Skip to main content
Erschienen in: BMC Cancer 1/2019

Open Access 01.12.2019 | Research article

Droplet digital PCR as an alternative to FISH for MYCN amplification detection in human neuroblastoma FFPE samples

verfasst von: Dinesh Babu Somasundaram, Sheeja Aravindan, Zhongxin Yu, Muralidharan Jayaraman, Ngoc T. B. Tran, Shibo Li, Terence S. Herman, Natarajan Aravindan

Erschienen in: BMC Cancer | Ausgabe 1/2019

Abstract

Background

MYCN amplification directly correlates with the clinical course of neuroblastoma and poor patient survival, and serves as the most critical negative prognostic marker. Although fluorescence in situ hybridization (FISH) remains the gold standard for clinical diagnosis of MYCN status in neuroblastoma, its limitations warrant the identification of rapid, reliable, less technically challenging, and inexpensive alternate approaches.

Methods

In the present study, we examined the concordance of droplet digital PCR (ddPCR, in combination with immunohistochemistry, IHC) with FISH for MYCN detection in a panel of formalin-fixed paraffin-embedded (FFPE) human neuroblastoma samples.

Results

In 112 neuroblastoma cases, ddPCR analysis demonstrated a 96–100% concordance with FISH. Consistently, IHC grading revealed 92–100% concordance with FISH. Comparing ddPCR with IHC, we observed a concordance of 95–98%.

Conclusions

The results demonstrate that MYCN amplification status in NB cases can be assessed with ddPCR, and suggest that ddPCR could be a technically less challenging method of detecting MYCN status in FFPE specimens. More importantly, these findings illustrate the concordance between FISH and ddPCR in the detection of MYCN status. Together, the results suggest that rapid, less technically demanding, and inexpensive ddPCR in conjunction with IHC could serve as an alternate approach to detect MYCN status in NB cases, with near-identical sensitivity to that of FISH.
Hinweise
Dinesh Babu Somasundaram and Sheeja Aravindan contributed equally to this work.
Abkürzungen
CISH
Chromogenic in situ FISH
ddPCR
Droplet Digital PCR
FFPE
Formalin-fixed, paraffin-embedded
FISH
Fluorescence in situ hybridization
IHC
Immunohistochemistry
IQ-FISH
Interphase quantitative FISH
MYCN
V-myc myelocytomatosis viral-related oncogene, neuroblastoma-derived [avian]
NB
Neuroblastoma
N-myc
Proto-oncogene protein, basic helix-loop-helix protein 37 (bHLHe37), protein encoded by the MYCN gene.
OS
Overall survival
PCR
Polymerase chain reaction
QPCR
Quantitative PCR

