Skip to main content
Erschienen in: Experimental Brain Research 6/2015

01.06.2015 | Research Article

Disruption of the auditory response to a regular click train by a single, extra click

verfasst von: Bernd Lütkenhöner, Roy D. Patterson

Erschienen in: Experimental Brain Research | Ausgabe 6/2015

Einloggen, um Zugang zu erhalten

Abstract

It has been hypothesized that the steady-state response to a periodic sequence of clicks can be modeled as the superposition of responses to single clicks. Here, this hypothesis is challenged by presenting an extra click halfway between two consecutive clicks of a regular series, while measuring the auditory evoked field. After a solitary click at time zero, the click series sounded from 100 to 900 ms, with the extra click presented around 500 ms. The silent period between two stimulus sequences was 310–390 ms (uniformly distributed) so that one stimulation cycle lasted, on average, 1250 ms. Five different click rates between 20 and 60 Hz were examined. The disturbance caused by the extra click was revealed by subtracting the estimated steady-state response from the joint response to the click series and the extra click. The early peaks of the single-click response effectively coincide with same-polarity peaks of the 20-Hz steady-state response. Nevertheless, prediction of the latter from the former proved impossible. However, the 40-Hz steady-state response can be predicted reasonably well from the 20-Hz steady-state response. Somewhat surprisingly, the amplitude of the evoked response to the extra click grew when the click rate of the train was increased from 20 to 30 Hz; the opposite effect would have been expected from research on adaptation. The smaller amplitude at lower click rates might be explained by forward suppression. In this case, the apparent escape from suppression at higher rates might indicate that the clicks belonging to the periodic train are being integrated into an auditory stream, possibly in much the same manner as in classical stream segregation experiments.
Fußnoten
1
For (nominal) click rates of 30 and 60 Hz, the cycle durations were rounded to 33.3 and 16.7 ms, respectively. As a consequence, the exact times of the 500-ms click were 499.6 and 500.8 ms, respectively, and the exact times of the last clicks were 899.2 and 901.6 ms, respectively.
 
2
The time when P30 begins to rise was determined by searching for a zero crossing in the first derivative of the waveform (slightly smoothed using MATLAB function “SMOOTH”).
 
3
The peak latency was determined by finding the largest data value between 20 and 40 ms. The latency of the starting point was determined by finding the smallest data value in the time range between 16 ms and peak. This procedure settles on the latency of peak N19 whenever the latter can be identified.
 
