Skip to main content
Erschienen in: BMC Surgery 1/2023

Open Access 01.12.2023 | Research

Different lumbar fusion techniques for lumbar spinal stenosis: a Bayesian network meta-analysis

verfasst von: Wei Li, Haibin Wei, Ran Zhang

Erschienen in: BMC Surgery | Ausgabe 1/2023

Abstract

Objective

To comprehensively compare and assess the effects of different lumbar fusion techniques in patients with lumbar spinal stenosis (LSS).

Methods

PubMed, Embase, Cochrane Library, and Web of Science databases were systematically searched up to December 24, 2022 in this network meta-analysis. Outcomes were pain (pain, low back pain, and leg pain), Japanese Orthopaedic Association (JOA), Oswestry Disability Index (ODI), complications, reoperation, and fusion. Network plots illustrated the direct and indirect comparisons of different fusion techniques for the outcomes. League tables showed the comparisons of any two fusion techniques, based on both direct and indirect evidence. The efficacy of each fusion technique for LSS was ranked by rank probabilities.

Results

Totally 29 studies involving 2,379 patients were eligible. For pain, percutaneous endoscopic transforaminal lumbar interbody fusion (Endo-TLIF) was most likely to be the best technique, followed by minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF), extreme lateral interbody fusion (XLIF), and transforaminal lumbar interbody fusion (TLIF). Percutaneous endoscopic posterior lumbar interbody fusion (Endo-PLIF) had the greatest likelihood to be the optimal technique for low back pain, followed sequentially by MIS-TLIF, minimally invasive posterior lumbar interbody fusion (MIS-PLIF), XLIF, Endo-TLIF, TLIF, oblique lumbar interbody fusion (OLIF), posterior lumbar interbody fusion (PLIF), and posterolateral lumbar fusion (PLF). MIS-PLIF was ranked the most effective technique concerning leg pain, followed by Endo-TLIF, MIS-TLIF, TLIF, Endo-PLIF, PLIF, OLIF, PLF, and XLIF. As regards JOA scores, Endo-TLIF had the maximum probability to be the best technique, followed by MIS-TLIF and TLIF. Endo-PLIF had the greatest likelihood to be the optimum technique for complications, followed by TLIF, MIS-TLIF, Endo-TLIF, OLIF, and XLIF.

Conclusion

Minimally invasive fusion techniques may be effective in the treatment of LSS, compared with traditional techniques. Minimally invasive techniques were likely non-inferior with regards to postoperative complications.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12893-023-02242-w.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
LSS
Lumbar spinal stenosis
PLF
Posterolateral lumbar fusion
PLIF
Posterior lumbar interbody fusion
TLIF
Transforaminal lumbar interbody fusion
MIS
Minimally invasive surgery
Endo-LIF
Endoscopic lumbar interbody fusion
OLIF
Oblique lumbar interbody fusion
MIS-TLIF
Minimally invasive transforaminal lumbar interbody fusion
MIS-PLIF
Minimally invasive posterior lumbar interbody fusion
MIS-PLF
Minimally invasive posterolateral lumbar fusion
XLIF
Extreme lateral interbody fusion
Endo-PLIF
Endoscopic posterior lumbar interbody fusion
Endo-TLIF
Endoscopic transforaminal lumbar interbody fusion
JOA
Japanese Orthopaedic Association
ODI
Oswestry Disability Index
RCTs
Randomized controlled trials
BMI
Body mass index
FU
Follow-up time
QA
Quality assessment

Introduction

Lumbar spinal stenosis (LSS) refers to “the narrowing of the spinal canal, lateral recesses, or intervertebral foramina, which may cause bone or soft tissue to compress nerve roots” in the lumbar spine [1]. This frequently occurring degenerative disease is characterized by pain and neurogenic claudication [2], resulting in spinal degeneration as individuals age [3]. LSS can lead to substantial pain and disability, and greatly reduce the quality of life [4]. Besides, it may increase the risk of cardiovascular and neurodegenerative diseases [5].
Surgical intervention is necessary when conservative treatment is not effective. Approximately 600,000 LSS surgeries are performed annually in the United States [6]. Posterolateral lumbar fusion (PLF), posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF) are commonly used surgical approaches in the treatment of LSS [710]. With the development of minimally invasive surgery (MIS), MIS-TLIF has been reported to be a safe procedure with satisfactory outcomes and acceptable complications when compared with TLIF [11]. In recent years, percutaneous endoscopic lumbar interbody fusion (Endo-LIF), a new technology and a research hotspot, achieves less surgical trauma, improves surgical visualization, and enhances recovery after surgery [12, 13]. It was found that patients undergoing oblique lumbar interbody fusion (OLIF) had comparable clinical outcomes to those undergoing minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) [14]. Compared with open PLIF, percutaneous endoscopic posterior lumbar interbody fusion (Endo-PLIF) was less invasive and promoted postoperative recovery, despite longer operation time, as shown by a previous study [15]. Another study illustrated that minimally invasive posterior lumbar interbody fusion (MIS-PLIF) exhibited similar effects to PLIF on 1‐year surgical outcomes [Visual Analog Scale and Oswestry Disability Index (ODI)] [16]. At present, only head-to-head comparisons are performed among various fusion techniques, some fusion techniques are not compared directly, and the effects of different fusion techniques for LSS patients remain unclear, which requires a network meta-analysis for simultaneous comparison by considering direct and indirect evidence.
This network meta-analysis aimed to comprehensively compare and assess the effects of different lumbar fusion techniques on pain (pain, low back pain, and leg pain), Japanese Orthopaedic Association (JOA), ODI, complications, reoperation, and fusion in patients with LSS, using both direct and indirect evidence.

Methods

Search strategy

Relevant published studies were retrieved from PubMed, Embase, Cochrane Library, and Web of Science databases up to December 24, 2022. The comprehensive search was conducted by two reviewers independently, and they discussed with each other when disagreements arose. English search terms consisted of “lumbar spinal stenosis” AND “LSS” AND “spinal stenosis” AND “degenerative disease of the lumbar spine” AND “lumbar degenerative disease” AND “spondylolisthesis” AND “lumbar fusion” AND “spinal fusion” AND “anterior lumbar interbody fusion” AND “ALIF” AND “posterior lumbar fusion” AND “posterolateral lumbar fusion” AND “PLF” AND “posterior lumbar interbody fusion” AND “PLIF” AND “transforaminal lumbar interbody fusion” AND “TLIF” AND “lateral interbody fusion” AND “LLIF” AND “lateral lumbar interbody fusion” AND “extreme lateral interbody fusion” AND “XLIF” AND “direct lateral interbody fusion” AND “DLIF” AND “transpsoas lumbar interbody fusion” AND “trans-psoas lumbar interbody fusion” AND “oblique lumbar interbody fusion” AND “OLIF” AND “minimally invasive transforaminal lumbar interbody fusion” AND “MIS-TLIF”. Endnote X9 (Clarivate Analytics) was applied for primary screening, based on titles and abstracts. Subsequently, full texts were read to select eligible studies. This Bayesian network meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines.

Study selection

The inclusion criteria were as follows: (1) studies on LSS patients with fusion levels ≤ 3; (2) studies comparing at least two of different lumbar fusion techniques for spinal level L3-L5: PLF, PLIF, TLIF, minimally invasive posterolateral lumbar fusion (MIS-PLF), MIS-PLIF, MIS-TLIF, extreme lateral interbody fusion (XLIF), OLIF, Endo-PLIF, percutaneous endoscopic transforaminal lumbar interbody fusion (Endo-TLIF), and circumferential fusion; (3) studies on at least one of the following outcomes: pain (pain, low back pain, leg pain) scores, JOA scores, ODI scores, complications, reoperation, and fusion; and (4) randomized controlled trials (RCTs) or cohort studies.
The exclusion criteria were as follows: (1) studies which had incomplete data or whose data could not be extracted; (2) animal experiments; (3) case reports, meeting aibstracts, letters, reviews, meta-analyses; or (4) studies not published in English.

Data extraction

Two reviewers (HW and RZ) independently extracted data from the qualified studies. The data included the first author, year of publication, country, study design, population, group, sample size (N), sex (male/female), age (years), body mass index (BMI, kg/m2), spinal level, fusion level, follow-up time (FU), quality assessment (QA), and outcome. A third author (WL) resolved the differences that arose.

Quality assessment

The quality of RCTs was assessed using the modified Jadad scale [17] in terms of random sequence generation, randomization concealment, blinding, and withdrawals and dropouts, with 1–3 as low quality and 4–7 as high quality. The Newcastle–Ottawa scale (NOS) [18] was applied for the quality evaluation of cohort studies based on study population selection, inter-group comparability and outcome measurement, with 0–3 as poor quality, 4–6 as fair quality, and 7–9 as good quality.

Statistical analysis

This network meta-analysis was conducted using a Bayesian framework and a Monte Carlo Markov Chain (MCMC) model. The number of model chains was 4, the number of initial iterations was 20,000, the number of updated iterations was 50,000, and the step size was 1. Heterogeneity indicated the overall degree of difference in the same pair of comparisons, with the I2 statistic < 25% as low heterogeneity, 25–50% as moderate heterogeneity, and > 50% as high heterogeneity. Consistency referred to the statistical consistency between direct and indirect effect sizes for the same comparison. The deviation information criterions (DICs) of the consistency model and the non-consistency model were compared, and a smaller difference suggested a better fit. The absolute value of the difference in the DICs within 5 denoted consistency between indirect and direct evidence. Compared with a frequentist network meta-analysis, a Bayesian network meta-analysis has the following advantages: (1) a Bayesian approach can not only effectively integrate data and flexibly build models, but also use the obtained posterior probability to rank all interventions participating in the comparison and distinguish comparative advantages and disadvantages, while a frequentist method can only rely on the effect size and its 95% confidence interval (CI) obtained by pairwise comparison in ranking; and (2) since a frequentist approach uses the maximum likelihood method in parameter estimation, which estimates the maximum likelihood function through continuous iteration, it is prone to instability and biased results, while a Bayesian approach does not have this problem, so its estimated values are more accurate than those of a frequentist approach [19].
Network plots illustrated the direct and indirect comparisons of different fusion techniques for the outcomes. For pain, JOA scores and ODI scores, weighted mean differences (WMDs) and 95% credibility intervals (CrIs) were shown; for complications, reoperation and fusion rates, relative risks (RRs) and 95%CrIs were reported. WMDs or RRs and 95%CrIs of all direct and indirect comparisons were presented in forest plots. League tables presented the comparisons of any two fusion techniques, based on both direct and indirect evidence. Through rank probabilities, the efficacy of each fusion technique for LSS was exhibited and ranked. Statistically significant differences (i.e. WMDs/RRs/CrIs) for the comparison of therapeutic effects of different lumbar fusion approaches indicated that one fusion technique was significantly more effective than another fusion technique. Rank probabilities illustrated the comparative advantages of fusion approaches by ranking these approaches from the highest priority to lowest priority, regardless of whether there were statistically significant differences in therapeutic effects between various methods [20]. Statistical analysis was performed using STATA 15.1 (Stata Corporation, College Station, TX, USA) and R 4.1.3 (R Foundation for Statistical Computing, Vienna, Austria).