Background

Neuroblastoma (NB) is the most common cancer in infants less than one year old (28%) [1, 2], and accounts for about 6% of all cancers in children [3]. In the United States, the neuroblastoma incidence rate has remained constant at approximately 700 new cases per year [4], and heavily contributes to pediatric cancer deaths (9.1%) [3, 5, 6]. Although significant improvements in overall survival (OS, 40–65%) [5, 6] have been achieved for children with NB in the past thirty years, such OS data mask significant variability in outcomes for different risk groups. Although the patients who present with low-risk (stage 1 and 2) NB experience a complete cure, more than half of the patients with high-risk NB will relapse with hematogenous metastasis [7], despite intensive multimodal therapy [5, 6, 815]. A cure after relapse of progressive disease is extremely rare, with a 5-year OS of < 10% and, 2% long-term survival; compared with 65% in low/intermediate-risk disease (38–71% long-term survival) [5, 6, 8, 9, 11, 12, 14, 16]. High-risk disease is typically characterized by several genetic alterations that indicate and/or drive poor prognosis for patients with NB, including amplification of the MYCN oncogene.
MYCN (V-myc myelocytomatosis viral-related oncogene, neuroblastoma-derived [avian]) is a cellular proto-oncogene of the MYC family of transcription factors. MYCN maps to the short arm of chromosome 2 at band 2p24.3. MYCN amplification encoding the transcription factor N-MYC has been documented in most of the malignant neuroblastomas that cover about 20–25% of all NB [17]. MYCN amplification has also been associated with many chromosomal events, including loss of the distal short arm of 1p, aberration at 11q, and gain of 17q [18]. N-MYC acts as a transcription factor recognizing a consensus sequence (CACGTG) and can activate genes that affect cell growth and differentiation [19]. Thus, MYCN amplification is associated with advanced stage, rapid tumor progression, and poor prognosis [20, 21]. Less than 5% of patients with early disease showed MYCN amplification, compared with 30–40% of patients with advanced disease [22]. MYCN amplification values usually range between 50 and 100 fold, although much higher values have been reported. Since research has revealed the association of MYCN amplification with NB evolution [23, 24], independent from disease stage and age at diagnosis, MYCN amplification has been used as the biomarker for risk stratification [17, 25, 26]. Thus, assessment of MYCN amplification is essential for the diagnostic evaluation of patients with NB [27]. MYCN amplification status in NB must be assessed across all conditions (i.e., new diagnosis, prognosis, prospective and retrospective) and in immediate facilities, without any limitations.
Since the original discovery of MYCN amplification in a substantial subset of patients with NB [23], a number of methodologies, including southern blotting [28], polymerase chain reaction (PCR) [29], differential PCR [30], quantitative PCR (QPCR) [31], fluorescence in situ hybridization (FISH) [32]/direct FISH [33], interphase quantitative FISH (IQ-FISH) [34], and chromogenic in situ FISH (CISH) [35] have been validated as assessment methods. In addition, immunohistochemistry (IHC) can be a convenient and cost-effective approach. Earlier studies have indicated that N-myc protein expression could serve as one of the most unfavorable prognostic factors in NB patients [36, 37]. However, in addition to its technical limitations (e.g., quality of antibody, sensitivity, selectivity), N-myc expression as a stand-alone measure may not always translate to amplification status and could lead to equivocal outcomes.
MYCN detection by FISH is widely accepted and currently used in clinical settings. With the ability to demonstrate the state of amplification heterogeneity of the tumor cells and the nature of amplification units (double-minute chromosomes or homogeneously stained regions), detection of MYCN amplification with FISH remains a reliable method. Despite such benefits, FISH assay is subjective evaluation of images, technically demanding, extremely expensive, and requires good fluorescence scope and technical expertise [38]. Many diagnostic laboratories lack either the expertise or the facilities to perform the test. Even in ideal circumstances, the results are often difficult to interpret, requiring the scrutiny of large numbers of individual cells by a highly experienced diagnostician [39]. Also, studies have shown that despite for its high specificity, FISH assay exhibited extremely low (~ 58%) sensitivity. In addition, the technical difficulties in using FFPE specimens for FISH assay (probes ability to penetrate the tissue, high-level of auto-fluorescence, ghost nuclei, loss or weak signals etc.,) and the extremely low sensitivity in FFPE specimens remain the major limitations in using such collections. Other limitations are discussed in detail elsewhere [40]. It is important to develop rapid, reliable, and cost-effective alternative strategies to assess MYCN amplification in fresh, frozen, or formalin-fixed, paraffin-embedded (FFPE) NB samples. Accordingly, we investigated the potential advantages of using highly sensitive Droplet Digital PCR (ddPCR) [41] technology in conjunction with qualitative IHC to detect MYCN amplification in fresh, frozen, and FFPE NB samples, and compared it with the current standard of detection, FISH.

Methods

We examined specimens from 116 cases of human NB. Specimens were collected from our institutional (University of Oklahoma Health Sciences, OUHSC) pediatrics pathology collection (82 specimens), the Oregon Health and Science University Biospecimen core (24 specimens) and the NIH-NCI Cooperative Human Tissue Network (CHTN, 10 specimens). All protocols were approved by the University of Oklahoma Health Sciences Center Institutional Review Board with permission for the research use of de-identified specimens. All experiments were performed in accordance with the University of Oklahoma Health Sciences Institutional Review Board guidelines and regulations for the protection of human subjects. Hematoxylin-eosin stained sections were examined by a pediatric pathologist. Only cases with sufficient percent tumor (and minimal necrosis) and adequate tumor volume for multiple assays were included. On this basis, four specimens were excluded. The results were computed for a total of 112 samples, of which 79 specimens had known MYCN status, as assessed in clinics using FISH analysis.

MYCN amplification detection by FISH

For FISH analysis, the tumor region in 4-μm-thick FFPE sections was selected by the pathologist. For MYCN amplification, Kreatech™ MYCN (2p24) / AFF3 (2q11) FISH probe (Leica Biosystems Inc., Buffalo Grove, IL, USA) was used. MYCN Amplification at region 2p24 will show several red signals compared with the control AFF3 (2q11) region, which will provide two signals (Fig. 1). FISH assays were performed in the Cytogenetic Molecular division of the OUHSC Pediatrics Clinical Genetics Core and in the Tissue Pathology Core of the Stephenson Cancer Center, following standard protocols. Ten specimens, including four with known MYCN status (two amplified and two non-amplified; for assay controls) and six with unknown status were independently assayed in the two facilities. The FISH signals were independently evaluated by two investigators (NA, DS) and validated by a pediatric pathologist (ZY).