Literatur
Zurück zum Zitat Andermann M, Patterson RD, Geldhauser M, Sieroka N, Rupp A (2014) Duifhuis pitch: neuromagnetic representation and auditory modeling. J Neurophysiol 112:2616–2627CrossRefPubMed Andermann M, Patterson RD, Geldhauser M, Sieroka N, Rupp A (2014) Duifhuis pitch: neuromagnetic representation and auditory modeling. J Neurophysiol 112:2616–2627CrossRefPubMed
Zurück zum Zitat Antonelli A, Cazzavillan A, Gaini R, Grandori F, Oldini C, Vecchi E (1981) Some effects of the stimulus repetition rate on N1 and N2 in transtympanic and surface recordings. Scand Audiol 10:13–19CrossRefPubMed Antonelli A, Cazzavillan A, Gaini R, Grandori F, Oldini C, Vecchi E (1981) Some effects of the stimulus repetition rate on N1 and N2 in transtympanic and surface recordings. Scand Audiol 10:13–19CrossRefPubMed
Zurück zum Zitat Azzena GB, Conti G, Santarelli R, Ottaviani F, Paludetti G, Maurizi M (1995) Generation of human auditory steady-state responses (SSRs). I: stimulus rate effects. Hear Res 83:1–8CrossRefPubMed Azzena GB, Conti G, Santarelli R, Ottaviani F, Paludetti G, Maurizi M (1995) Generation of human auditory steady-state responses (SSRs). I: stimulus rate effects. Hear Res 83:1–8CrossRefPubMed
Zurück zum Zitat Bohórquez J, Özdamar Ö (2008) Generation of the 40-Hz auditory steady-state response (ASSR) explained using convolution. Clin Neurophysiol 119:2598–2607CrossRefPubMed Bohórquez J, Özdamar Ö (2008) Generation of the 40-Hz auditory steady-state response (ASSR) explained using convolution. Clin Neurophysiol 119:2598–2607CrossRefPubMed
Zurück zum Zitat Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. MIT Press, Cambridge Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. MIT Press, Cambridge
Zurück zum Zitat Brugge JF, Nourski KV, Oya H, Reale RA, Kawasaki H, Steinschneider M, Howard MA III (2009) Coding of repetitive transients by auditory cortex on Heschl’s gyrus. J Neurophysiol 102:2358–2374CrossRefPubMedCentralPubMed Brugge JF, Nourski KV, Oya H, Reale RA, Kawasaki H, Steinschneider M, Howard MA III (2009) Coding of repetitive transients by auditory cortex on Heschl’s gyrus. J Neurophysiol 102:2358–2374CrossRefPubMedCentralPubMed
Zurück zum Zitat Capilla A, Pazo-Alvarez P, Darriba A, Campo P, Gross J (2011) Steady-state visual evoked potentials can be explained by temporal superposition of transient event-related responses. PLoS One 6:e14543CrossRefPubMedCentralPubMed Capilla A, Pazo-Alvarez P, Darriba A, Campo P, Gross J (2011) Steady-state visual evoked potentials can be explained by temporal superposition of transient event-related responses. PLoS One 6:e14543CrossRefPubMedCentralPubMed
Zurück zum Zitat Cebulla M, Stürzebecher E, Don M, Muller-Mazzotta J (2012) Auditory brainstem response recording to multiple interleaved broadband chirps. Ear Hear 33:466–479CrossRefPubMed Cebulla M, Stürzebecher E, Don M, Muller-Mazzotta J (2012) Auditory brainstem response recording to multiple interleaved broadband chirps. Ear Hear 33:466–479CrossRefPubMed
Zurück zum Zitat Delgado RE, Özdamar Ö (2004) Deconvolution of evoked responses obtained at high stimulus rates. J Acoust Soc Am 115:1242–1251CrossRefPubMed Delgado RE, Özdamar Ö (2004) Deconvolution of evoked responses obtained at high stimulus rates. J Acoust Soc Am 115:1242–1251CrossRefPubMed
Zurück zum Zitat Eggermont JJ, Odenthal DW (1974) Electrophysiological investigation of the human cochlea. Recruitment, masking and adaptation. Audiology 13:1–22CrossRefPubMed Eggermont JJ, Odenthal DW (1974) Electrophysiological investigation of the human cochlea. Recruitment, masking and adaptation. Audiology 13:1–22CrossRefPubMed
Zurück zum Zitat Fishman YI, Micheyl C, Steinschneider M (2012) Neural mechanisms of rhythmic masking release in monkey primary auditory cortex: implications for models of auditory scene analysis. J Neurophysiol 107:2366–2382CrossRefPubMedCentralPubMed Fishman YI, Micheyl C, Steinschneider M (2012) Neural mechanisms of rhythmic masking release in monkey primary auditory cortex: implications for models of auditory scene analysis. J Neurophysiol 107:2366–2382CrossRefPubMedCentralPubMed