Results

Study characteristics

A total of 12,206 studies were identified from PubMed (n = 2,364), Embase (n = 2,953), Web of Science (n = 5,791), and Cochrane Library (n = 1,098). After duplicate removal, 7,609 studies were screened based on titles and abstracts, and then 447 studies were used for full-text screening. In the end, 29 studies [13, 15, 2147] involving 2,379 patients were eligible for this network meta-analysis. Figure 1 describes the process of study selection. Of these included studies, 27 were cohort studies, with 10 of fair quality and 17 of good quality; 2 were RCTs, with 1 of low quality and 1 of high quality. Eleven fusion techniques were involved: PLF for 103 patients, PLIF for 283 patients, TLIF for 545 patients, MIS-PLF for 43 patients, MIS-PLIF for 67 patients, MIS-TLIF for 724 patients, XLIF for 152 patients, OLIF for 185 patients, Endo-PLIF for 69 patients, Endo-TLIF for 175 patients, and circumferential fusion for 33 patients. The year of publication ranged from 2007 to 2022. Baseline characteristics of the included studies are shown in Supplementary Table 1.

Network meta-analysis for pain

Pain

Four studies with 245 patients provided data on pain, involving 4 fusion techniques: Endo-TLIF, MIS-TLIF, TLIF, and XLIF (Fig. 2a). No significant differences were observed in pain between MIS-TLIF and Endo-TLIF, between TLIF and MIS-TLIF, and between XLIF and MIS-TLIF in the forest plot (Fig. 3a). According to the league table, comparable pain scores were shown in patients undergoing any two of the fusion techniques (Table 1). The rank probabilities illustrated that for pain, Endo-TLIF was most likely to be the best technique, followed by MIS-TLIF, XLIF and TLIF (Table 2).
Table 1
League tables of different lumbar fusion techniques for outcomes in LSS
Pain
 
Endo-TLIF
MIS-TLIF
TLIF
XLIF
       
 Endo-TLIF
Endo-TLIF
0.04 (-2.95, 3.02)
1.18 (-2.49, 4.83)
1.15 (-3.30, 5.60)
       
 MIS-TLIF
-0.04 (-3.02, 2.95)
MIS-TLIF
1.14 (-0.99, 3.25)
1.11 (-2.19, 4.39)
       
 TLIF
-1.18 (-4.83, 2.49)
-1.14 (-3.25, 0.99)
TLIF
-0.03 (-3.96, 3.90)
       
 XLIF
-1.15 (-5.60, 3.30)
-1.11 (-4.39, 2.19)
0.03 (-3.90, 3.96)
XLIF
       
Low back pain
 
Endo-PLIF
Endo-TLIF
MIS-PLIF
MIS-TLIF
OLIF
PLF
PLIF
TLIF
XLIF
  
 Endo-PLIF
Endo-PLIF
0.21 (-0.98, 1.38)
0.09 (-1.82, 2.01)
0.14 (-0.80, 1.08)
0.37 (-0.97, 1.72)
1.79 (-0.23, 3.79)
0.39 (-0.55, 1.33)
0.32 (-0.84, 1.49)
0.17 (-1.37, 1.77)
  
 Endo-TLIF
-0.21 (-1.38, 0.98)
Endo-TLIF
-0.12 (-2.03, 1.81)
-0.07 (-1.01, 0.89)
0.16 (-1.18, 1.53)
1.58 (-0.43, 3.58)
0.18 (-0.75, 1.12)
0.11 (-1.04, 1.29)
-0.04 (-1.57, 1.58)
  
 MIS-PLIF
-0.09 (-2.01, 1.82)
0.12 (-1.81, 2.03)
MIS-PLIF
0.05 (-1.83, 1.92)
0.28 (-1.84, 2.39)
1.69 (-0.75, 4.14)
0.31 (-1.38, 1.97)
0.23 (-1.78, 2.23)
0.08 (-2.18, 2.38)
  
 MIS-TLIF
-0.14 (-1.08, 0.80)
0.07 (-0.89, 1.01)
-0.05 (-1.92, 1.83)
MIS-TLIF
0.23 (-0.74, 1.20)
1.64 (-0.33, 3.61)
0.25 (-0.60, 1.10)
0.18 (-0.51, 0.87)
0.03 (-1.21, 1.32)
  
 OLIF
-0.37 (-1.72, 0.97)
-0.16 (-1.53, 1.18)
-0.28 (-2.39, 1.84)
-0.23 (-1.20, 0.74)
OLIF
1.42 (-0.78, 3.60)
0.02 (-1.27, 1.30)
-0.05 (-0.73, 0.64)
-0.20 (-1.76, 1.42)
  
 PLF
-1.79 (-3.79, 0.23)
-1.58 (-3.58, 0.43)
-1.69 (-4.14, 0.75)
-1.64 (-3.61, 0.33)
-1.42 (-3.60, 0.78)
PLF
-1.39 (-3.18, 0.39)
-1.46 (-3.54, 0.63)
-1.61 (-3.93, 0.76)
  
 PLIF
-0.39 (-1.33, 0.55)
-0.18 (-1.12, 0.75)
-0.3 (-1.97, 1.38)
-0.25 (-1.10, 0.60)
-0.02 (-1.30, 1.27)
1.39 (-0.39, 3.18)
PLIF
-0.07 (-1.16, 1.03)
-0.22 (-1.71, 1.33)
  
 TLIF
-0.32 (-1.49, 0.84)
-0.11 (-1.29, 1.04)
-0.23 (-2.23, 1.78)
-0.18 (-0.88, 0.51)
0.05 (-0.64, 0.73)
1.46 (-0.63, 3.54)
0.07 (-1.03, 1.16)
TLIF
-0.15 (-1.56, 1.31)
  
 XLIF
-0.17 (-1.77, 1.37)
0.04 (-1.58, 1.57)
-0.08 (-2.38, 2.18)
-0.03 (-1.32, 1.21)
0.20 (-1.42, 1.76)
1.61 (-0.76, 3.93)
0.22 (-1.33, 1.71)
0.15 (-1.31, 1.56)
XLIF
  
Leg pain
 
Endo-PLIF
Endo-TLIF
MIS-PLIF
MIS-TLIF
OLIF
PLF
PLIF
TLIF
XLIF
  
 Endo-PLIF
Endo-PLIF
-0.25 (-1.46, 0.96)
-0.49 (-2.56, 1.60)
-0.16 (-1.12, 0.79)
0.13 (-1.27, 1.48)
0.41 (-1.3, 2.14)
0.01 (-0.94, 0.98)
-0.16 (-1.35, 1.01)
1.24 (-1.15, 3.61)
  
 Endo-TLIF
0.25 (-0.96, 1.46)
Endo-TLIF
-0.24 (-2.30, 1.84)
0.09 (-0.87, 1.05)
0.39 (-1.01, 1.73)
0.67 (-1.04, 2.39)
0.27 (-0.68, 1.23)
0.09 (-1.10, 1.27)
1.49 (-0.90, 3.86)
  
 MIS-PLIF
0.49 (-1.60, 2.56)
0.24 (-1.84, 2.30)
MIS-PLIF
0.33 (-1.72, 2.35)
0.62 (-1.66, 2.85)
0.90 (-1.42, 3.25)
0.50 (-1.35, 2.35)
0.33 (-1.83, 2.46)
1.73 (-1.26, 4.70)
  
 MIS-TLIF
0.16 (-0.79, 1.12)
-0.09 (-1.05, 0.87)
-0.33 (-2.35, 1.72)
MIS-TLIF
0.29 (-0.72, 1.26)
0.58 (-1.09, 2.25)
0.18 (-0.69, 1.05)
0.00 (-0.70, 0.70)
1.40 (-0.76, 3.57)
  
 OLIF
-0.13 (-1.48, 1.27)
-0.39 (-1.73, 1.01)
-0.62 (-2.85, 1.66)
-0.29 (-1.26, 0.72)
OLIF
0.29 (-1.62, 2.26)
-0.12 (-1.40, 1.23)
-0.29 (-0.98, 0.43)
1.11 (-1.28, 3.49)
  
 PLF
-0.41 (-2.14, 1.3)
-0.67 (-2.39, 1.04)
-0.90 (-3.25, 1.42)
-0.58 (-2.25, 1.09)
-0.29 (-2.26, 1.62)
PLF
-0.40 (-1.83, 1.03)
-0.58 (-2.40, 1.23)
0.82 (-1.94, 3.56)
  
 PLIF
-0.01 (-0.98, 0.94)
-0.27 (-1.23, 0.68)
-0.51 (-2.35, 1.35)
-0.18 (-1.05, 0.68)
0.12 (-1.23, 1.40)
0.40 (-1.03, 1.83)
PLIF
-0.18 (-1.30, 0.93)
1.22 (-1.14, 3.55)
  
 TLIF
0.16 (-1.01, 1.35)
-0.09 (-1.27, 1.10)
-0.33 (-2.46, 1.83)
0.00 (-0.70, 0.69)
0.29 (-0.43, 0.98)
0.58 (-1.23, 2.40)
0.18 (-0.93, 1.30)
TLIF
1.40 (-0.90, 3.68)
  
 XLIF
-1.24 (-3.61, 1.15)
-1.49 (-3.86, 0.90)
-1.73 (-4.70, 1.26)
-1.4 (-3.57, 0.79)
-1.11 (-3.49, 1.28)
-0.82 (-3.56, 1.94)
-1.22 (-3.55, 1.14)
-1.40 (-3.68, 0.90)
XLIF
  
JOA
 
Endo-TLIF
MIS-TLIF
TLIF
        
 Endo-TLIF
Endo-TLIF
-0.19 (-8.42, 8.00)
-1.77 (-11.31, 7.70)
        
 MIS-TLIF
0.18 (-8.00, 8.42)
MIS-TLIF
-1.58 (-6.41, 3.19)
        
 TLIF
1.77 (-7.70, 11.31)
1.58 (-3.19, 6.41)
TLIF
        
ODI
 
circumferential
Endo-PLIF
Endo-TLIF
MIS-PLIF
MIS-TLIF
OLIF
PLF
PLIF
TLIF
XLIF
 
 circumferential
circumferential
10.13 (-2.28, 22.64)
9.26 (-3.21, 21.86)
7.24 (-6.95, 21.45)
9.13 (-3.24, 21.62)
11.21 (-1.26, 23.80)
6.41 (-1.60, 14.37)
8.80 (-3.56, 21.28)
10.9 (-1.54, 23.44)
9.22 (-4.85, 23.33)
 
 Endo-PLIF
-10.13 (-22.64, 2.28)
Endo-PLIF
-0.87 (-2.97, 1.21)
-2.91 (-9.98, 4.08)
-1.01 (-2.01, -0.004)
1.08 (-0.85, 3.02)
-3.73 (-13.35, 5.80)
-1.33 (-2.37, -0.29)
0.77 (-0.81, 2.35)
-0.92 (-7.62, 5.81)
 
