events as biomarker for cancers have demonstrated that several AS events and spliced variants could be indicators to diagnose and predict cancers. For example, Kelley et al. revealed that the aberrant splicing expression of GSN gene had an obviously higher expression in tumor tissues than in adjacent tissues and regulated the HNSCC’s cell proliferation process [32]. Recently, a report suggested that KRAS-4A and KRAS-4B (KRAS isoforms) had significantly related to poor survival of CRC patients, especially microsatellite stable primary CRC [33]. Many studies demonstrated that CD44 could present multiple isoforms through variable mRNA splicing and CD44 isoforms play critical roles in tumor initiation and be considered as potential treatment target in CRC compared with CD44 [34, 35].
Currently, a lot of studies have also reported abnormal AS events that exerted crucial functions in lung cancer by promoting the initiation and progression of lung cancer. For example, a microarray study found differential splicing of MACF1, VEGFA, NUMB, and APP between NSCLC and control tissues in 29 patients [8]. In addition, AS variants were also related to drug sensitivity of lung cancer. It is previously reported that patients with lung adenocarcinoma with carcinogenic mutations at MET exon 14 RNA splice acceptor and donor sites could benefit from treatment with MET inhibitors crizotinib and cabozantinib, identifying a novel therapeutic target for lung adenocarcinoma [9]. Although some researchers have identified several prognostic alternative splicing events in LUAD and LUSC [7], with the development of high-throughput sequencing technique, novel prognosis-related AS events and potentially therapeutic targets needed to be explored further.
Here, we identified AS signatures and established regulatory network between AS events and SFs in LUSC through the analysis of TCGA program to gain systematic and comprehensive perception into RNA splicing patterns. In this study, a total of 1996 AS events were obviously related to LUSC patients' survival. Among the seven types of AS models, AD events showed the highest predictive power in survival prediction of LUSC patients than other six types of AS models. Moreover, we constructed a combined prognostic model composed of different splicing patterns of 14 genes including PLEKHG5, FANCA, ZMYND8 and so on. The combined prognostic model had higher predictive performance than any single type in seven AS models. In recent studies, some of these genes have been reported to exert carcinogenic or suppressive roles in cancers. For example, PLEKHG5 is a novel prognostic biomarker in glioma patients and could promote glioma migration and invasion [36]. FANCA was a prognostic factor in LUAD [37].
What's more, we identified some key SFs which might exert essential roles in the development and progression of cancers through modulating their corresponding AS events. With convincing results in this study that there was a positively correlation between most of poor prognosis-related AS events and SFs, while there was a negatively correlation between most of favorable prognosis-related AS events and SFs in LUSC, tt was well known that splicing factors could precisely regulate the splicing process by combining with specific genes’ the splice-regulatory sequence elements. This study provided an efficient approach to elucidate the underlying mechanism of AS events involved in survival of LUSC patients.
However, there are also some limitations in this study. Firstly, we could not verify the prognostic value of our combined prognostic model in other databases due to lack of available data. Secondly, the specific and valuable mechanisms of AS events and key SFs network need to be further explored. Finally, it is also need to further explore the interaction and regulation of AS events with other levels such as somatic mutation, copy number variation and DNA methylation.
In summary, we analyzed prognosis-related AS events and established AS signatures to predict survival of LUSC patients. Besides, an interesting splicing correlation network offered novel perceptions into how abnormal AS events were potentially modulated via pivotal SFs. These prognosis-related AS events and SFs provided us many valuable therapeutic targets for future validations and ultimately clarified the underlying mechanisms of AS in LUSC tumorigenesis.

Declarations

Conflict of interest

There are no conflicts to declare.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2018;68:394–424.CrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2018;68:394–424.CrossRef
2.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA A Cancer J Clin. 2019;69:7–34.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA A Cancer J Clin. 2019;69:7–34.CrossRef
3.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA A Cancer J Clin. 2020;70:7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA A Cancer J Clin. 2020;70:7–30.CrossRef
4.