Zurück zum Zitat Fitzpatrick DC, Kuwada S, Kim DO, Parham K, Batra R (1999) Responses of neurons to click-pairs as simulated echoes: auditory nerve to auditory cortex. J Acoust Soc Am 106:3460–3472CrossRefPubMed Fitzpatrick DC, Kuwada S, Kim DO, Parham K, Batra R (1999) Responses of neurons to click-pairs as simulated echoes: auditory nerve to auditory cortex. J Acoust Soc Am 106:3460–3472CrossRefPubMed
Zurück zum Zitat Gutschalk A, Mase R, Roth R, Ille N, Rupp A, Hahnel S, Picton TW, Scherg M (1999) Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clin Neurophysiol 110:856–868CrossRefPubMed Gutschalk A, Mase R, Roth R, Ille N, Rupp A, Hahnel S, Picton TW, Scherg M (1999) Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clin Neurophysiol 110:856–868CrossRefPubMed
Zurück zum Zitat Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. Neuroimage 15:207–216CrossRefPubMed Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. Neuroimage 15:207–216CrossRefPubMed
Zurück zum Zitat Hari R, Hämäläinen M, Joutsiniemi SL (1989) Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am 86:1033–1039CrossRefPubMed Hari R, Hämäläinen M, Joutsiniemi SL (1989) Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am 86:1033–1039CrossRefPubMed
Zurück zum Zitat Heinrich SP (2010) Some thoughts on the interpretation of steady-state evoked potentials. Doc Ophthalmol 120:205–214CrossRefPubMed Heinrich SP (2010) Some thoughts on the interpretation of steady-state evoked potentials. Doc Ophthalmol 120:205–214CrossRefPubMed
Zurück zum Zitat Jewett DL, Caplovitz G, Baird B, Trumpis M, Olson MP, Larson-Prior LJ (2004) The use of QSD (q-sequence deconvolution) to recover superposed, transient evoked-responses. Clin Neurophysiol 115:2754–2775CrossRefPubMedCentralPubMed Jewett DL, Caplovitz G, Baird B, Trumpis M, Olson MP, Larson-Prior LJ (2004) The use of QSD (q-sequence deconvolution) to recover superposed, transient evoked-responses. Clin Neurophysiol 115:2754–2775CrossRefPubMedCentralPubMed
Zurück zum Zitat Jiang ZD, Wu YY, Zhang L (1991) Amplitude change with click rate in human brainstem auditory-evoked responses. Audiology 30:173–182CrossRefPubMed Jiang ZD, Wu YY, Zhang L (1991) Amplitude change with click rate in human brainstem auditory-evoked responses. Audiology 30:173–182CrossRefPubMed
Zurück zum Zitat Korczak P, Smart J, Delgado R, Strobel TM, Bradford C (2012) Auditory steady-state responses. J Am Acad Audiol 23:146–170CrossRefPubMed Korczak P, Smart J, Delgado R, Strobel TM, Bradford C (2012) Auditory steady-state responses. J Am Acad Audiol 23:146–170CrossRefPubMed
Zurück zum Zitat Krumbholz K, Patterson RD, Pressnitzer D (2000) The lower limit of pitch as determined by rate discrimination. J Acoust Soc Am 108:1170–1180CrossRefPubMed Krumbholz K, Patterson RD, Pressnitzer D (2000) The lower limit of pitch as determined by rate discrimination. J Acoust Soc Am 108:1170–1180CrossRefPubMed
Zurück zum Zitat Lammertmann C, Lütkenhöner B (2001) Near-DC magnetic fields following a periodic presentation of long-duration tonebursts. Clin Neurophysiol 112:499–513CrossRefPubMed Lammertmann C, Lütkenhöner B (2001) Near-DC magnetic fields following a periodic presentation of long-duration tonebursts. Clin Neurophysiol 112:499–513CrossRefPubMed
Zurück zum Zitat Lu T, Wang X (2000) Temporal discharge patterns evoked by rapid sequences of wide- and narrowband clicks in the primary auditory cortex of cat. J Neurophysiol 84:236–246PubMed Lu T, Wang X (2000) Temporal discharge patterns evoked by rapid sequences of wide- and narrowband clicks in the primary auditory cortex of cat. J Neurophysiol 84:236–246PubMed
Zurück zum Zitat Lütkenhöner B (1999) Intraindividual grand averaging of neuromagnegtic fields. In: Yoshimoto T, Kotani M, Kuriki S, Karibe H, Nakasato N (eds) Recent advances in biomagnetism. Tohoku University Press, Sendai, pp 256–259 Lütkenhöner B (1999) Intraindividual grand averaging of neuromagnegtic fields. In: Yoshimoto T, Kotani M, Kuriki S, Karibe H, Nakasato N (eds) Recent advances in biomagnetism. Tohoku University Press, Sendai, pp 256–259