N-myc expression detection by IHC

All tissue section processing and immunohistochemistry (IHC) was performed in the Tissue Pathology Core of the Stephenson Cancer Center, as described in our earlier studies [4244]. Mouse monoclonal N-myc antibody raised against human N-myc mapping to 2p24.3 (Santa Cruz Biotechnology Inc., Dallas, TX) was used. N-myc IHC was performed utilizing an automated IHC machine (Leica Bond III), according to the manufacturer’s protocol, using the Bond™ Polymer Refine detection system. A peroxidase-diaminobenxidine visualization process, which gave positive immunoreactivity a brown color, was employed. Appropriate tissue histology controls stained with hematoxylin-eosin stain and negative controls with no primary antibody were examined in parallel. The slides were digitally scanned into virtual slides using an Aperio Scan Scope (Aperio Technologies, Inc., Buffalo Grove, IL, USA) slide scanner at 20x magnification. The whole slide images were then group-analyzed for N-myc -specific positivity using Aperio image analysis and quantification software (Aperial Tool Box) with the appropriate algorithms for IHC. Automated strong nuclear positivity was quantified and the metadata were exported to Excel. N-myc expression was independently graded by two pathologists (ZY, NTT) who were blinded to FISH and ddPCR status. Scores for N-myc immunoreactivity in IHC staining were graded on a scale of 0–3 (0 = negative, 1 = weak, 2 = moderate, 3 = strong; Fig. 2). For inter-assay crisscross analysis, IHC grading results were further computed to fit the criteria, true positive vs. true negative expression. For this, grading scales of 2 and 3 are regarded as ‘positive’ and scale 1 and 0 as ‘negative’.

MYCN amplification by ddPCR

For DNA isolation, ten 6-μM-thick sections were cut from each FFPE block and were collected in DNAse-free sterile microcentrifuge tubes. Genomic DNA was extracted using a HighPrep™ FFPE Tissue DNA Kit (MagBio, Gaithersburg, MD) according to the manufacturer’s protocol. The quality and the quantity of the isolated DNA were determined using our routine laboratory protocols [45]. MYCN copy number variations were assessed using TaqMan Copy Number (Hs00658058_cn, ThermoFisher Scientific, Waltham, MA) assay. RNaseP (4,403,326, ThermoFisher) assay was used for reference gene. For ddPCR, the HINDIII-digested DNA (5 ng) was subjected to PCR (final reaction volume of 20 μL) utilizing ddPCR™ Supermix for probes (BioRad, Hercules, CA). To generate droplets, individual reaction mixtures were then loaded into a DG8 cartridge (Bio-Rad) with 70 μL of droplet generation oil. The droplets from each well were transferred into a 96-well PCR plate, heat-sealed, and subjected to PCR: 95 °C for 10 min, followed by 40 cycles of 94 °C for 30 s, 60 °C for 1 min, and 98 °C for 10 min. The droplets of each well were then analyzed in a QX100 droplet reader (Bio-Rad) and were quantified using target DNA. The outcome data were analyzed using QuantaSoft version 1.7.4.0917 (Bio-Rad), and the copy number variation was determined (Fig. 3).

Statistical analysis

All statistical analyses and graph plots were performed using GraphPad Prism software. Correlations between each assay were evaluated using nonlinear regression analysis, and the goodness of fit was calculated. Nonlinear regression analysis fits our model, which offers more options such as, the ability to compare two models (ddPCR vs FISH; ddPCR vs IHC; IHC vs FISH), apply weighting, automatically exclude outliers and perform normality tests on the residuals. In this study, for specimens with known FISH status (n = 79) the goodness of fit was calculated independently for ddPCR or IHC against FISH data. For the specimens with unknown FISH status (n = 33) the goodness of fit was calculated independently for ddPCR and FISH against IHC data. In each case, the quantification of the goodness-of-fit was presented as R square.