Zurück zum Zitat Sorber L, Zwaenepoel K, Deschoolmeester V, Van Schil PE, Van Meerbeeck J, Lardon F, Rolfo C, Pauwels P. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer (Amst, Neth). 2017;107:100–7.CrossRef Sorber L, Zwaenepoel K, Deschoolmeester V, Van Schil PE, Van Meerbeeck J, Lardon F, Rolfo C, Pauwels P. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer (Amst, Neth). 2017;107:100–7.CrossRef
5.
Zurück zum Zitat Derman BA, Mileham KF, Bonomi PD, Batus M, Fidler MJ. Treatment of advanced squamous cell carcinoma of the lung: a review. Transl Lung Cancer Res. 2015;4:524–32.PubMedPubMedCentral Derman BA, Mileham KF, Bonomi PD, Batus M, Fidler MJ. Treatment of advanced squamous cell carcinoma of the lung: a review. Transl Lung Cancer Res. 2015;4:524–32.PubMedPubMedCentral
6.
Zurück zum Zitat Chen WJ, Gan TQ, Qin H, Huang SN, Yang LH, Fang YY, Li ZY, Pan LJ, Chen G. Implication of downregulation and prospective pathway signaling of microRNA-375 in lung squamous cell carcinoma. Pathol Res Pract. 2017;213:364–72.CrossRef Chen WJ, Gan TQ, Qin H, Huang SN, Yang LH, Fang YY, Li ZY, Pan LJ, Chen G. Implication of downregulation and prospective pathway signaling of microRNA-375 in lung squamous cell carcinoma. Pathol Res Pract. 2017;213:364–72.CrossRef
7.
Zurück zum Zitat Li Y, Sun N, Lu Z, Sun S, Huang J, Chen Z, He J. Prognostic alternative mRNA splicing signature in non-small cell lung cancer. Cancer Lett. 2017;393:40–51.CrossRef Li Y, Sun N, Lu Z, Sun S, Huang J, Chen Z, He J. Prognostic alternative mRNA splicing signature in non-small cell lung cancer. Cancer Lett. 2017;393:40–51.CrossRef
8.
Zurück zum Zitat Misquitta-Ali CM, Cheng E, O’Hanlon D, Liu N, McGlade CJ, Tsao MS, Blencowe BJ. Global profiling and molecular characterization of alternative splicing events misregulated in lung cancer. Mol Cell Biol. 2011;31:138–50.CrossRef Misquitta-Ali CM, Cheng E, O’Hanlon D, Liu N, McGlade CJ, Tsao MS, Blencowe BJ. Global profiling and molecular characterization of alternative splicing events misregulated in lung cancer. Mol Cell Biol. 2011;31:138–50.CrossRef
9.
Zurück zum Zitat Paik PK, Drilon A, Fan PD, Yu H, Rekhtman N, Ginsberg MS, Borsu L, Schultz N, Berger MF, Rudin CM, Ladanyi M. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5:842–9.CrossRef Paik PK, Drilon A, Fan PD, Yu H, Rekhtman N, Ginsberg MS, Borsu L, Schultz N, Berger MF, Rudin CM, Ladanyi M. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5:842–9.CrossRef
10.
Zurück zum Zitat Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463:457–63.CrossRef Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463:457–63.CrossRef
11.
Zurück zum Zitat Ge Y, Porse BT. The functional consequences of intron retention: alternative splicing coupled to NMD as a regulator of gene expression. BioEssays. 2014;36:236–43.CrossRef Ge Y, Porse BT. The functional consequences of intron retention: alternative splicing coupled to NMD as a regulator of gene expression. BioEssays. 2014;36:236–43.CrossRef
12.
Zurück zum Zitat Venables JP. Aberrant and alternative splicing in cancer. Can Res. 2004;64:7647–54.CrossRef Venables JP. Aberrant and alternative splicing in cancer. Can Res. 2004;64:7647–54.CrossRef
13.
Zurück zum Zitat Kim E, Goren A, Ast G. Insights into the connection between cancer and alternative splicing. Trends Genet. 2008;24:7–10.CrossRef Kim E, Goren A, Ast G. Insights into the connection between cancer and alternative splicing. Trends Genet. 2008;24:7–10.CrossRef
14.