Zurück zum Zitat Lütkenhöner B, Lammertmann C, Ross B, Pantev C (2000) Brain stem auditory evoked fields in response to clicks. NeuroReport 11:913–918CrossRefPubMed Lütkenhöner B, Lammertmann C, Ross B, Pantev C (2000) Brain stem auditory evoked fields in response to clicks. NeuroReport 11:913–918CrossRefPubMed
Zurück zum Zitat Lütkenhöner B, Krumbholz K, Lammertmann C, Seither-Preisler A, Steinsträter O, Patterson RD (2003) Localization of primary auditory cortex in humans by magnetoencephalography. Neuroimage 18:58–66CrossRefPubMed Lütkenhöner B, Krumbholz K, Lammertmann C, Seither-Preisler A, Steinsträter O, Patterson RD (2003) Localization of primary auditory cortex in humans by magnetoencephalography. Neuroimage 18:58–66CrossRefPubMed
Zurück zum Zitat Meyer K, Rouiller EM, Loquet G (2007) Direct comparison between properties of adaptation of the auditory nerve and the ventral cochlear nucleus in response to repetitive clicks. Hear Res 228:144–155CrossRefPubMed Meyer K, Rouiller EM, Loquet G (2007) Direct comparison between properties of adaptation of the auditory nerve and the ventral cochlear nucleus in response to repetitive clicks. Hear Res 228:144–155CrossRefPubMed
Zurück zum Zitat Ohashi T, Ochi K, Nishino H, Kenmochi M, Yoshida K (2005) Recovery of human compound action potential using a paired-click stimulation paradigm. Hear Res 203:192–200CrossRefPubMed Ohashi T, Ochi K, Nishino H, Kenmochi M, Yoshida K (2005) Recovery of human compound action potential using a paired-click stimulation paradigm. Hear Res 203:192–200CrossRefPubMed
Zurück zum Zitat Oxenham AJ (2008) Pitch perception and auditory stream segregation: implications for hearing loss and cochlear implants. Trends Amplif 12:316–331CrossRefPubMedCentralPubMed Oxenham AJ (2008) Pitch perception and auditory stream segregation: implications for hearing loss and cochlear implants. Trends Amplif 12:316–331CrossRefPubMedCentralPubMed
Zurück zum Zitat Özdamar Ö, Bohórquez J (2006) Signal-to-noise ratio and frequency analysis of continuous loop averaging deconvolution (CLAD) of overlapping evoked potentials. J Acoust Soc Am 119:429–438CrossRefPubMed Özdamar Ö, Bohórquez J (2006) Signal-to-noise ratio and frequency analysis of continuous loop averaging deconvolution (CLAD) of overlapping evoked potentials. J Acoust Soc Am 119:429–438CrossRefPubMed
Zurück zum Zitat Özdamar Ö, Bohórquez J, Ray SS (2007) Pb (P1) resonance at 40 Hz: effects of high stimulus rate on auditory middle latency responses (MLRs) explored using deconvolution. Clin Neurophysiol 118:1261–1273CrossRefPubMed Özdamar Ö, Bohórquez J, Ray SS (2007) Pb (P1) resonance at 40 Hz: effects of high stimulus rate on auditory middle latency responses (MLRs) explored using deconvolution. Clin Neurophysiol 118:1261–1273CrossRefPubMed
Zurück zum Zitat Parkkonen L, Fujiki N, Mäkelä JP (2009) Sources of auditory brainstem responses revisited: contribution by magnetoencephalography. Hum Brain Mapp 30:1772–1782CrossRefPubMed Parkkonen L, Fujiki N, Mäkelä JP (2009) Sources of auditory brainstem responses revisited: contribution by magnetoencephalography. Hum Brain Mapp 30:1772–1782CrossRefPubMed
Zurück zum Zitat Picton TW, John MS, Dimitrijevic A, Purcell D (2003) Human auditory steady-state responses. Int J Audiol 42:177–219CrossRefPubMed Picton TW, John MS, Dimitrijevic A, Purcell D (2003) Human auditory steady-state responses. Int J Audiol 42:177–219CrossRefPubMed
Zurück zum Zitat Plourde G, Stapells DR, Picton TW (1991) The human auditory steady-state evoked potentials. Acta Otolaryngol Suppl 491:153–159CrossRefPubMed Plourde G, Stapells DR, Picton TW (1991) The human auditory steady-state evoked potentials. Acta Otolaryngol Suppl 491:153–159CrossRefPubMed
Zurück zum Zitat Pratt H, Sohmer H (1976) Intensity and rate functions of cochlear and brainstem evoked responses to click stimuli in man. Arch Otorhinolaryngol 212:85–92CrossRefPubMed Pratt H, Sohmer H (1976) Intensity and rate functions of cochlear and brainstem evoked responses to click stimuli in man. Arch Otorhinolaryngol 212:85–92CrossRefPubMed