Results

Seventy-nine specimens had known MYCN status per FISH analyses (n = 14, MYCN-amplified; n = 65, non-amplified). In these 79 specimens with known MYCN status, ddPCR demonstrated MYCN amplification in 11 specimens and no amplification in 68 specimens (Table 1, Fig. 4). Compared with FISH data, ddPCR results had 79% concordance (11/14) for amplified samples and 100% concordance (65/65) for non-amplified samples (Table 1, Fig. 4). Computing together the amplified and non-amplified cases, ddPCR results showed outstanding agreement (96.2% concordance and 3.8% discordance) with the FISH analysis (Table 1). Conversely, N-myc IHC coupled with pathologists’ grading revealed N-myc expression in 15 specimens and no expression in 64 specimens. Compared with FISH data, MYCN IHC results had concordance of 73% (11/15) for positive N-myc expression and 95.3% (61/64) concordance for negative N-myc expression (Table 1, Fig. 4). Overall, IHC results showed excellent agreement (91.2% concordance) with FISH. More importantly, comparative analysis between ddPCR and IHC data analysis revealed 100% concordance for MYCN-amplified cases (Table 1, Fig. 4). Conversely, we observed a concordance of about 94.1% (64/68) for non-amplified cases with ddPCR results (Table 1). For all 79 cases, there was a 94.9% concordance between ddPCR and IHC. Together, the ddPCR results coupled with IHC data corroborated with the known FISH status and strongly suggest that ddPCR and IHC could serve as an alternative to FISH, particularly for FFPE specimens.
Table 1
Inter-assay concordance analysis of human MYCN status determined by ddPCR, IHC (N-myc) and FISH in human neuroblastoma
DD-PCR
FISH Amplified
FISH Non-amplified
Concordance by DDPCR
Discordance by DDPCR
 Non-amplified (n = 68)
3
65
(65/65)100%
(0/65)0%
 Amplified (n = 11)
11
0
(11/14)79%
(3/14)21%
IHC
FISH Amplified
FISH Non-amplified
Concordance by IHC
Discordance by IHC
 Negative (n = 64)
3
61
(61/64)95.3%
(3/64)4.7%
 Positive (n = 15)
11
4
(11/15)73%
(4/15)27%
DD-PCR
IHC Positive
IHC Negative
Concordance by DDPCR
Discordance by DDPCR
 Non-amplified (n = 68)
4
64
(64/68)94.1%
(4/68)5.9%
 Amplified (n = 11)
11
0
(11/11)100%
(0/11)0%
A total of 79 selected cases with known MYCN status (14 amplified and 65 non-amplified) assessed by FISH as a part of clinical diagnosis were included in the analysis. Number of cases and percent measures of concordance in FISH vs ddPCR, IHC vs. FISH, and ddPCR vs. IHC are presented for amplified and non-amplified cases
To substantiate the benefits of using ddPCR in conjunction with IHC for MYCN amplification detection, we investigated the feasibility of assessment in a cohort of 33 NB cases with unknown MYCN status. First, as a fail-proof measure, we performed FISH on 10 cases, four with known MYCN status (two amplified and two non-amplified) and six from the cohort of unknown status. Since it is extremely challenging to perform FISH in FFPE sections, particularly in stored sections, and often produced equivocal results, two independent core facilities performed FISH with the same set of slides. The FISH analysis for the cases with known status yielded consistent results from both facilities, and served as the positive and negative controls for the assay (Fig. 1). Of the six cases with unknown status, FISH analysis revealed MYCN amplification in one specimen and no amplification in the remaining 5 specimens. ddPCR analysis of all 33 cases showed three cases with MYCN amplification and 30 cases without amplification (Fig. 5). In addition, IHC grading analysis revealed positive expression of N-myc in four cases and negative expression in 29 cases. Compared with ddPCR data, IHC had 96.7% concordance (29/30) for non-amplified samples and 100% concordance (3/3) for amplified cases (Table 2, Fig. 5). More importantly, comparative analysis between all three assay platforms demonstrated perfect concordance (100%) of FISH results with both the ddPCR and IHC analysis (Table 2, Fig. 5).
Table 2
Inter-assay concordance analysis of human MYCN status determined by ddPCR and IHC (N-myc) in human NB
DD-PCR
IHC Positive
IHC Negative
Concordance by DDPCR
Discordance by DDPCR
Non-amplified (n = 30)
1
29
(29/30)96.7%
(1/30)3.3%
Amplified (n = 3)
3
0
(3/3)100%
(0/3)0%
A total of 33 blinded cases with unknown MYCN status were included in the analysis. Number of cases and percent measures of concordance in ddPCR vs. IHC is presented for amplified and non-amplified cases