 Endo-TLIF
-9.26 (-21.86, 3.21)
0.87 (-1.21, 2.97)
Endo-TLIF
-2.04 (-9.28, 5.13)
-0.14 (-2.01, 1.74)
1.95 (-0.56, 4.46)
-2.85 (-12.60, 6.78)
-0.46 (-2.27, 1.36)
1.64 (-0.59, 3.88)
-0.05 (-6.94, 6.86)
 
 MIS-PLIF
-7.24 (-21.45, 6.95)
2.91 (-4.08, 9.98)
2.04 (-5.13, 9.28)
MIS-PLIF
1.91 (-5.04, 8.92)
3.99 (-3.18, 11.2)
-0.82 (-12.61, 10.91)
1.59 (-5.35, 8.54)
3.68 (-3.38, 10.81)
2.00 (-7.66, 11.67)
 
 MIS-TLIF
-9.13 (-21.62, 3.24)
1.01 (0.00, 2.01)
0.14 (-1.74, 2.01)
-1.91 (-8.92, 5.04)
MIS-TLIF
2.09 (0.43, 3.74)
-2.72 (-12.31, 6.75)
-0.32 (-0.86, 0.22)
1.78 (0.57, 3.00)
0.07 (-6.55, 6.74)
 
 OLIF
-11.21 (-23.8, 1.26)
-1.08 (-3.02, 0.85)
-1.95 (-4.46, 0.56)
-3.99 (-11.20, 3.18)
-2.09 (-3.74, -0.43)
OLIF
-4.80 (-14.53, 4.80)
-2.41 (-4.15, -0.66)
-0.31 (-1.44, 0.82)
-2.00 (-8.85, 4.85)
 
 PLF
-6.41 (-14.37, 1.50)
3.73 (-5.80, 13.35)
2.85 (-6.78, 12.60)
0.82 (-10.91, 12.61)
2.72 (-6.75, 12.31)
4.80 (-4.80, 14.53)
PLF
2.40 (-7.07, 11.97)
4.50 (-5.03, 14.17)
2.80 (-8.76, 14.46)
 
 PLIF
-8.80 (-21.28, 3.56)
1.33 (0.29, 2.37)
0.46 (-1.36, 2.27)
-1.59 (-8.57, 5.34)
0.32 (-0.22, 0.86)
2.41 (0.66, 4.15)
-2.40 (-11.97, 7.07)
PLIF
2.10 (0.76, 3.43)
0.40 (-6.24, 7.09)
 
 TLIF
-10.90 (-23.44, 1.54)
-0.77 (-2.35, 0.81)
-1.64 (-3.88, 0.59)
-3.68 (-10.81, 3.38)
-1.78 (-3.00, -0.55)
0.31 (-0.82, 1.44)
-4.50 (-14.17, 5.03)
-2.10 (-3.43, -0.76)
TLIF
-1.69 (-8.43, 5.06)
 
 XLIF
-9.22 (-23.33, 4.85)
0.92 (-5.81, 7.62)
0.05 (-6.86, 6.94)
-2.00 (-11.67, 7.66)
-0.09 (-6.74, 6.54)
2.00 (-4.85, 8.85)
-2.80 (-14.46, 8.76)
-0.40 (-7.09, 6.24)
1.69 (-5.06, 8.43)
XLIF
 
Complications
 
Endo-PLIF
Endo-TLIF
MIS-TLIF
OLIF
TLIF
XLIF
     
 Endo-PLIF
Endo-PLIF
2.19 (0.08, 92.77)
2.02 (0.16, 56.09)
2.71 (0.18, 85.61)
1.82 (0.13, 55.45)
6.63 (0.47, 200.63)
     
 Endo-TLIF
0.46 (0.01, 12.11)
Endo-TLIF
0.93 (0.15, 7.68)
1.24 (0.16, 12.20)
0.83 (0.11, 7.82)
3.03 (0.41, 28.48)
     
 MIS-TLIF
0.50 (0.02, 6.16)
1.08 (0.13, 6.75)
MIS-TLIF
1.34 (0.52, 3.37)
0.89 (0.39, 2.00)
3.19 (1.57, 7.63)
     
 OLIF
0.37 (0.01, 5.48)
0.80 (0.08, 6.35)
0.75 (0.30, 1.92)
OLIF
0.67 (0.43, 1.05)
2.42 (0.74, 8.53)
     
 TLIF
0.55 (0.02, 7.94)
1.20 (0.13, 9.00)
1.12 (0.50, 2.55)
1.49 (0.95, 2.36)
TLIF
3.59 (1.21, 11.8)
     
 XLIF
0.15 (0.00, 2.12)
0.33 (0.04, 2.41)
0.31 (0.13, 0.64)
0.41 (0.12, 1.35)
0.28 (0.08, 0.83)
XLIF
     
Reoperation
 
circumferential
Endo-TLIF
MIS-TLIF
OLIF
PLF
PLIF
TLIF
XLIF
   
 circumferential
circumferential
9.59 (0.02, 7583.09)
5.39 (0.04, 1658.52)
15.55 (0.09, 5842.20)
0.88 (0.02, 31.39)
4.01 (0.06, 463.97)
12.92 (0.09, 3819.25)
3.20 (0.01, 1277.30)
   
 Endo-TLIF
0.10 (0.00, 45.92)
Endo-TLIF
0.58 (0.02, 20.38)
1.66 (0.03, 89.10)
0.09 (0.00, 12.96)
0.45 (0.00, 36.64)
1.38 (0.03, 50.18)
0.34 (0.01, 17.16)
   
 MIS-TLIF
0.19 (0.00, 26.68)
1.74 (0.05, 65.92)
MIS-TLIF
2.90 (0.44, 18.73)
0.17 (0.00, 5.21)
0.83 (0.03, 11.03)
2.41 (1.19, 4.84)
0.62 (0.08, 3.24)
   
 OLIF
0.06 (0.00, 11.71)
0.6 (0.01, 35.12)
0.35 (0.05, 2.25)
OLIF
0.06 (0.00, 2.56)
0.28 (0.01, 5.94)
0.83 (0.15, 4.74)
0.21 (0.01, 2.61)
   
 PLF
1.15 (0.03, 41.16)
10.63 (0.08, 3417.14)
5.75 (0.19, 644.62)
16.97 (0.39, 2320.71)
PLF
4.01 (0.63, 102.71)
13.84 (0.51, 1513.92)
3.52 (0.07, 523.86)
   
 PLIF
0.25 (0.00, 15.88)
2.24 (0.03, 302.84)
1.21 (0.09, 39.44)
3.59 (0.17, 157.55)
0.24 (0.01, 1.61)
PLIF
2.89 (0.24, 89.89)
0.75 (0.03, 34.19)
   
 TLIF
0.08 (0.00, 10.55)
0.72 (0.02, 28.76)
0.42 (0.21, 0.84)
1.20 (0.21, 6.79)
0.07 (0.00, 1.96)
0.35 (0.01, 4.15)
TLIF
0.26 (0.03, 1.55)
   
 XLIF
0.31 (0.00, 68.28)
2.92 (0.06, 181.69)
1.61 (0.31, 12.82)
4.78 (0.38, 74.62)
0.28 (0.00, 15.02)
1.34 (0.03, 36.74)
3.91 (0.65, 34.72)
XLIF
   
Fusion
 
circumferential
Endo-PLIF
Endo-TLIF
MIS-PLF
MIS-PLIF
MIS-TLIF
OLIF
PLF
PLIF
TLIF
XLIF
 circumferential
circumferential
0.85 (0.62, 1.14)
0.92 (0.69, 1.22)
0.03 (0.00, 0.76)
0.96 (0.72, 1.27)
0.92 (0.68, 1.23)
0.94 (0.69, 1.28)
0.91 (0.72, 1.09)
0.96 (0.74, 1.25)
0.95 (0.71, 1.27)
1.00 (0.74, 1.36)
 Endo-PLIF
1.18 (0.87, 1.62)
Endo-PLIF
1.07 (0.96, 1.30)
0.03 (0.00, 0.90)
1.12 (0.95, 1.38)
1.07 (0.97, 1.29)
1.1 (0.95, 1.36)
1.07 (0.85, 1.35)
1.13 (0.99, 1.36)
1.11 (0.99, 1.35)
1.17 (1.02, 1.44)
 Endo-TLIF
1.09 (0.82, 1.45)
0.93 (0.77, 1.04)
Endo-TLIF
0.03 (0.00, 0.83)
1.04 (0.90, 1.21)
1.00 (0.94, 1.07)
1.02 (0.91, 1.15)
0.99 (0.79, 1.19)
1.04 (0.94, 1.17)
1.03 (0.95, 1.13)
1.08 (0.98, 1.23)
 MIS-PLF
35.65 (1.31, 113,395.97)
30.19 (1.11, 94,731.25)
32.68 (1.21, 102,493.79)
MIS-PLF
34.11 (1.26, 106,641.47)
32.63 (1.20, 102,391.47)
33.47 (1.23, 104,609.18)
33.28 (1.20, 101,428.96)
34.19 (1.26, 106,953.77)
33.78 (1.25, 105,413.31)
35.63 (1.31, 111,795.43)
 MIS-PLIF
1.04 (0.79, 1.39)
0.89 (0.72, 1.05)
0.96 (0.83, 1.11)
0.03 (0.00, 0.79)
MIS-PLIF
0.96 (0.82, 1.12)
0.98 (0.82, 1.18)
0.95 (0.77, 1.13)
1.00 (0.91, 1.11)
0.99 (0.84, 1.17)
1.04 (0.87, 1.25)
 MIS-TLIF
1.09 (0.82, 1.46)
0.94 (0.77, 1.03)
1.00 (0.94, 1.07)
0.03 (0.00, 0.83)
1.05 (0.9, 1.22)
MIS-TLIF
1.03 (0.92, 1.13)
1.00 (0.79, 1.20)
1.05 (0.93, 1.19)
1.03 (0.99, 1.09)
1.09 (1.01, 1.21)
 OLIF
1.06 (0.78, 1.45)
0.91 (0.74, 1.06)
0.98 (0.87, 1.10)
0.03 (0.00, 0.81)
1.02 (0.85, 1.23)
0.97 (0.88, 1.08)
OLIF
0.97 (0.76, 1.20)
1.02 (0.87, 1.20)
1.01 (0.93, 1.11)
1.06 (0.93, 1.23)
 PLF
1.09 (0.91, 1.38)
0.93 (0.74, 1.18)
1.01 (0.84, 1.26)
0.03 (0.00, 0.84)
1.05 (0.89, 1.30)
1.00 (0.83, 1.26)
1.03 (0.83, 1.32)
PLF
1.05 (0.92, 1.28)
1.04 (0.86, 1.31)
1.1 (0.89, 1.40)
 PLIF
1.04 (0.8, 1.36)
0.89 (0.74, 1.01)
0.96 (0.85, 1.07)
0.03 (0.00, 0.79)
1.00 (0.90, 1.09)
0.95 (0.84, 1.08)
0.98 (0.83, 1.15)
0.95 (0.78, 1.09)
PLIF
0.99 (0.87, 1.13)
1.04 (0.89, 1.22)
 TLIF
1.05 (0.78, 1.42)
0.90 (0.74, 1.01)
0.97 (0.89, 1.05)
0.03 (0.00, 0.80)
1.01 (0.86, 1.19)
0.97 (0.91, 1.01)
0.99 (0.90, 1.08)
0.96 (0.76, 1.17)
1.01 (0.89, 1.16)
TLIF
1.05 (0.95, 1.18)
 XLIF
1 (0.74, 1.36)
0.86 (0.69, 0.98)
0.92 (0.81, 1.02)
0.03 (0.00, 0.76)
0.96 (0.80, 1.14)
0.92 (0.82, 1.00)
0.94 (0.81, 1.07)
0.91 (0.71, 1.12)
0.96 (0.82, 1.12)
0.95 (0.85, 1.05)
XLIF
LSS lumbar spinal stenosis, JOA Japanese Orthopaedic Association, ODI Oswestry Disability Index, PLF posterolateral lumbar fusion, PLIF posterior lumbar interbody fusion, TLIF transforaminal lumbar interbody fusion, MIS-PLF minimally invasive posterolateral lumbar fusion, MIS-PLIF minimally invasive posterior lumbar interbody fusion, MIS-TLIF minimally invasive transforaminal lumbar interbody fusion, XLIF extreme lateral interbody fusion, OLIF oblique lumbar interbody fusion, Endo-PILF percutaneous endoscopic posterior lumbar interbody fusion, Endo-TILF percutaneous endoscopic transforaminal lumbar interbody fusion
Table 2
Rank probabilities of different lumbar fusion techniques for outcomes in LSS
Pain
 