Zurück zum Zitat Qi F, Li Y, Yang X, Wu YP, Lin LJ, Liu XM. Significance of alternative splicing in cancer cells. Chin Med J. 2020;133:221–8.CrossRef Qi F, Li Y, Yang X, Wu YP, Lin LJ, Liu XM. Significance of alternative splicing in cancer cells. Chin Med J. 2020;133:221–8.CrossRef
15.
Zurück zum Zitat Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N, Holcomb T, Pujara K, Stinson J, Fu L, Severin C, Rangell L, Schwall R, Amler L, Wickramasinghe D, Yauch R. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Can Res. 2006;66:283–9.CrossRef Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N, Holcomb T, Pujara K, Stinson J, Fu L, Severin C, Rangell L, Schwall R, Amler L, Wickramasinghe D, Yauch R. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Can Res. 2006;66:283–9.CrossRef
16.
Zurück zum Zitat Zhu J, Chen Z, Yong L. Systematic profiling of alternative splicing signature reveals prognostic predictor for ovarian cancer. Gynecol Oncol. 2018;148:368–74.CrossRef Zhu J, Chen Z, Yong L. Systematic profiling of alternative splicing signature reveals prognostic predictor for ovarian cancer. Gynecol Oncol. 2018;148:368–74.CrossRef
17.
Zurück zum Zitat Bjorklund SS, Panda A, Kumar S, Seiler M, Robinson D, Gheeya J, Yao M, Alnaes GIG, Toppmeyer D, Riis M, Naume B, Borresen-Dale AL, Kristensen VN, Ganesan S, Bhanot G. Widespread alternative exon usage in clinically distinct subtypes of invasive ductal carcinoma. Sci Rep. 2017;7:5568.CrossRef Bjorklund SS, Panda A, Kumar S, Seiler M, Robinson D, Gheeya J, Yao M, Alnaes GIG, Toppmeyer D, Riis M, Naume B, Borresen-Dale AL, Kristensen VN, Ganesan S, Bhanot G. Widespread alternative exon usage in clinically distinct subtypes of invasive ductal carcinoma. Sci Rep. 2017;7:5568.CrossRef
18.
Zurück zum Zitat Eswaran J, Horvath A, Godbole S, Reddy SD, Mudvari P, Ohshiro K, Cyanam D, Nair S, Fuqua SA, Polyak K, Florea LD, Kumar R. RNA sequencing of cancer reveals novel splicing alterations. Sci Rep. 2013;3:1689.CrossRef Eswaran J, Horvath A, Godbole S, Reddy SD, Mudvari P, Ohshiro K, Cyanam D, Nair S, Fuqua SA, Polyak K, Florea LD, Kumar R. RNA sequencing of cancer reveals novel splicing alterations. Sci Rep. 2013;3:1689.CrossRef
19.
Zurück zum Zitat Lin P, He R-q, Ma F-c, Liang L, He Y, Yang H, Dang Y-w, Chen G. Systematic analysis of survival-associated alternative splicing signatures in gastrointestinal pan-adenocarcinomas. EBioMedicine. 2018;34:46–60.CrossRef Lin P, He R-q, Ma F-c, Liang L, He Y, Yang H, Dang Y-w, Chen G. Systematic analysis of survival-associated alternative splicing signatures in gastrointestinal pan-adenocarcinomas. EBioMedicine. 2018;34:46–60.CrossRef
20.
Zurück zum Zitat Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer. 2016;16:413–30.CrossRef Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer. 2016;16:413–30.CrossRef
21.
Zurück zum Zitat Salton M, Kasprzak WK, Voss T, Shapiro BA, Poulikakos PI, Misteli T. Inhibition of vemurafenib-resistant melanoma by interference with pre-mRNA splicing. Nat Commun. 2015;6:7103.CrossRef Salton M, Kasprzak WK, Voss T, Shapiro BA, Poulikakos PI, Misteli T. Inhibition of vemurafenib-resistant melanoma by interference with pre-mRNA splicing. Nat Commun. 2015;6:7103.CrossRef
22.