Discussion

Digital droplet PCR is a promising platform for high throughput assessment and quantitation of the targeted copy number variation. In this study, we demonstrate that the ddPCR platform is comparable to traditional FISH method for MYCN gene amplification in NB. In about 20–25% of neuroblastomas, poor prognosis has been directly correlated with MYCN oncogene [46] amplification, which has been shown to orchestrate rapid progression and therapy resistance [20, 4749]. Since MYCN amplification is directly correlated with aggressive clinical course of NB and poor patient survival, it has been recognized as the most critical negative prognostic marker. To that end, MYCN amplification status currently guides the therapeutic strategy in children with otherwise favorable prognostic indicators [50]. Due to its significance, reliable laboratory data for evaluating MYCN status are essential. Currently, FISH analysis (MYCN status at the level of DNA) and IHC (protein expression) are used in clinical diagnosis. Although IHC is easy to perform, rapid, and relatively cost-effective, limitations, including the sensitivity, specificity and functional relevance, indicate that IHC should be considered only as a secondary and/or confirmatory approach. To date, FISH analysis remains the gold standard for assessing MYCN amplification status in NB. However, it is technically demanding, very expensive, and requires specific equipment and expertise [38, 39]. Moreover, it is highly challenging to perform FISH assays in FFPE sections. Such limitations [40] highlight the need for the development and use of less expensive, less technically demanding, easily accessible, and rapid methods for MYCN detection in NB that could produce near-identical sensitivity to that of FISH.
The results presented here show that detection of MYCN amplification by ddPCR will fill this gap with 96–100% concordance and could serve as an alternative to FISH analysis. However, the present study did not compare the sensitivity and specificity of FISH and ddPCR protocols in the NB setting. The results presented here, for the first time, demonstrate that ddPCR in conjunction with IHC grading could serve as an alternative to detect MYCN amplification status in NB specimens. Our experience in detecting MYCN using FFPE specimens clearly shows that ddPCR is less challenging than FISH analysis.
ddPCR has been adopted in the determination of copy number variation an array of tumor systems, including breast cancer [51], gastric cancer [52], and lung cancer [53]. Researchers have reported the benefit of using ddPCR in FFPE specimens [54, 55]. The results of the present study, for the first time, indicated the potential use of ddPCR in the detection of MYCN amplification status in NB cases and further recognized the reliability and feasibility of ddPCR in determining MYCN status from FFPE specimens. High-throughput ddPCR yields absolute quantitation of DNA copy number with an immediate utility to determine copy number variation and detect rare alleles and circulating DNA. Compared with FISH, ddPCR offers high-throughput analysis with simple workflow [56], and is cost-effective (~$30/rxn vs. a minimum of $300 for FISH). Moreover, ddPCR is highly sensitive, provides absolute copy number variation, utilizes low DNA concentration, allows absolute quantitation, and is a rapid process (8-10 h/16 samples from DNA-isolation to ddPCR readout vs. days for FISH). ddPCR sample analysis time frame could be extrapolated for 96 samples with added time for additional sample DNA isolation. Also, ddPCR analysis demands basic technical expertise compared to FISH assay that requires scrutiny of large numbers of individual cells by a highly experienced diagnostician. Further, the technical difficulties (probes ability to penetrate the tissue, high-level of auto-fluorescence, ghost nuclei, loss or weak signals etc.,) in FISH for handling FFPE specimens are entirely eluded in ddPCR (directly utilize DNA) and hence offers relatively high sensitivity. Although the FISH to ddPCR discordance rate observed here was negligible (0–5%), many factors could be responsible and should be considered limitations for ddPCR. These factors include the variability in the quality of DNA extracted from FFPE samples, availability of tumor tissues in the sections, tumor to necrosis ratio, and technical issues in droplet generation. To that end, ddPCR includes a multi-step (requirement to generate droplets) procedure and the specific target is limited. Furthermore, this study did not include the microdissection method to obtain cancer cells from the FFPE samples for ddPCR processing. Despite, this method is highly efficient as it enables objective evaluation with the provision of numerical values when compared to conventional methods that depend on the subjective evaluation of images. In addition to the limitations of ddPCR discussed above, authors acknowledge that ddPCR requires designated space to minimize the risk of contamination that could limit its adoption in some clinical environments. Also on a minor note, at least in the present study, ddPCR utilizes relatively more tissue (10 × 6 μM sections) while for FISH analysis only two 4 μM sections is used. However owing to its advantages ddPCR platform could serve as a promising alternative for the conventional methods. Also, ddPCR platform will be highly useful for retrospective studies that involve analysis of samples in hundreds.
Studies have clearly affirmed that N-myc protein expression could serve as one of the most unfavorable prognostic factors in NB patients [36, 37]. However, the discordance between FISH and IHC or ddPCR and IHC could be attributable to factors including variability in tissue fixation/processing, variable sensitivity/specificity of commercially available antibodies, variations in grading criteria and inter-observer variability in data interpretation [57]. Furthermore, IHC measures the amount of accumulated N-myc protein that could greatly depend on the transcriptional and post-transcriptional mechanisms existing in some tumors. The results presented in this study affirms the prognostic significance of N-myc expression and aligns with the earlier COG study [37]. To that end, the claim is that N-myc expression with IHC could serve as an additional validation to define MYCN status when used in conjunction with ddPCR.
In conclusion, the results of the present study showed that MYCN amplification status in NB cases could be assessed by relatively cost-effective, rapid, feasible, and reliable high-throughput ddPCR. Further, the results indicated that ddPCR could serve as a less technically challenging method to detect MYCN status in FFPE NB specimens. These findings revealed the concordance between FISH and ddPCR analyses in the detection of MYCN amplification status in FFPE NB specimens. Overall, the results presented here suggest that ddPCR, in conjunction with IHC, could serve as an alternate approach to detect MYCN status in NB cases, with near-identical sensitivity to FISH. This approach is highly beneficial in two settings (i) in places where there is a shortage of expertise, instrumentation and funds to use FISH and (ii) when there is a retrospective study involving hundreds and thousands of cases to investigate. Furthermore, the ddPCR approach has significant advantage over FISH for the FFPE specimens.

Acknowledgements

The authors acknowledge the neuroblastoma specimen providers: Department of Pathology, University of Oklahoma Health Sciences Center; Cooperative Human Tissue Network (CHTN), which is funded by the National Cancer Institute (NCI), and; Oregon Health and Science University Biospecimen core. The authors acknowledge the Stephenson Cancer Center (SCC) – COBRE Histochemistry and immunology core, SCC-COBRE Biospecimen pathology core, and OUHSC Pediatrics Clinical Genetics Core - Cytogenetic Molecular division for their services. The authors also acknowledge the OUHSC Staff Editor (Ms. Kathy Kyler) for the help in critically reviewing this manuscript.