[1]
[2]
[3]
[4]
       
 Endo-TLIF
0.1285
0.19216
0.23194
0.4474
       
 MIS-TLIF
0.01624
0.167745
0.489285
0.32673
       
 TLIF
0.4174
0.380275
0.137635
0.06469
       
 XLIF
0.43786
0.25982
0.14114
0.16118
       
Low back pain
 
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
  
 Endo-PLIF
0.005615
0.03354
0.054395
0.07769
0.09583
0.116445
0.16064
0.240805
0.21504
  
 Endo-TLIF
0.014215
0.08987
0.118995
0.13434
0.13327
0.133105
0.141095
0.141905
0.093205
  
 MIS-PLIF
0.055935
0.178515
0.081055
0.06635
0.057925
0.05672
0.069275
0.115285
0.31894
  
 MIS-TLIF
0.00133
0.01221
0.04199
0.10473
0.183265
0.23769
0.23172
0.145205
0.04186
  
 OLIF
0.0437
0.188985
0.171485
0.137805
0.118425
0.100235
0.090235
0.086055
0.063075
  
 PLF
0.810125
0.08071
0.031265
0.01969
0.014235
0.01123
0.010865
0.011555
0.010325
  
 PLIF
0.008875
0.161965
0.221095
0.18537
0.15114
0.12344
0.091145
0.046655
0.010315
  
 TLIF
0.014635
0.094455
0.18274
0.18404
0.16586
0.14264
0.111765
0.07465
0.029215
  
 XLIF
0.04557
0.15975
0.09698
0.089985
0.08005
0.078495
0.09326
0.137885
0.218025
  
Leg pain
 
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
  
 Endo-PLIF
0.02568
0.107315
0.158385
0.161815
0.14727
0.12521
0.11036
0.104895
0.05907
  
 Endo-TLIF
0.008795
0.03841
0.066625
0.088775
0.11335
0.130235
0.15211
0.23003
0.17167
  
 MIS-PLIF
0.05019
0.09364
0.077265
0.057535
0.051925
0.050215
0.058755
0.09783
0.462645
  
 MIS-TLIF
0.00137
0.015805
0.05124
0.11092
0.177355
0.22477
0.22249
0.146655
0.049395
  
 OLIF
0.05932
0.20541
0.197995
0.135415
0.111145
0.09638
0.083215
0.07043
0.04069
  
 PLF
0.195615
0.310545
0.12701
0.07572
0.05717
0.050965
0.052
0.07147
0.059505
  
 PLIF
0.010125
0.06899
0.177445
0.208335
0.178155
0.14739
0.1242
0.07028
0.01508
  
 TLIF
0.003305
0.028745
0.09169
0.128285
0.1377
0.153795
0.175425
0.17747
0.103585
  
 XLIF
0.6456
0.13114
0.052345
0.0332
0.02593
0.02104
0.021445
0.03094
0.03836
  
JOA
 
[1]
[2]
[3]
        
 Endo-TLIF
0.490305
0.205415
0.30428
        
 MIS-TLIF
0.368985
0.512615
0.1184
        
 TLIF
0.14071
0.28197
0.57732
        
ODI
 
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
 
 circumferential
0.012905
0.020395
0.009095
0.00925
0.01043
0.0095
0.01038
0.02843
0.10788
0.781735
 
 Endo-PLIF
0.038025
0.08047
0.284105
0.33147
0.18436
0.062835
0.01534
0.00281
0.00053
0.000055
 
 Endo-TLIF
0.01793
0.03038
0.078065
0.16906
0.19695
0.180195
0.17457
0.10908
0.037085
0.006685
 
 MIS-PLIF
0.09601
0.043025
0.040705
0.04754
0.046135
0.038705
0.085265
0.254355
0.22253
0.12573
 
 MIS-TLIF
0
0.000115
0.00394
0.108955
0.300385
0.32916
0.182765
0.061225
0.01232
0.001135
 
 OLIF
0.37085
0.32351
0.17708
0.081645
0.03211
0.01043
0.003135
0.00093
0.00027
0.00004
 
 PLF
0.121685
0.045395
0.033195
0.03694
0.034695
0.028275
0.055385
0.174405
0.44393
0.026095
 
 PLIF
0
0.00004
0.000415
0.011195
0.093645
0.283595
0.354385
0.193835
0.05469
0.0082
 
 TLIF
0.115625
0.38885
0.30396
0.134865
0.04335
0.01074
0.002205
0.000385
0.00001
0.00001
 
 XLIF
0.22697
0.06782
0.06944
0.06908
0.05794
0.046565
0.11657
0.174545
0.120755
0.050315
 
Complications
 
[1]
[2]
[3]
[4]
[5]
[6]
     
 Endo-PLIF
0.07022
0.102915
0.079355
0.064425
0.119205
0.56388
     
 Endo-TLIF
0.12124
0.23003
0.13376
0.10084
0.207775
0.206355
     
 MIS-TLIF
0.00002
0.088165
0.250025
0.34815
0.25233
0.06131
     
 OLIF
0.053895
0.36249
0.317165
0.184275
0.073865
0.00831
     
 TLIF
0.000225
0.013795
0.18328
0.2965
0.34608
0.16012
     
 XLIF
0.7544
0.202605
0.036415
0.00581
0.000745
0.000025
     
Reoperation
 
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
   
 circumferential
0.083385
0.0472
0.043385
0.0486
0.060635
0.104225
0.232955
0.379615
   
 Endo-TLIF
0.295445
0.123495
0.11959
0.1021
0.111135
0.097505
0.06699
0.08374
   
 MIS-TLIF
0.000645
0.0199
0.15479
0.32994
0.255625
0.14121
0.07977
0.01812
   
 OLIF
0.359205
0.256415
0.157575
0.097745
0.067535
0.035885
0.01727
0.00837
   
 PLF
0.005825
0.02027
0.030955
0.041125
0.06285
0.11687
0.38219
0.339915
   
 PLIF
0.07224
0.094405
0.12123
0.142595
0.177305
0.2905
0.085685
0.01604
   
 TLIF
0.161715
0.39622
0.290995
0.10056
0.038155
0.01144
0.00088
0.000035
   
 XLIF
0.02154
0.042095
0.08148
0.137335
0.22676
0.202365
0.13426
0.154165
   
Fusion
 
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
 circumferential
0.42092
0.114155
0.066965
0.05859
0.043385
0.04042
0.04054
0.067445
0.090795
0.056105
0.00068
 Endo-PLIF
0.000485
0.001905
0.004135
0.008695
0.017145
0.03009
0.053705
0.120555
0.186225
0.56657
0.01049
 Endo-TLIF
0.002965
0.01605
0.037545
0.07686
0.13066
0.177695
0.188065
0.18767
0.138345
0.0437
0.000445
 MIS-PLF
0.000045
0.000205
0.000505
0.000525
0.000835
0.000995
0.00099
0.00095
0.001775
0.00673
0.986445
 MIS-PLIF
0.103425
0.15843
0.14741
0.130755
0.10518
0.087745
0.08842
0.07732
0.068665
0.03234
0.00031
 MIS-TLIF
0.000045
0.003075
0.02144
0.072635
0.10886
0.150095
0.2054
0.236315
0.17634
0.02546
0.000335
 OLIF
0.060925
0.11394
0.120315
0.109725
0.11287
0.11604
0.1082
0.092865
0.10509
0.059005
0.001025
 PLF
0.01377
0.094445
0.083205
0.08867
0.086105
0.06746
0.07241
0.09623
0.19329
0.20421
0.000205
 PLIF
0.04941
0.151035
0.207765
0.181745
0.135675
0.110575
0.089195
0.053625
0.01886
0.002105
0.00001
 TLIF
0.024605
0.114055
0.168445
0.164475
0.16246
0.169825
0.1246
0.05426
0.015065
0.002175
0.000035
 XLIF
0.323405
0.232705
0.14227
0.107325
0.096825
0.04906
0.028475
0.012765
0.00555
0.0016
0.00002
LSS lumbar spinal stenosis, JOA Japanese Orthopaedic Association, ODI Oswestry Disability Index, PLF posterolateral lumbar fusion, PLIF posterior lumbar interbody fusion, TLIF transforaminal lumbar interbody fusion, MIS-PLF minimally invasive posterolateral lumbar fusion, MIS-PLIF minimally invasive posterior lumbar interbody fusion, MIS-TLIF minimally invasive transforaminal lumbar interbody fusion, XLIF extreme lateral interbody fusion, OLIF oblique lumbar interbody fusion, Endo-PILF percutaneous endoscopic posterior lumbar interbody fusion, Endo-TILF percutaneous endoscopic transforaminal lumbar interbody fusion

Low back pain

Nine fusion approaches were evaluated for the treatment of low back pain in 15 studies of 1,430 patients: Endo-PLIF, Endo-TLIF, MIS-PLIF, MIS-TLIF, OLIF, PLF, PLIF, TLIF, and XLIF (Fig. 2b). The forest plot (Fig. 3b) and league table (Table 1) presented no significant differences in low back pain between these fusion approaches. As suggested by the rank probabilities, Endo-PLIF had the greatest likelihood to be the optimal technique for low back pain, followed sequentially by MIS-TLIF, MIS-PLIF, XLIF, Endo-TLIF, TLIF, OLIF, PLIF, and PLF (Table 2).