Zurück zum Zitat Kedzierska H, Piekielko-Witkowska A. Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer. Cancer Lett. 2017;396:53–65.CrossRef Kedzierska H, Piekielko-Witkowska A. Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer. Cancer Lett. 2017;396:53–65.CrossRef
23.
Zurück zum Zitat Ratnadiwakara M, Mohenska M, Anko ML. Splicing factors as regulators of miRNA biogenesis-links to human disease. Semin Cell Dev Biol. 2018;79:113–22.CrossRef Ratnadiwakara M, Mohenska M, Anko ML. Splicing factors as regulators of miRNA biogenesis-links to human disease. Semin Cell Dev Biol. 2018;79:113–22.CrossRef
24.
Zurück zum Zitat Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn, Pol). 2015;19:A68-77. Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn, Pol). 2015;19:A68-77.
25.
Zurück zum Zitat Ryan MC, Cleland J, Kim R, Wong WC, Weinstein JN. SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts. Bioinform (Oxf, Engl). 2012;28:2385–7.CrossRef Ryan MC, Cleland J, Kim R, Wong WC, Weinstein JN. SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts. Bioinform (Oxf, Engl). 2012;28:2385–7.CrossRef
26.
Zurück zum Zitat Gao M, Kong W, Huang Z, Xie Z. Identification of key genes related to lung squamous cell carcinoma using bioinformatics analysis. Int J Mol Sci. 2020;21(8):2994.CrossRef Gao M, Kong W, Huang Z, Xie Z. Identification of key genes related to lung squamous cell carcinoma using bioinformatics analysis. Int J Mol Sci. 2020;21(8):2994.CrossRef
27.
Zurück zum Zitat Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72:291–336.CrossRef Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72:291–336.CrossRef
28.
Zurück zum Zitat Jin Y, Dong H, Shi Y, Bian L. Mutually exclusive alternative splicing of pre-mRNAs. Wiley Interdiscip Rev RNA. 2018;9:e1468.CrossRef Jin Y, Dong H, Shi Y, Bian L. Mutually exclusive alternative splicing of pre-mRNAs. Wiley Interdiscip Rev RNA. 2018;9:e1468.CrossRef
29.
Zurück zum Zitat Oltean S, Bates DO. Hallmarks of alternative splicing in cancer. Oncogene. 2014;33:5311–8.CrossRef Oltean S, Bates DO. Hallmarks of alternative splicing in cancer. Oncogene. 2014;33:5311–8.CrossRef
30.
Zurück zum Zitat Ghigna C, Riva S, Biamonti G. Alternative splicing of tumor suppressors and oncogenes. Cancer Treat Res. 2013;158:95–117.CrossRef Ghigna C, Riva S, Biamonti G. Alternative splicing of tumor suppressors and oncogenes. Cancer Treat Res. 2013;158:95–117.CrossRef
31.
Zurück zum Zitat Spaethling JM, Sanchez-Alavez M, Lee J, Xia FC, Dueck H, Wang W, Fisher SA, Sul JY, Seale P, Kim J, Bartfai T, Eberwine J. Single-cell transcriptomics and functional target validation of brown adipocytes show their complex roles in metabolic homeostasis. FASEB J. 2016;30:81–92.CrossRef Spaethling JM, Sanchez-Alavez M, Lee J, Xia FC, Dueck H, Wang W, Fisher SA, Sul JY, Seale P, Kim J, Bartfai T, Eberwine J. Single-cell transcriptomics and functional target validation of brown adipocytes show their complex roles in metabolic homeostasis. FASEB J. 2016;30:81–92.CrossRef
32.