Funding

The authors are supported by research funding from the National Institutes of Health (NIH 1P20GM103639–01) Centers of Biomedical Research Excellence (COBRE) Program and the University of Oklahoma Health Sciences Center (OUHSC) Department of Radiation Oncology Research Development Funds.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.
All protocols were approved by the University of Oklahoma Health Sciences Center Institutional Review Board with permission for the research use of de-identified specimens (OUHSC IRB #6207). All experiments were performed in accordance with the University of Oklahoma Health Sciences Institutional Review Board guidelines and regulations for the protection of human subjects.
Not Applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Marc TG, Gurney JG, Smith MA, Olshan AF: Sympathetic nervous system tumors. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995, National Cancer Institute, Bethesda, 1999, NIH Pub. No. 99–4649(ICCC IV):65–72. Marc TG, Gurney JG, Smith MA, Olshan AF: Sympathetic nervous system tumors. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995, National Cancer Institute, Bethesda, 1999, NIH Pub. No. 99–4649(ICCC IV):65–72.
2.
Zurück zum Zitat Gurney JG, Smith MA, Ross JA. Cancer among infants. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995. Bethesda: National Cancer Institute; 1999, NIH Pub. No. 99–4649 (XII). p. 149–56. Gurney JG, Smith MA, Ross JA. Cancer among infants. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995. Bethesda: National Cancer Institute; 1999, NIH Pub. No. 99–4649 (XII). p. 149–56.
3.
Zurück zum Zitat Society AC: Cancer Facts & Figures 2017. Atlanta: American Cancer Society 2017, 1 (1):1–56. Society AC: Cancer Facts & Figures 2017. Atlanta: American Cancer Society 2017, 1 (1):1–56.
5.
Zurück zum Zitat Morgenstern DA, Baruchel S, Irwin MS. Current and future strategies for relapsed neuroblastoma: challenges on the road to precision therapy. J Pediatr Hematol Oncol. 2013;35(5):337–47.CrossRef Morgenstern DA, Baruchel S, Irwin MS. Current and future strategies for relapsed neuroblastoma: challenges on the road to precision therapy. J Pediatr Hematol Oncol. 2013;35(5):337–47.CrossRef
6.
Zurück zum Zitat Smith MA, Seibel NL, Altekruse SF, Ries LA, Melbert DL, O'Leary M, Smith FO, Reaman GH. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010;28(15):2625–34.CrossRef Smith MA, Seibel NL, Altekruse SF, Ries LA, Melbert DL, O'Leary M, Smith FO, Reaman GH. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010;28(15):2625–34.CrossRef
7.
Zurück zum Zitat Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007;369(9579):2106–20.CrossRef Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007;369(9579):2106–20.CrossRef
8.
Zurück zum Zitat Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D, Gerbing RB, London WB, Villablanca JG. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children's oncology group study. J Clin Oncol. 2009;27(7):1007–13.CrossRef Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D, Gerbing RB, London WB, Villablanca JG. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children's oncology group study. J Clin Oncol. 2009;27(7):1007–13.CrossRef
9.
Zurück zum Zitat Cole KA, Maris JM. New strategies in refractory and recurrent neuroblastoma: translational opportunities to impact patient outcome. Clin Cancer Res. 2012;18(9):2423–8.CrossRef Cole KA, Maris JM. New strategies in refractory and recurrent neuroblastoma: translational opportunities to impact patient outcome. Clin Cancer Res. 2012;18(9):2423–8.CrossRef
10.
Zurück zum Zitat Santana VM, Furman WL, McGregor LM, Billups CA. Disease control intervals in high-risk neuroblastoma. Cancer. 2008;112(12):2796–801.CrossRef Santana VM, Furman WL, McGregor LM, Billups CA. Disease control intervals in high-risk neuroblastoma. Cancer. 2008;112(12):2796–801.CrossRef
11.
Zurück zum Zitat Simon T, Berthold F, Borkhardt A, Kremens B, De Carolis B, Hero B. Treatment and outcomes of patients with relapsed, high-risk neuroblastoma: results of German trials. Pediatr Blood Cancer. 2011;56(4):578–83.CrossRef Simon T, Berthold F, Borkhardt A, Kremens B, De Carolis B, Hero B. Treatment and outcomes of patients with relapsed, high-risk neuroblastoma: results of German trials. Pediatr Blood Cancer. 2011;56(4):578–83.CrossRef
12.