Leg pain

Fourteen studies with 1,324 patients were eligible for leg pain assessment, and 9 fusion approaches were compared: Endo-PLIF, Endo-TLIF, MIS-PLIF, MIS-TLIF, OLIF, PLF, PLIF, TLIF, and XLIF (Fig. 2c). No significant differences were identified by the forest plot (Fig. 3c) and league table (Table 1). From the rank probabilities, MIS-PLIF was ranked the most effective technique concerning leg pain, followed by Endo-TLIF, MIS-TLIF, TLIF, Endo-PLIF, PLIF, OLIF, PLF, and XLIF (Table 2).

Network meta-analysis for JOA scores

Data on JOA scores were obtained from 4 studies of 320 patients, encompassing 3 fusion techniques: Endo-TLIF, MIS-TLIF and TLIF (Fig. 4). The forest plot (Fig. 5) and league table (Table 1) indicated no significant differences between the fusion techniques. The rank probabilities suggested that as regards JOA scores, Endo-TLIF had the maximum probability to be the best technique, followed by MIS-TLIF and TLIF (Table 2).

Network meta-analysis for ODI scores

ODI scores were investigated by 16 studies with 1,328 patients, and 10 fusion methods were evaluated: circumferential fusion, Endo-PLIF, Endo-TLIF, MIS-PLIF, MIS-TLIF, OLIF, PLF, PLIF, TLIF, and XLIF (Fig. 6). Based on the forest plot, the ODI score after TLIF was significantly higher than that after MIS-TLIF (pooled WMD = 1.80, 95%CrI: 0.57, 3.00) (Fig. 7). As exhibited by the league table, the ODI score after MIS-TLIF (pooled WMD = -1.01, 95%CrI: -2.01, -0.004) or PLIF (pooled WMD = -1.33, 95%CrI: -2.37, -0.29) was significantly lower than that after Endo-PLIF. Patients undergoing OLIF (pooled WMD = 2.09, 95%CrI: 0.43, 3.74) or TLIF (pooled WMD = 1.78, 95%CrI: 0.57, 3.00) had a significantly higher ODI score than those undergoing MIS-TLIF. PLIF was associated with a significantly decreased ODI score versus OLIF (pooled WMD = -2.41, 95%CrI: -4.15, -0.66). The ODI score following TLIF was significantly higher than that after PLIF (pooled WMD = 2.10, 95%CrI: 0.76, 3.43) (Table 1). The rank probabilities showed that circumferential fusion was most likely to be the optimum technique concerning ODI scores, followed by PLF, MIS-PLIF, PLIF, MIS-TLIF, Endo-TLIF, XLIF, Endo-PLIF, TLIF, and OLIF (Table 2).

Network meta-analysis for complications

A total of 8 studies with 620 patients involved 6 fusion techniques (Endo-PLIF, Endo-TLIF, MIS-TLIF, OLIF, TLIF, and XLIF) for complication assessment (Fig. 8). The forest plot demonstrated that the incidence of complications in patients undergoing XLIF was significantly higher than that in patients undergoing MIS-TLIF (pooled RR = 3.80, 95%CrI: 1.10, 13.00) (Fig. 9). According to the league table, compared with MIS-TLIF (pooled RR = 3.19, 95%CrI: 1.57, 7.63) or TLIF (pooled RR = 3.59, 95%CrI: 1.21, 11.80), XLIF was associated with a significantly increased incidence of complications (Table 1). As suggested by the rank probabilities, Endo-PLIF had the greatest likelihood to be the best technique for complications, followed by TLIF, MIS-TLIF, Endo-TLIF, OLIF, and XLIF (Table 2).

Network meta-analysis for reoperation

As for reoperation, 12 studies of 1,026 patients were included for network meta-analysis. Comparisons were carried out among 8 fusion methods: circumferential fusion, Endo-TLIF, MIS-TLIF, OLIF, PLF, PLIF, TLIF, and XLIF (Fig. 10). TLIF was associated with a significantly higher incidence of reoperation relative to MIS-TLIF (pooled RR = 2.40, 95%CrI: 1.20, 4.90), as presented by the forest plot (Fig. 11). The league table showed that compared with the incidence of reoperation after MIS-TLIF, that after TLIF was significantly greater (pooled RR = 2.41, 95%CrI: 1.19, 4.84) (Table 1). The rank probabilities illustrated that for reoperation, PLF was most likely to be the optimal method, followed by circumferential fusion, XLIF, MIS-TLIF, PLIF, Endo-TLIF, TLIF, and OLIF (Table 2).

Network meta-analysis for fusion

The fusion rate was evaluated in 19 studies with 1,704 patients, and 11 fusion techniques were compared: circumferential fusion, Endo-PLIF, Endo-TLIF, MIS-PIF, MIS-PLIF, MIS-TLIF, OLIF, PLF, PLIF, TLIF, and XLIF (Fig. 12). The forest plot exhibited a significant difference in the fusion rate between the XLIF and MIS-TLIF groups (pooled RR = 1.10, 95%CrI: 1.00, 1.20) (Fig. 13). The league table demonstrated that the fusion rate after MIS-PLF was significantly lower than that after circumferential fusion (pooled RR = 0.03, 95%CrI: 0.00, 0.76), Endo-PLIF (pooled RR = 0.03, 95%CrI: 0.00, 0.90), or Endo-TLIF (pooled RR = 0.03, 95%CrI: 0.00, 0.83). A significantly elevated fusion rate was shown in patients treated with XLIF versus those treated with Endo-PLIF (pooled RR = 1.17, 95%CrI: 1.02, 1.44) or MIS-TLIF (pooled RR = 1.09, 95%CrI: 1.01, 1.21) (Table 1). According to the rank probabilities, XLIF had the highest possibility to be the most effective technique regarding the fusion rate, followed by circumferential fusion, PLIF, MIS-PLIF, TLIF, OLIF, Endo-TLIF, PLF, MIS-TLIF, Endo-PLIF, and MIS-PLF in sequence (Table 2).

Discussion

To the best of our knowledge, this network meta-analysis comprehensively evaluated different lumbar fusion techniques for pain, JOA, ODI, complications, reoperation, and fusion among patients with LSS for the first time. The findings demonstrated that minimally invasive fusion techniques may be effective for LSS patients, in terms of pain, JOA and complications, suggesting that minimally invasive approaches may be safe and feasible in the treatment of LSS.
A meta-analysis by Gagliardi et al. [48] compared the impacts of indirect (ALIF, OLIF, and lateral LIF) and direct (TLIF and PLIF) decompression and fusion approaches on postoperative pain and disability in patients with LSS and instability, and showed that indirect and direct approaches had comparable effects. PLIF, PLF, MIS-PLIF, TLIF, and MIS-TLIF were subject to a network meta-analysis for patients with spondylolisthesis [49], and another network meta-analysis simultaneously evaluated the efficacy of PLF, PLIF, TLIF, MIS-TLIF, XLIF, and circumferential fusion in spondylolisthesis [50]. At present, no study has evaluated and ranked the influences of various fusion techniques in patients with LSS via a Bayesian network meta-analysis. The current Bayesian network meta-analysis filled this research gap, and paid attention to 11 individual fusion techniques for LSS patients, and these techniques can be divided into traditional and minimally invasive techniques. As traditional techniques, PLF, PLIF and TLIF are widely accepted treatments in LSS. Said et al. [51] showed that PLF and PLIF had similar complication rates, operation time and blood loss, while PLIF exhibited a greater rate of fusion. TLIF was reported to reduce the possible complications of other techniques, including the transabdominal method or PLIF, but gain similar clinical outcomes to PLIF [52]. As surgical tools develop and advance, multifarious minimally invasive spinal operations have emerged and been enhanced, including indirect decompression approaches using interspinous instrumentation and direct decompression approaches, like microscopic or endoscopic spinal surgery [53]. In this study, we made comparisons between different kinds of traditional and minimally invasive techniques to review and rank their effects in LSS.
In terms of pain, we found that LSS patients undergoing minimally invasive fusion may have less pain, low back pain, and leg pain than those undergoing traditional fusion. Low back pain and leg pain are classical symptoms, affecting the quality of life, which may be attributed to nerve root compression and associated instability [53]. Minimally invasive techniques include MIS- and Endo-fusion approaches, which can improve surgical visualization, reduce tissue trauma and normal structure damage, and lessen postoperative pain [5456]. As regards functional status evaluated by JOA and ODI scores, minimally invasive operations (Endo-TLIF and MIS-TLIF) may exhibit more favorable impacts than the traditional one (TLIF) according to the JOA score, while based on the ODI score, minimally invasive techniques (e.g. Endo-PLIF, Endo-TLIF) may not have better efficacy in general. Hoffmann and Frank [57] showed patients undergoing MIS-TLIF had notably lower ODI scores than those undergoing TLIF, which was partially consistent with our findings. More studies are warranted to verify these results. With respect to complications, minimally invasive techniques may be generally non-inferior to traditional techniques, with Endo-PLIF having the highest likelihood to be the most effective approach. Minimally invasive posterior methods have been developed to reduce relevant complications [58]. Concerning reoperation, patients after traditional fusion techniques may not have a superior reoperation rate to those after minimally invasive techniques. Another meta-analysis reported that minimally invasive decompression was associated with reduced reoperation and fusion rates, decreased slip progression, and increased patient satisfaction versus open surgery in patients with LSS and degenerative spondylolisthesis [59]. For experienced clinicians, most patients can safely obtain appropriate decompression through minimally invasive approaches. Regarding the fusion rate, compared with traditional surgery, minimally invasive surgery may not gain the upper hand. Wu et al. [60] showed relatively high and comparable fusion rates in patients with degenerative disease who underwent TLIF and MIS-TLIF. Besides surgical methods, other factors may influence the success of fusion, such as patient age, comorbidities, personal lifestyles, and fusion levels. Due to insufficient reporting of the included studies, these factors could not be taken into account in this analysis, which underscores future research to assess our results and indicates the clinical importance of improved reporting in studies.
Through comprehensive analysis of different fusion techniques in patients with LSS, minimally invasive techniques may be effective and feasible for LSS management. Combining direct and indirect clinical evidence can yield robust results, which may act as a clinical decision-making guidance in the control and treatment of LSS. Minimally invasive fusion techniques might be considered by clinicians to improve pain and functional status and reduce the incidence of complications in patients with LSS. Besides, this network meta-analysis adopted a Bayesian approach. Compared with a frequentist approach, a Bayesian approach can not only effectively integrate data and flexibly build models, but also use the obtained posterior probability to rank all interventions participating in the comparison and distinguish comparative advantages and disadvantages, while a frequentist method can only rely on the effect size and its 95%CI obtained by pairwise comparison in ranking; and since a frequentist approach uses the maximum likelihood method in parameter estimation, it is prone to instability and biased results, while a Bayesian approach does not have this problem, so its estimated values are more accurate than those of a frequentist approach [19]. Of note, minimally invasive techniques were related to a steep learning curve, and surgeons should not expect to master these techniques in the first few cases [61]. There were several limitations in this study. First, heterogeneity in the study population may have affected the reliability of the results. For example, most LSS patients also had other degenerative diseases such as spondylolisthesis, lumbar instability, and lumbar disc herniation; some included studies reported single-level fusion, and some involved multi-level fusion. Studies on LSS patients with fusion levels ≤ 3 and comparing at least two of different lumbar fusion techniques for spinal level L3-L5 were included for this network meta-analysis. We also tried to make the severity of LSS and previous lumbar spine surgery equivalent among patients based on the data from the included studies, but only one study reported the severity of LSS, and many studies did not report whether patients underwent previous surgery, which made it difficult to equate patients in these aspects. Future studies should improve and standardize the reporting of LSS patient condition. Second, studies on patients with lumber degenerative disease and lateral lumbar interbody fusion (LLIF) were excluded due to no clear classification. The accuracy of the results may have been affected. Third, some fusion methods, such as MIS-PLF and circumferential fusion, were assessed by a small number of studies and a small sample size, which may have influenced the stability of the results. Finally, only English publications were included for analysis, which may have led to language bias and limited the generalizability of the results.