Zurück zum Zitat Kelley DZ, Flam EL, Guo T, Danilova LV, Zamuner FT, Bohrson C, Considine M, Windsor EJ, Bishop JA, Zhang C, Koch WM, Sidransky D, Westra WH, Chung CH, Califano JA, Wheelan S, Favorov AV, Florea L, Fertig EJ, Gaykalova DA. Functional characterization of alternatively spliced GSN in head and neck squamous cell carcinoma. Transl Res. 2018;202:109–19.CrossRef Kelley DZ, Flam EL, Guo T, Danilova LV, Zamuner FT, Bohrson C, Considine M, Windsor EJ, Bishop JA, Zhang C, Koch WM, Sidransky D, Westra WH, Chung CH, Califano JA, Wheelan S, Favorov AV, Florea L, Fertig EJ, Gaykalova DA. Functional characterization of alternatively spliced GSN in head and neck squamous cell carcinoma. Transl Res. 2018;202:109–19.CrossRef
33.
Zurück zum Zitat Eilertsen IA, Sveen A, Stromme JM, Skotheim RI, Nesbakken A, Lothe RA. Alternative splicing expands the prognostic impact of KRAS in microsatellite stable primary colorectal cancer. Int J Cancer. 2019;144:841–7.CrossRef Eilertsen IA, Sveen A, Stromme JM, Skotheim RI, Nesbakken A, Lothe RA. Alternative splicing expands the prognostic impact of KRAS in microsatellite stable primary colorectal cancer. Int J Cancer. 2019;144:841–7.CrossRef
34.
Zurück zum Zitat Zeilstra J, Joosten SP, van Andel H, Tolg C, Berns A, Snoek M, van de Wetering M, Spaargaren M, Clevers H, Pals ST. Stem cell CD44v isoforms promote intestinal cancer formation in Apc(min) mice downstream of Wnt signaling. Oncogene. 2014;33:665–70.CrossRef Zeilstra J, Joosten SP, van Andel H, Tolg C, Berns A, Snoek M, van de Wetering M, Spaargaren M, Clevers H, Pals ST. Stem cell CD44v isoforms promote intestinal cancer formation in Apc(min) mice downstream of Wnt signaling. Oncogene. 2014;33:665–70.CrossRef
35.
Zurück zum Zitat Guo W, Frenette PS. Alternative CD44 splicing in intestinal stem cells and tumorigenesis. Oncogene. 2014;33:537–8.CrossRef Guo W, Frenette PS. Alternative CD44 splicing in intestinal stem cells and tumorigenesis. Oncogene. 2014;33:537–8.CrossRef
36.
Zurück zum Zitat Qian M, Chen Z, Wang S, Guo X, Zhang Z, Qiu W, Gao X, Xu J, Zhao R, Xue H, Li G. PLEKHG5 is a novel prognostic biomarker in glioma patients. Int J Clin Oncol. 2019;24:1350–8.CrossRef Qian M, Chen Z, Wang S, Guo X, Zhang Z, Qiu W, Gao X, Xu J, Zhao R, Xue H, Li G. PLEKHG5 is a novel prognostic biomarker in glioma patients. Int J Clin Oncol. 2019;24:1350–8.CrossRef
37.
Zurück zum Zitat Sanada H, Seki N, Mizuno K, Misono S, Uchida A, Yamada Y, Moriya S, Kikkawa N, Machida K, Kumamoto T, Suetsugu T, Inoue H. Involvement of dual strands of miR-143 (miR-143-5p and miR-143-3p) and their target oncogenes in the molecular pathogenesis of lung adenocarcinoma. Int J Mol Sci. 2019;20:4482.CrossRef Sanada H, Seki N, Mizuno K, Misono S, Uchida A, Yamada Y, Moriya S, Kikkawa N, Machida K, Kumamoto T, Suetsugu T, Inoue H. Involvement of dual strands of miR-143 (miR-143-5p and miR-143-3p) and their target oncogenes in the molecular pathogenesis of lung adenocarcinoma. Int J Mol Sci. 2019;20:4482.CrossRef
Metadaten
Titel
Development of alternative splicing signature in lung squamous cell carcinoma
verfasst von
Jia-qing Yan
Min Liu
Ying-lin Ma
Kai-di Le
Bin Dong
Guo-hui Li
Publikationsdatum
01.05.2021
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 5/2021
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-021-01490-1

Weitere Artikel der Ausgabe 5/2021

Medical Oncology 5/2021 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.