Zurück zum Zitat Presacco A, Bohórquez J, Yavuz E, Özdamar Ö (2010) Auditory steady-state responses to 40-Hz click trains: relationship to middle latency, gamma band and beta band responses studied with deconvolution. Clin Neurophysiol 121:1540–1550CrossRefPubMed Presacco A, Bohórquez J, Yavuz E, Özdamar Ö (2010) Auditory steady-state responses to 40-Hz click trains: relationship to middle latency, gamma band and beta band responses studied with deconvolution. Clin Neurophysiol 121:1540–1550CrossRefPubMed
Zurück zum Zitat Pressnitzer D, Patterson RD, Krumbholz K (2001) The lower limit of melodic pitch. J Acoust Soc Am 109:2074–2084CrossRefPubMed Pressnitzer D, Patterson RD, Krumbholz K (2001) The lower limit of melodic pitch. J Acoust Soc Am 109:2074–2084CrossRefPubMed
Zurück zum Zitat Rees A, Green GG, Kay RH (1986) Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man. Hear Res 23:123–133CrossRefPubMed Rees A, Green GG, Kay RH (1986) Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man. Hear Res 23:123–133CrossRefPubMed
Zurück zum Zitat Roberts B, Glasberg BR, Moore BCJ (2002) Primitive stream segregation of tone sequences without differences in fundamental frequency or passband. J Acoust Soc Am 112:2074–2085CrossRefPubMed Roberts B, Glasberg BR, Moore BCJ (2002) Primitive stream segregation of tone sequences without differences in fundamental frequency or passband. J Acoust Soc Am 112:2074–2085CrossRefPubMed
Zurück zum Zitat Ross B, Herdman AT, Pantev C (2005) Stimulus induced desynchronization of human auditory 40-Hz steady-state responses. J Neurophysiol 94:4082–4093CrossRefPubMed Ross B, Herdman AT, Pantev C (2005) Stimulus induced desynchronization of human auditory 40-Hz steady-state responses. J Neurophysiol 94:4082–4093CrossRefPubMed
Zurück zum Zitat Santarelli R, Maurizi M, Conti G, Ottaviani F, Paludetti G, Pettorossi VE (1995) Generation of human auditory steady-state responses (SSRs). II: addition of responses to individual stimuli. Hear Res 83:9–18CrossRefPubMed Santarelli R, Maurizi M, Conti G, Ottaviani F, Paludetti G, Pettorossi VE (1995) Generation of human auditory steady-state responses (SSRs). II: addition of responses to individual stimuli. Hear Res 83:9–18CrossRefPubMed
Zurück zum Zitat Schadwinkel S, Gutschalk A (2010) Activity associated with stream segregation in human auditory cortex is similar for spatial and pitch cues. Cereb Cortex 20:2863–2873CrossRefPubMed Schadwinkel S, Gutschalk A (2010) Activity associated with stream segregation in human auditory cortex is similar for spatial and pitch cues. Cereb Cortex 20:2863–2873CrossRefPubMed
Zurück zum Zitat Schadwinkel S, Gutschalk A (2011) Transient bold activity locked to perceptual reversals of auditory streaming in human auditory cortex and inferior colliculus. J Neurophysiol 105:1977–1983CrossRefPubMed Schadwinkel S, Gutschalk A (2011) Transient bold activity locked to perceptual reversals of auditory streaming in human auditory cortex and inferior colliculus. J Neurophysiol 105:1977–1983CrossRefPubMed
Zurück zum Zitat Serkov FN, Leonova EF, Shelest II (1969) Evoked potentials of the auditory cortex on paired stimuli. Neurophysiology 1:42–49CrossRef Serkov FN, Leonova EF, Shelest II (1969) Evoked potentials of the auditory cortex on paired stimuli. Neurophysiology 1:42–49CrossRef
Zurück zum Zitat Shore SE, Nuttall AL (1985) High-synchrony cochlear compound action potentials evoked by rising frequency-swept tone bursts. J Acoust Soc Am 78:1286–1295CrossRefPubMed Shore SE, Nuttall AL (1985) High-synchrony cochlear compound action potentials evoked by rising frequency-swept tone bursts. J Acoust Soc Am 78:1286–1295CrossRefPubMed
Zurück zum Zitat Snyder JS, Alain C (2007) Toward a neurophysiological theory of auditory stream segregation. Psychol Bull 133:780–799CrossRefPubMed Snyder JS, Alain C (2007) Toward a neurophysiological theory of auditory stream segregation. Psychol Bull 133:780–799CrossRefPubMed