Conclusion

Compared with traditional techniques, minimally invasive fusion techniques may be effective and feasible for LSS treatment, considering pain, JOA, and complications. Additional prospective research is required to consolidate our findings.

Acknowledgements

Not applicable.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Kim M, Cho S, Noh Y, Goh D, Son HJ, Huh J, et al. Changes in pain scores and walking distance after epidural steroid injection in patients with lumbar central spinal stenosis. Medicine. 2022;101:e29302. Kim M, Cho S, Noh Y, Goh D, Son HJ, Huh J, et al. Changes in pain scores and walking distance after epidural steroid injection in patients with lumbar central spinal stenosis. Medicine. 2022;101:e29302.
3.
Zurück zum Zitat Zaina F, Tomkins-Lane C, Carragee E, Negrini S. Surgical versus non-surgical treatment for lumbar spinal stenosis. Cochrane Database Syst Rev. 2016; 2016: Cd010264. Zaina F, Tomkins-Lane C, Carragee E, Negrini S. Surgical versus non-surgical treatment for lumbar spinal stenosis. Cochrane Database Syst Rev. 2016; 2016: Cd010264.
4.
Zurück zum Zitat Lurie J, Tomkins-Lane C. Management of lumbar spinal stenosis. BMJ (Clinical research ed). 2016;352:h6234. Lurie J, Tomkins-Lane C. Management of lumbar spinal stenosis. BMJ (Clinical research ed). 2016;352:h6234.
5.
Zurück zum Zitat Minetama M, Kawakami M, Teraguchi M, Kagotani R, Mera Y, Sumiya T, et al. Supervised physical therapy vs. home exercise for patients with lumbar spinal stenosis: a randomized controlled trial. Spine J. 2019; 19: 1310–8. Minetama M, Kawakami M, Teraguchi M, Kagotani R, Mera Y, Sumiya T, et al. Supervised physical therapy vs. home exercise for patients with lumbar spinal stenosis: a randomized controlled trial. Spine J. 2019; 19: 1310–8.
6.
Zurück zum Zitat Katz JN, Zimmerman ZE, Mass H, Makhni MC. Diagnosis and management of lumbar spinal stenosis: a review. JAMA. 2022;327:1688–99.PubMedCrossRef Katz JN, Zimmerman ZE, Mass H, Makhni MC. Diagnosis and management of lumbar spinal stenosis: a review. JAMA. 2022;327:1688–99.PubMedCrossRef
7.
Zurück zum Zitat Shen J, Xu S, Xu S, Ye S, Hao J. Fusion or not for degenerative lumbar spinal stenosis: a meta-analysis and systematic review. Pain Physician. 2018;21:1–8.PubMed Shen J, Xu S, Xu S, Ye S, Hao J. Fusion or not for degenerative lumbar spinal stenosis: a meta-analysis and systematic review. Pain Physician. 2018;21:1–8.PubMed
8.
Zurück zum Zitat Audat Z, Moutasem O, Yousef K, Mohammad B. Comparison of clinical and radiological results of posterolateral fusion, posterior lumbar interbody fusion and transforaminal lumbar interbody fusion techniques in the treatment of degenerative lumbar spine. Singapore Med J. 2012;53:183–7.PubMed Audat Z, Moutasem O, Yousef K, Mohammad B. Comparison of clinical and radiological results of posterolateral fusion, posterior lumbar interbody fusion and transforaminal lumbar interbody fusion techniques in the treatment of degenerative lumbar spine. Singapore Med J. 2012;53:183–7.PubMed
9.
Zurück zum Zitat Alijani B, Emamhadi M, Behzadnia H, Aramnia A, Chabok SY, Ramtinfar S, et al. Posterior lumbar interbody fusion and posterolateral fusion: Analogous procedures in decreasing the index of disability in patients with spondylolisthesis. Asian J Neurosurg. 2015;10:51.PubMedPubMedCentralCrossRef Alijani B, Emamhadi M, Behzadnia H, Aramnia A, Chabok SY, Ramtinfar S, et al. Posterior lumbar interbody fusion and posterolateral fusion: Analogous procedures in decreasing the index of disability in patients with spondylolisthesis. Asian J Neurosurg. 2015;10:51.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Van Bogaert W, Tegner H, Coppieters I, Huysmans E, Nijs J, Moens M, et al. The predictive value of fear avoidance beliefs for outcomes following surgery for lumbar degenerative disease: a systematic review and best evidence synthesis. Pain Physician. 2022;25:441–57.PubMed Van Bogaert W, Tegner H, Coppieters I, Huysmans E, Nijs J, Moens M, et al. The predictive value of fear avoidance beliefs for outcomes following surgery for lumbar degenerative disease: a systematic review and best evidence synthesis. Pain Physician. 2022;25:441–57.PubMed
11.
Zurück zum Zitat Kim CH, Easley K, Lee JS, Hong JY, Virk M, Hsieh PC, et al. Comparison of minimally invasive versus open transforaminal interbody lumbar fusion. Global Spine J. 2020;10:143s-s150.PubMedPubMedCentralCrossRef Kim CH, Easley K, Lee JS, Hong JY, Virk M, Hsieh PC, et al. Comparison of minimally invasive versus open transforaminal interbody lumbar fusion. Global Spine J. 2020;10:143s-s150.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Ahn Y, Youn MS, Heo DH. Endoscopic transforaminal lumbar interbody fusion: a comprehensive review. Expert Rev Med Devices. 2019;16:373–80.PubMedCrossRef Ahn Y, Youn MS, Heo DH. Endoscopic transforaminal lumbar interbody fusion: a comprehensive review. Expert Rev Med Devices. 2019;16:373–80.PubMedCrossRef
13.
Zurück zum Zitat Zhao XB, Ma HJ, Geng B, Zhou HG, Xia YY. Early clinical evaluation of percutaneous full-endoscopic transforaminal lumbar interbody fusion with pedicle screw insertion for treating degenerative lumbar spinal stenosis. Orthop Surg. 2021;13:328–37.PubMedPubMedCentralCrossRef Zhao XB, Ma HJ, Geng B, Zhou HG, Xia YY. Early clinical evaluation of percutaneous full-endoscopic transforaminal lumbar interbody fusion with pedicle screw insertion for treating degenerative lumbar spinal stenosis. Orthop Surg. 2021;13:328–37.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Gao QY, Wei FL, Li T, Zhu KL, Du MR, Heng W, et al. Oblique lateral interbody fusion vs. minimally invasive transforaminal lumbar interbody fusion for lumbar spinal stenosis: a retrospective cohort study. Front Med (Lausanne). 2022; 9: 829426. Gao QY, Wei FL, Li T, Zhu KL, Du MR, Heng W, et al. Oblique lateral interbody fusion vs. minimally invasive transforaminal lumbar interbody fusion for lumbar spinal stenosis: a retrospective cohort study. Front Med (Lausanne). 2022; 9: 829426.
15.
Zurück zum Zitat He LM, Li JR, Wu HR, Chang Q, Guan XM, Ma Z, et al. Percutaneous endoscopic posterior lumbar interbody fusion with unilateral laminotomy for bilateral decompression Vs. open posterior lumbar interbody fusion for the treatment of lumbar spondylolisthesis. Front Surg. 2022; 9: 915522. He LM, Li JR, Wu HR, Chang Q, Guan XM, Ma Z, et al. Percutaneous endoscopic posterior lumbar interbody fusion with unilateral laminotomy for bilateral decompression Vs. open posterior lumbar interbody fusion for the treatment of lumbar spondylolisthesis. Front Surg. 2022; 9: 915522.
16.
Zurück zum Zitat Kim HJ, Kang KT, Chun HJ, Hwang JS, Chang BS, Lee CK, et al. Comparative study of 1-year clinical and radiological outcomes using robot-assisted pedicle screw fixation and freehand technique in posterior lumbar interbody fusion: a prospective, randomized controlled trial. Int J Med Robot. 2018; 14: e1917. Kim HJ, Kang KT, Chun HJ, Hwang JS, Chang BS, Lee CK, et al. Comparative study of 1-year clinical and radiological outcomes using robot-assisted pedicle screw fixation and freehand technique in posterior lumbar interbody fusion: a prospective, randomized controlled trial. Int J Med Robot. 2018; 14: e1917.
17.
Zurück zum Zitat Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17:1–12.PubMedCrossRef Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17:1–12.PubMedCrossRef
18.
Zurück zum Zitat Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.PubMedCrossRef Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.PubMedCrossRef
19.
Zurück zum Zitat Tian JH, Li L, Zhao Y, Ge L. Writing and reporting of network meta-analysis. Chinese J Drug Eval. 2013;30:4. Tian JH, Li L, Zhao Y, Ge L. Writing and reporting of network meta-analysis. Chinese J Drug Eval. 2013;30:4.
20.
Zurück zum Zitat Shim SR, Kim SJ, Lee J, Rücker G. Network meta-analysis: application and practice using R software. Epidemiol Health. 2019;41:1–10. Shim SR, Kim SJ, Lee J, Rücker G. Network meta-analysis: application and practice using R software. Epidemiol Health. 2019;41:1–10.
21.
Zurück zum Zitat Archavlis E, Carvi y Nievas M. Comparison of minimally invasive fusion and instrumentation versus open surgery for severe stenotic spondylolisthesis with high-grade facet joint osteoarthritis. Eur Spine J. 2013; 22: 1731–40. Archavlis E, Carvi y Nievas M. Comparison of minimally invasive fusion and instrumentation versus open surgery for severe stenotic spondylolisthesis with high-grade facet joint osteoarthritis. Eur Spine J. 2013; 22: 1731–40.
22.
Zurück zum Zitat Asil K, Yaldiz C. Retrospective comparison of radiological and clinical outcomes of PLIF and TLIF techniques in patients who underwent lumbar spinal posterior stabilization. Medicine (Baltimore). 2016;95:1–7. Asil K, Yaldiz C. Retrospective comparison of radiological and clinical outcomes of PLIF and TLIF techniques in patients who underwent lumbar spinal posterior stabilization. Medicine (Baltimore). 2016;95:1–7.
23.
Zurück zum Zitat Chong EY, Tong Tan LY, Chong CS, Yeo W, Siang Koh DT, Jiang L, et al. Radiological and clinical outcomes comparing 2-level MIS lateral and MIS transforaminal lumbar interbody fusion in degenerative lumbar spinal stenosis. Global Spine J. 2022: 21925682221132745. Chong EY, Tong Tan LY, Chong CS, Yeo W, Siang Koh DT, Jiang L, et al. Radiological and clinical outcomes comparing 2-level MIS lateral and MIS transforaminal lumbar interbody fusion in degenerative lumbar spinal stenosis. Global Spine J. 2022: 21925682221132745.
24.