Zurück zum Zitat Lau L, Tai D, Weitzman S, Grant R, Baruchel S, Malkin D. Factors influencing survival in children with recurrent neuroblastoma. J Pediatr Hematol Oncol. 2004;26(4):227–32.CrossRef Lau L, Tai D, Weitzman S, Grant R, Baruchel S, Malkin D. Factors influencing survival in children with recurrent neuroblastoma. J Pediatr Hematol Oncol. 2004;26(4):227–32.CrossRef
13.
Zurück zum Zitat Berthold F, Hero B, Breu H, Christiansen H, Erttmann R, Gnekow A, Herrmann F, Klingebiel T, Lampert F, Muller-Weihrich S, et al. The recurrence patterns of stages I, II and III neuroblastoma: experience with 77 relapsing patients. Ann Oncol. 1996;7(2):183–7.CrossRef Berthold F, Hero B, Breu H, Christiansen H, Erttmann R, Gnekow A, Herrmann F, Klingebiel T, Lampert F, Muller-Weihrich S, et al. The recurrence patterns of stages I, II and III neuroblastoma: experience with 77 relapsing patients. Ann Oncol. 1996;7(2):183–7.CrossRef
14.
Zurück zum Zitat Garaventa A, Parodi S, De Bernardi B, Dau D, Manzitti C, Conte M, Casale F, Viscardi E, Bianchi M, D’Angelo P, et al. Outcome of children with neuroblastoma after progression or relapse. A retrospective study of the Italian neuroblastoma registry. Eur J Cancer. 2009;45(16):2835–42.CrossRef Garaventa A, Parodi S, De Bernardi B, Dau D, Manzitti C, Conte M, Casale F, Viscardi E, Bianchi M, D’Angelo P, et al. Outcome of children with neuroblastoma after progression or relapse. A retrospective study of the Italian neuroblastoma registry. Eur J Cancer. 2009;45(16):2835–42.CrossRef
15.
Zurück zum Zitat Weiss B, Vora A, Huberty J, Hawkins RA, Matthay KK. Secondary myelodysplastic syndrome and leukemia following 131I-metaiodobenzylguanidine therapy for relapsed neuroblastoma. J Pediatr Hematol Oncol. 2003;25(7):543–7.CrossRef Weiss B, Vora A, Huberty J, Hawkins RA, Matthay KK. Secondary myelodysplastic syndrome and leukemia following 131I-metaiodobenzylguanidine therapy for relapsed neuroblastoma. J Pediatr Hematol Oncol. 2003;25(7):543–7.CrossRef
16.
Zurück zum Zitat London WB, Castel V, Monclair T, Ambros PF, Pearson AD, Cohn SL, Berthold F, Nakagawara A, Ladenstein RL, Iehara T, et al. Clinical and biologic features predictive of survival after relapse of neuroblastoma: a report from the international neuroblastoma risk group project. J Clin Oncol. 2011;29(24):3286–92.CrossRef London WB, Castel V, Monclair T, Ambros PF, Pearson AD, Cohn SL, Berthold F, Nakagawara A, Ladenstein RL, Iehara T, et al. Clinical and biologic features predictive of survival after relapse of neuroblastoma: a report from the international neuroblastoma risk group project. J Clin Oncol. 2011;29(24):3286–92.CrossRef
17.
Zurück zum Zitat Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, Weiss WA. Neuroblastoma. Nat Rev Dis Primers. 2016;2:16078.CrossRef Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, Weiss WA. Neuroblastoma. Nat Rev Dis Primers. 2016;2:16078.CrossRef
18.
Zurück zum Zitat Thompson D, Vo KT, London WB, Fischer M, Ambros PF, Nakagawara A, Brodeur GM, Matthay KK, DuBois SG. Identification of patient subgroups with markedly disparate rates of MYCN amplification in neuroblastoma: a report from the international neuroblastoma risk group project. Cancer. 2016;122(6):935–45.CrossRef Thompson D, Vo KT, London WB, Fischer M, Ambros PF, Nakagawara A, Brodeur GM, Matthay KK, DuBois SG. Identification of patient subgroups with markedly disparate rates of MYCN amplification in neuroblastoma: a report from the international neuroblastoma risk group project. Cancer. 2016;122(6):935–45.CrossRef
19.
Zurück zum Zitat Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harbor perspectives in medicine. 2013;3(10):a014415.CrossRef Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harbor perspectives in medicine. 2013;3(10):a014415.CrossRef
20.
Zurück zum Zitat Schwab M. MYCN in neuronal tumours. Cancer Lett. 2004;204(2):179–87.CrossRef Schwab M. MYCN in neuronal tumours. Cancer Lett. 2004;204(2):179–87.CrossRef
21.
Zurück zum Zitat Cohn SL, London WB, Huang D, Katzenstein HM, Salwen HR, Reinhart T, Madafiglio J, Marshall GM, Norris MD, Haber M. MYCN expression is not prognostic of adverse outcome in advanced-stage neuroblastoma with nonamplified MYCN. J Clin Oncol. 2000;18(21):3604–13.CrossRef Cohn SL, London WB, Huang D, Katzenstein HM, Salwen HR, Reinhart T, Madafiglio J, Marshall GM, Norris MD, Haber M. MYCN expression is not prognostic of adverse outcome in advanced-stage neuroblastoma with nonamplified MYCN. J Clin Oncol. 2000;18(21):3604–13.CrossRef
22.