Zurück zum Zitat Stapells DR, Linden D, Suffield JB, Hamel G, Picton TW (1984) Human auditory steady state potentials. Ear Hear 5:105–113CrossRefPubMed Stapells DR, Linden D, Suffield JB, Hamel G, Picton TW (1984) Human auditory steady state potentials. Ear Hear 5:105–113CrossRefPubMed
Zurück zum Zitat Steinschneider M, Reser DH, Fishman YI, Schroeder CE, Arezzo JC (1998) Click train encoding in primary auditory cortex of the awake monkey: evidence for two mechanisms subserving pitch perception. J Acoust Soc Am 104:2935–2955CrossRefPubMed Steinschneider M, Reser DH, Fishman YI, Schroeder CE, Arezzo JC (1998) Click train encoding in primary auditory cortex of the awake monkey: evidence for two mechanisms subserving pitch perception. J Acoust Soc Am 104:2935–2955CrossRefPubMed
Zurück zum Zitat Stürzebecher E, Cebulla M, Neumann K (2003) Click-evoked ABR at high stimulus repetition rates for neonatal hearing screening. Int J Audiol 42:59–70CrossRefPubMed Stürzebecher E, Cebulla M, Neumann K (2003) Click-evoked ABR at high stimulus repetition rates for neonatal hearing screening. Int J Audiol 42:59–70CrossRefPubMed
Zurück zum Zitat Suzuki T, Kobayashi K, Umegaki Y (1994) Effect of natural sleep on auditory steady state responses in adult subjects with normal hearing. Audiology 33:274–279CrossRefPubMed Suzuki T, Kobayashi K, Umegaki Y (1994) Effect of natural sleep on auditory steady state responses in adult subjects with normal hearing. Audiology 33:274–279CrossRefPubMed
Zurück zum Zitat Thornton AR, Coleman MJ (1975) The adaptation of cochlear and brainstem auditory evoked potentials in humans. Electroencephalogr Clin Neurophysiol 39:399–406CrossRefPubMed Thornton AR, Coleman MJ (1975) The adaptation of cochlear and brainstem auditory evoked potentials in humans. Electroencephalogr Clin Neurophysiol 39:399–406CrossRefPubMed
Zurück zum Zitat Valderrama JT, Alvarez I, de la Torre A, Segura JC, Sainz M, Vargas JL (2012) Recording of auditory brainstem response at high stimulation rates using randomized stimulation and averaging. J Acoust Soc Am 132:3856–3865CrossRefPubMed Valderrama JT, Alvarez I, de la Torre A, Segura JC, Sainz M, Vargas JL (2012) Recording of auditory brainstem response at high stimulation rates using randomized stimulation and averaging. J Acoust Soc Am 132:3856–3865CrossRefPubMed
Zurück zum Zitat Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445CrossRefPubMed Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445CrossRefPubMed
Zurück zum Zitat Wickesberg RE, Stevens HE (1998) Responses of auditory nerve fibers to trains of clicks. J Acoust Soc Am 103:1990–1999CrossRefPubMed Wickesberg RE, Stevens HE (1998) Responses of auditory nerve fibers to trains of clicks. J Acoust Soc Am 103:1990–1999CrossRefPubMed
Zurück zum Zitat Yoshie N (1968) Auditory nerve action potential responses to clicks in man. Laryngoscope 78:198–215CrossRefPubMed Yoshie N (1968) Auditory nerve action potential responses to clicks in man. Laryngoscope 78:198–215CrossRefPubMed
Zurück zum Zitat Yrttiaho S, Tiitinen H, May PJ, Leino S, Alku P (2008) Cortical sensitivity to periodicity of speech sounds. J Acoust Soc Am 123:2191–2199CrossRefPubMed Yrttiaho S, Tiitinen H, May PJ, Leino S, Alku P (2008) Cortical sensitivity to periodicity of speech sounds. J Acoust Soc Am 123:2191–2199CrossRefPubMed
Metadaten
Titel
Disruption of the auditory response to a regular click train by a single, extra click
verfasst von
Bernd Lütkenhöner
Roy D. Patterson
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Experimental Brain Research / Ausgabe 6/2015
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-015-4260-6

Weitere Artikel der Ausgabe 6/2015

Experimental Brain Research 6/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Demenzkranke durch Antipsychotika vielfach gefährdet

Demenz Nachrichten

Der Einsatz von Antipsychotika gegen psychische und Verhaltenssymptome in Zusammenhang mit Demenzerkrankungen erfordert eine sorgfältige Nutzen-Risiken-Abwägung. Neuen Erkenntnissen zufolge sind auf der Risikoseite weitere schwerwiegende Ereignisse zu berücksichtigen.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.