Zurück zum Zitat Fan G, Wu X, Yu S, Sun Q, Guan X, Zhang H, et al. Clinical outcomes of posterior lumbar interbody fusion versus minimally invasive transforaminal lumbar interbody fusion in three-level degenerative lumbar spinal stenosis. Biomed Res Int. 2016;2016:9540298.PubMedPubMedCentralCrossRef Fan G, Wu X, Yu S, Sun Q, Guan X, Zhang H, et al. Clinical outcomes of posterior lumbar interbody fusion versus minimally invasive transforaminal lumbar interbody fusion in three-level degenerative lumbar spinal stenosis. Biomed Res Int. 2016;2016:9540298.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Gao G, Cao L, Du X, Xu B, Zhang P, Zhang X, et al. Comparison of minimally invasive surgery transforaminal lumbar interbody fusion and TLIF for treatment of lumbar spine stenosis. J Healthc Eng. 2022;2022:9389239.PubMedPubMedCentralCrossRef Gao G, Cao L, Du X, Xu B, Zhang P, Zhang X, et al. Comparison of minimally invasive surgery transforaminal lumbar interbody fusion and TLIF for treatment of lumbar spine stenosis. J Healthc Eng. 2022;2022:9389239.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Ha KY, Na KH, Shin JH, Kim KW. Comparison of posterolateral fusion with and without additional posterior lumbar interbody fusion for degenerative lumbar spondylolisthesis. J Spinal Disord Tech. 2008;21:229–34.PubMedCrossRef Ha KY, Na KH, Shin JH, Kim KW. Comparison of posterolateral fusion with and without additional posterior lumbar interbody fusion for degenerative lumbar spondylolisthesis. J Spinal Disord Tech. 2008;21:229–34.PubMedCrossRef
27.
Zurück zum Zitat Hallett A, Huntley JS, Gibson JNA. Foraminal stenosis and single-level degenerative disc disease - A randomized controlled trial comparing decompression with decompression and instrumented fusion. Spine. 2007;32:1375–80.PubMedCrossRef Hallett A, Huntley JS, Gibson JNA. Foraminal stenosis and single-level degenerative disc disease - A randomized controlled trial comparing decompression with decompression and instrumented fusion. Spine. 2007;32:1375–80.PubMedCrossRef
28.
Zurück zum Zitat Harris EB, Sayadipour A, Massey P, Duplantier NL, Anderson DG. Mini-open versus open decompression and fusion for lumbar degenerative spondylolisthesis with stenosis. Am J Orthop (Belle Mead NJ). 2011;40:E257–61.PubMed Harris EB, Sayadipour A, Massey P, Duplantier NL, Anderson DG. Mini-open versus open decompression and fusion for lumbar degenerative spondylolisthesis with stenosis. Am J Orthop (Belle Mead NJ). 2011;40:E257–61.PubMed
29.
Zurück zum Zitat Hiyama A, Katoh H, Sakai D, Tanaka M, Sato M, Watanabe M. Short-term comparison of preoperative and postoperative pain after indirect decompression surgery and direct decompression surgery in patients with degenerative spondylolisthesis. Sci Rep. 2020;10:18887.PubMedPubMedCentralCrossRef Hiyama A, Katoh H, Sakai D, Tanaka M, Sato M, Watanabe M. Short-term comparison of preoperative and postoperative pain after indirect decompression surgery and direct decompression surgery in patients with degenerative spondylolisthesis. Sci Rep. 2020;10:18887.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Hu W, Yang G, Wang H, Wu X, Ma H, Zhang K, et al. Which is better in clinical and radiological outcomes for lumbar degenerative disease of two segments: MIS-TLIF or OPEN-TLIF? J Pers Med. 2022;12:1–10. Hu W, Yang G, Wang H, Wu X, Ma H, Zhang K, et al. Which is better in clinical and radiological outcomes for lumbar degenerative disease of two segments: MIS-TLIF or OPEN-TLIF? J Pers Med. 2022;12:1–10.
31.
Zurück zum Zitat Huang Y, Chen J, Gao P, Gu C, Fan J, Hu Z, et al. A comparison of the bilateral decompression via unilateral approach versus conventional approach transforaminal lumbar interbody fusion for the treatment of lumbar degenerative disc disease in the elderly. BMC Musculoskelet Disord. 2021;22:156.PubMedPubMedCentralCrossRef Huang Y, Chen J, Gao P, Gu C, Fan J, Hu Z, et al. A comparison of the bilateral decompression via unilateral approach versus conventional approach transforaminal lumbar interbody fusion for the treatment of lumbar degenerative disc disease in the elderly. BMC Musculoskelet Disord. 2021;22:156.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Isaacs RE, Sembrano JN, Tohmeh AG. Two-year comparative outcomes of MIS lateral and MIS transforaminal interbody fusion in the treatment of degenerative spondylolisthesis. Spine. 2016;41:s133–44.PubMed Isaacs RE, Sembrano JN, Tohmeh AG. Two-year comparative outcomes of MIS lateral and MIS transforaminal interbody fusion in the treatment of degenerative spondylolisthesis. Spine. 2016;41:s133–44.PubMed
33.
Zurück zum Zitat Jia J, Chen C, Wang P, Wang L, Liu X. Comparison of adjacent segment degeneration after minimally invasive or open transforaminal lumbar interbody fusion: a minimum 5-year follow-up. Clin Spine Surg. 2022;36:E45–50. Jia J, Chen C, Wang P, Wang L, Liu X. Comparison of adjacent segment degeneration after minimally invasive or open transforaminal lumbar interbody fusion: a minimum 5-year follow-up. Clin Spine Surg. 2022;36:E45–50.
34.
Zurück zum Zitat Kang MS, You KH, Choi JY, Heo DH, Chung HJ, Park HJ. Minimally invasive transforaminal lumbar interbody fusion using the biportal endoscopic techniques versus microscopic tubular technique. Spine J. 2021;21:2066–77.PubMedCrossRef Kang MS, You KH, Choi JY, Heo DH, Chung HJ, Park HJ. Minimally invasive transforaminal lumbar interbody fusion using the biportal endoscopic techniques versus microscopic tubular technique. Spine J. 2021;21:2066–77.PubMedCrossRef
35.
Zurück zum Zitat Kim HJ, Kang KT, Chun HJ, Hwang JS, Chang BS, Lee CK, et al. Comparative study of 1-year clinical and radiological outcomes using robot-assisted pedicle screw fixation and freehand technique in posterior lumbar interbody fusion: a prospective, randomized controlled trial. Int J Med Robot Comput Assist Surg. 2018;14:8.CrossRef Kim HJ, Kang KT, Chun HJ, Hwang JS, Chang BS, Lee CK, et al. Comparative study of 1-year clinical and radiological outcomes using robot-assisted pedicle screw fixation and freehand technique in posterior lumbar interbody fusion: a prospective, randomized controlled trial. Int J Med Robot Comput Assist Surg. 2018;14:8.CrossRef
36.
Zurück zum Zitat Kim JE, Yoo HS, Choi DJ, Park EJ, Jee SM. Comparison of minimal invasive versus Biportal endoscopic transforaminal lumbar interbody fusion for single-level lumbar disease. Clin Spine Surg. 2021;34:E64-e71.PubMedCrossRef Kim JE, Yoo HS, Choi DJ, Park EJ, Jee SM. Comparison of minimal invasive versus Biportal endoscopic transforaminal lumbar interbody fusion for single-level lumbar disease. Clin Spine Surg. 2021;34:E64-e71.PubMedCrossRef
37.
Zurück zum Zitat Kono Y, Gen H, Sakuma Y, Koshika Y. Comparison of clinical and radiologic results of mini-open transforaminal lumbar interbody fusion and extreme lateral interbody fusion indirect decompression for degenerative lumbar spondylolisthesis. Asian Spine J. 2018;12:356–64.PubMedPubMedCentralCrossRef Kono Y, Gen H, Sakuma Y, Koshika Y. Comparison of clinical and radiologic results of mini-open transforaminal lumbar interbody fusion and extreme lateral interbody fusion indirect decompression for degenerative lumbar spondylolisthesis. Asian Spine J. 2018;12:356–64.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Kotani Y, Abumi K, Ito M, Sudo H, Abe Y, Minami A. Mid-term clinical results of minimally invasive decompression and posterolateral fusion with percutaneous pedicle screws versus conventional approach for degenerative spondylolisthesis with spinal stenosis. Eur Spine J. 2012;21:1171–7.PubMedCrossRef Kotani Y, Abumi K, Ito M, Sudo H, Abe Y, Minami A. Mid-term clinical results of minimally invasive decompression and posterolateral fusion with percutaneous pedicle screws versus conventional approach for degenerative spondylolisthesis with spinal stenosis. Eur Spine J. 2012;21:1171–7.PubMedCrossRef
39.
Zurück zum Zitat Lin L, Liu XQ, Shi L, Cheng S, Wang ZQ, Ge QJ, et al. Comparison of postoperative outcomes between percutaneous endoscopic lumbar interbody fusion and minimally invasive transforaminal lumbar interbody fusion for lumbar spinal stenosis. Front Surg. 2022;9:1–9. Lin L, Liu XQ, Shi L, Cheng S, Wang ZQ, Ge QJ, et al. Comparison of postoperative outcomes between percutaneous endoscopic lumbar interbody fusion and minimally invasive transforaminal lumbar interbody fusion for lumbar spinal stenosis. Front Surg. 2022;9:1–9.
40.
Zurück zum Zitat Mun HY, Ko MJ, Kim YB, Park SW. Usefulness of oblique lateral interbody fusion at L5–S1 level compared to transforaminal lumbar interbody fusion. J Korean Neurosurg Soc. 2020;63:723–9.PubMedCrossRef Mun HY, Ko MJ, Kim YB, Park SW. Usefulness of oblique lateral interbody fusion at L5–S1 level compared to transforaminal lumbar interbody fusion. J Korean Neurosurg Soc. 2020;63:723–9.PubMedCrossRef
41.
Zurück zum Zitat Takaoka H, Inage K, Eguchi Y, Shiga Y, Furuya T, Maki S, et al. Comparison between intervertebral oblique lumbar interbody fusion and transforaminal lumbar interbody fusion: a multicenter study. Sci Rep. 2021;11:16673.PubMedPubMedCentralCrossRef Takaoka H, Inage K, Eguchi Y, Shiga Y, Furuya T, Maki S, et al. Comparison between intervertebral oblique lumbar interbody fusion and transforaminal lumbar interbody fusion: a multicenter study. Sci Rep. 2021;11:16673.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Urquhart JC, Alnaghmoosh N, Gurr KR, Bailey SI, Tallon C, Dehens S, et al. Posterolateral versus posterior interbody fusion in lumbar degenerative spondylolisthesis. Clin Spine Surg. 2018;31:E446–52.PubMedCrossRef Urquhart JC, Alnaghmoosh N, Gurr KR, Bailey SI, Tallon C, Dehens S, et al. Posterolateral versus posterior interbody fusion in lumbar degenerative spondylolisthesis. Clin Spine Surg. 2018;31:E446–52.PubMedCrossRef
43.
Zurück zum Zitat Verla T, Winnegan L, Mayer R, Cherian J, Yaghi N, Palejwala A, et al. Minimally invasive transforaminal versus direct lateral lumbar interbody fusion: effect on return to work, narcotic use, and quality of life. World Neurosurg. 2018;116:E321–8.PubMedCrossRef Verla T, Winnegan L, Mayer R, Cherian J, Yaghi N, Palejwala A, et al. Minimally invasive transforaminal versus direct lateral lumbar interbody fusion: effect on return to work, narcotic use, and quality of life. World Neurosurg. 2018;116:E321–8.PubMedCrossRef
44.
Zurück zum Zitat Wong AP, Smith ZA, Stadler JA, Hu XY, Yan JZ, Li XF, et al. Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF): surgical technique, long-term 4-year prospective outcomes, and complications compared with an open TLIF cohort. Neurosurg Clin. 2014; 25: 279-+. Wong AP, Smith ZA, Stadler JA, Hu XY, Yan JZ, Li XF, et al. Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF): surgical technique, long-term 4-year prospective outcomes, and complications compared with an open TLIF cohort. Neurosurg Clin. 2014; 25: 279-+.
45.
Zurück zum Zitat Yin P, Ding Y, Zhou L, Xu C, Gao H, Pang D, et al. Innovative percutaneous endoscopic transforaminal lumbar interbody fusion of lumbar spinal stenosis with degenerative instability: a non-randomized clinical trial. J Pain Res. 2021;14:3685–93.PubMedPubMedCentralCrossRef Yin P, Ding Y, Zhou L, Xu C, Gao H, Pang D, et al. Innovative percutaneous endoscopic transforaminal lumbar interbody fusion of lumbar spinal stenosis with degenerative instability: a non-randomized clinical trial. J Pain Res. 2021;14:3685–93.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Yu B, Zhang J, Pan J, Wang Y, Chen Y, Zhao W, et al. Psychological and functional comparison between minimally invasive and open transforaminal lumbar interbody fusion for single-level lumbar spinal stenosis. Orthop Surg. 2021;13:1213–26.PubMedPubMedCentralCrossRef Yu B, Zhang J, Pan J, Wang Y, Chen Y, Zhao W, et al. Psychological and functional comparison between minimally invasive and open transforaminal lumbar interbody fusion for single-level lumbar spinal stenosis. Orthop Surg. 2021;13:1213–26.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Zhao L, Xie TH, Wang XD, Yang ZQ, Pu XX, Lu YF, et al. Comparing the medium-term outcomes of lumbar interbody fusion via transforaminal and oblique approach in treating lumbar degenerative disc diseases. Spine J. 2022;22:993–1001.PubMedCrossRef Zhao L, Xie TH, Wang XD, Yang ZQ, Pu XX, Lu YF, et al. Comparing the medium-term outcomes of lumbar interbody fusion via transforaminal and oblique approach in treating lumbar degenerative disc diseases. Spine J. 2022;22:993–1001.PubMedCrossRef
48.
Zurück zum Zitat Gagliardi MJ, Guiroy AJ, Camino-Willhuber G, Joaquim AF, Carazzo CA, Yasuda E, et al. Is indirect decompression and fusion more effective than direct decompression and fusion for treating degenerative lumbar spinal stenosis with instability? A systematic review and meta-analysis. Global Spine J. 2023;13:499–511.PubMedCrossRef Gagliardi MJ, Guiroy AJ, Camino-Willhuber G, Joaquim AF, Carazzo CA, Yasuda E, et al. Is indirect decompression and fusion more effective than direct decompression and fusion for treating degenerative lumbar spinal stenosis with instability? A systematic review and meta-analysis. Global Spine J. 2023;13:499–511.PubMedCrossRef
49.
Zurück zum Zitat Zhou SG, Liu CH, Dai KH, Lai YX. Lumbar fusion for spondylolisthesis: a Bayesian network meta-analysis of randomized controlled trials. Clin Spine Surg. 2020. Zhou SG, Liu CH, Dai KH, Lai YX. Lumbar fusion for spondylolisthesis: a Bayesian network meta-analysis of randomized controlled trials. Clin Spine Surg. 2020.
50.
Zurück zum Zitat Kang YN, Ho YW, Chu W, Chou WS, Cheng SH. Effects and safety of lumbar fusion techniques in lumbar spondylolisthesis: a network meta-analysis of randomized controlled trials. Global Spine J. 2022;12:493–502.PubMedCrossRef Kang YN, Ho YW, Chu W, Chou WS, Cheng SH. Effects and safety of lumbar fusion techniques in lumbar spondylolisthesis: a network meta-analysis of randomized controlled trials. Global Spine J. 2022;12:493–502.PubMedCrossRef
51.
Zurück zum Zitat Said E, Abdel-Wanis ME, Ameen M, Sayed AA, Mosallam KH, Ahmed AM, et al. Posterolateral fusion versus posterior lumbar interbody fusion: a systematic review and meta-analysis of randomized controlled trials. Global spine journal. 2022;12:990–1002.PubMedCrossRef Said E, Abdel-Wanis ME, Ameen M, Sayed AA, Mosallam KH, Ahmed AM, et al. Posterolateral fusion versus posterior lumbar interbody fusion: a systematic review and meta-analysis of randomized controlled trials. Global spine journal. 2022;12:990–1002.PubMedCrossRef
52.
Zurück zum Zitat Xiao YX, Chen QX, Li FC. Unilateral transforaminal lumbar interbody fusion: a review of the technique, indications and graft materials. J Int Med Res. 2009;37:908–17.PubMedCrossRef Xiao YX, Chen QX, Li FC. Unilateral transforaminal lumbar interbody fusion: a review of the technique, indications and graft materials. J Int Med Res. 2009;37:908–17.PubMedCrossRef
53.
Zurück zum Zitat J Zhang TF Liu H Shan ZY Wan Z Wang O Viswanath 2021 Decompression Using Minimally Invasive Surgery for Lumbar Spinal Stenosis Associated with Degenerative Spondylolisthesis: A Review Pain Ther 10 941 959PubMedPubMedCentralCrossRef J Zhang TF Liu H Shan ZY Wan Z Wang O Viswanath 2021 Decompression Using Minimally Invasive Surgery for Lumbar Spinal Stenosis Associated with Degenerative Spondylolisthesis: A Review Pain Ther 10 941 959PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Ge DH, Stekas ND, Varlotta CG, Fischer CR, Petrizzo A, Protopsaltis TS, et al. Comparative analysis of two transforaminal lumbar interbody fusion techniques: open TLIF versus Wiltse MIS TLIF. Spine. 2019;44:E555–60.PubMedCrossRef Ge DH, Stekas ND, Varlotta CG, Fischer CR, Petrizzo A, Protopsaltis TS, et al. Comparative analysis of two transforaminal lumbar interbody fusion techniques: open TLIF versus Wiltse MIS TLIF. Spine. 2019;44:E555–60.PubMedCrossRef
55.
Zurück zum Zitat Yoshikane K, Kikuchi K, Okazaki K. Lumbar endoscopic unilateral laminotomy for bilateral decompression for lumbar spinal stenosis provides comparable clinical outcomes in patients with and without degenerative Spondylolisthesis. World Neurosurgy. 2021;150:e361–71.CrossRef Yoshikane K, Kikuchi K, Okazaki K. Lumbar endoscopic unilateral laminotomy for bilateral decompression for lumbar spinal stenosis provides comparable clinical outcomes in patients with and without degenerative Spondylolisthesis. World Neurosurgy. 2021;150:e361–71.CrossRef
56.
Zurück zum Zitat Wei FL, Zhou CP, Liu R, Zhu KL, Du MR, Gao HR, et al. Management for lumbar spinal stenosis: a network meta-analysis and systematic review. Int J Surg (London, England). 2021;85:19–28.CrossRef Wei FL, Zhou CP, Liu R, Zhu KL, Du MR, Gao HR, et al. Management for lumbar spinal stenosis: a network meta-analysis and systematic review. Int J Surg (London, England). 2021;85:19–28.CrossRef
57.
Zurück zum Zitat Hoffmann CH, Kandziora F [Minimally invasive transforaminal lumbar interbody fusion] Operative Orthopadie und Traumatologie. 2020; 32:180-191 Hoffmann CH,  Kandziora F [Minimally invasive transforaminal lumbar interbody fusion] Operative Orthopadie und Traumatologie. 2020; 32:180-191
58.
Zurück zum Zitat Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg (Hong Kong). 2015;1:2–18. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg (Hong Kong). 2015;1:2–18.
59.
Zurück zum Zitat Schöller K, Alimi M, Cong GT, Christos P, Härtl R. Lumbar spinal stenosis associated with degenerative lumbar spondylolisthesis: a systematic review and meta-analysis of secondary fusion rates following open vs minimally invasive decompression. Neurosurgery. 2017;80:355–67.PubMedCrossRef Schöller K, Alimi M, Cong GT, Christos P, Härtl R. Lumbar spinal stenosis associated with degenerative lumbar spondylolisthesis: a systematic review and meta-analysis of secondary fusion rates following open vs minimally invasive decompression. Neurosurgery. 2017;80:355–67.PubMedCrossRef
60.
Zurück zum Zitat Wu RH, Fraser JF, Härtl R. Minimal access versus open transforaminal lumbar interbody fusion: meta-analysis of fusion rates. Spine. 2010;35:2273–81.PubMedCrossRef Wu RH, Fraser JF, Härtl R. Minimal access versus open transforaminal lumbar interbody fusion: meta-analysis of fusion rates. Spine. 2010;35:2273–81.PubMedCrossRef
61.
Zurück zum Zitat Eck JC, Hodges S, Humphreys SC. Minimally invasive lumbar spinal fusion. J Am Acad Orthop Surg. 2007;15:321–9.PubMedCrossRef Eck JC, Hodges S, Humphreys SC. Minimally invasive lumbar spinal fusion. J Am Acad Orthop Surg. 2007;15:321–9.PubMedCrossRef
Metadaten
Titel
Different lumbar fusion techniques for lumbar spinal stenosis: a Bayesian network meta-analysis
verfasst von
Wei Li
Haibin Wei
Ran Zhang
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
BMC Surgery / Ausgabe 1/2023
Elektronische ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-023-02242-w

Weitere Artikel der Ausgabe 1/2023

BMC Surgery 1/2023 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Deutlich weniger Infektionen: Wundprotektoren schützen!

08.05.2024 Postoperative Wundinfektion Nachrichten

Der Einsatz von Wundprotektoren bei offenen Eingriffen am unteren Gastrointestinaltrakt schützt vor Infektionen im Op.-Gebiet – und dient darüber hinaus der besseren Sicht. Das bestätigt mit großer Robustheit eine randomisierte Studie im Fachblatt JAMA Surgery.

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.