Zurück zum Zitat Brodeur GM, Fong CT. Molecular biology and genetics of human neuroblastoma. Cancer Genet Cytogenet. 1989;41(2):153–74.CrossRef Brodeur GM, Fong CT. Molecular biology and genetics of human neuroblastoma. Cancer Genet Cytogenet. 1989;41(2):153–74.CrossRef
23.
Zurück zum Zitat Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224(4653):1121–4.CrossRef Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224(4653):1121–4.CrossRef
24.
Zurück zum Zitat Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med. 1985;313(18):1111–6.CrossRef Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med. 1985;313(18):1111–6.CrossRef
25.
Zurück zum Zitat Yue ZX, Huang C, Gao C, Xing TY, Liu SG, Li XJ, Zhao Q, Wang XS, Zhao W, Jin M, et al. MYCN amplification predicts poor prognosis based on interphase fluorescence in situ hybridization analysis of bone marrow cells in bone marrow metastases of neuroblastoma. Cancer Cell Int. 2017;17:43.CrossRef Yue ZX, Huang C, Gao C, Xing TY, Liu SG, Li XJ, Zhao Q, Wang XS, Zhao W, Jin M, et al. MYCN amplification predicts poor prognosis based on interphase fluorescence in situ hybridization analysis of bone marrow cells in bone marrow metastases of neuroblastoma. Cancer Cell Int. 2017;17:43.CrossRef
26.
Zurück zum Zitat Moreau LA, McGrady P, London WB, Shimada H, Cohn SL, Maris JM, Diller L, Look AT, George RE. Does MYCN amplification manifested as homogeneously staining regions at diagnosis predict a worse outcome in children with neuroblastoma? A Children's oncology group study. Clin Cancer Res. 2006;12(19):5693–7.CrossRef Moreau LA, McGrady P, London WB, Shimada H, Cohn SL, Maris JM, Diller L, Look AT, George RE. Does MYCN amplification manifested as homogeneously staining regions at diagnosis predict a worse outcome in children with neuroblastoma? A Children's oncology group study. Clin Cancer Res. 2006;12(19):5693–7.CrossRef
27.
Zurück zum Zitat Favrot MC, Ambros P, Schilling F, Frappaz D, Combaret V, Berthold F, Dominici C, Erttmann R, Esteve J, Jenkner A, et al. Comparison of the diagnostic and prognostic value of biological markers in neuroblastoma. Proposal for a common methodology of analysis. SENSE group. Ann Oncol. 1996;7(6):607–11.CrossRef Favrot MC, Ambros P, Schilling F, Frappaz D, Combaret V, Berthold F, Dominici C, Erttmann R, Esteve J, Jenkner A, et al. Comparison of the diagnostic and prognostic value of biological markers in neuroblastoma. Proposal for a common methodology of analysis. SENSE group. Ann Oncol. 1996;7(6):607–11.CrossRef
28.
Zurück zum Zitat Barroca H, Carvalho JL, da Costa MJ, Cirnes L, Seruca R, Schmitt FC. Detection of N-myc amplification in neuroblastomas using southern blotting on fine needle aspirates. Acta Cytol. 2001;45(2):169–72.CrossRef Barroca H, Carvalho JL, da Costa MJ, Cirnes L, Seruca R, Schmitt FC. Detection of N-myc amplification in neuroblastomas using southern blotting on fine needle aspirates. Acta Cytol. 2001;45(2):169–72.CrossRef
29.
Zurück zum Zitat Crabbe DC, Peters J, Seeger RC. Rapid detection of MYCN gene amplification in neuroblastomas using the polymerase chain reaction. Diagnostic molecular pathology : the American journal of surgical pathology, part B. 1992;1(4):229–34.CrossRef Crabbe DC, Peters J, Seeger RC. Rapid detection of MYCN gene amplification in neuroblastomas using the polymerase chain reaction. Diagnostic molecular pathology : the American journal of surgical pathology, part B. 1992;1(4):229–34.CrossRef
30.
Zurück zum Zitat Huddart SN, Mann JR, McGukin AG, Corbett R. MYCN amplification by differential PCR. Pediatr Hematol Oncol. 1993;10(1):31–4.CrossRef Huddart SN, Mann JR, McGukin AG, Corbett R. MYCN amplification by differential PCR. Pediatr Hematol Oncol. 1993;10(1):31–4.CrossRef
31.
Zurück zum Zitat Anderson J, Gibson S, Williamson D, Rampling D, Austin C, Shipley J, Sebire N, Brock P. Rapid and accurate determination of MYCN copy number and 1p deletion in neuroblastoma by quantitative PCR. Pediatr Blood Cancer. 2006;46(7):820–4.CrossRef Anderson J, Gibson S, Williamson D, Rampling D, Austin C, Shipley J, Sebire N, Brock P. Rapid and accurate determination of MYCN copy number and 1p deletion in neuroblastoma by quantitative PCR. Pediatr Blood Cancer. 2006;46(7):820–4.CrossRef
32.
Zurück zum Zitat Misra DN, Dickman PS, Yunis EJ. Fluorescence in situ hybridization (FISH) detection of MYCN oncogene amplification in neuroblastoma using paraffin-embedded tissues. Diagnostic molecular pathology : the American journal of surgical pathology, part B. 1995;4(2):128–35.CrossRef Misra DN, Dickman PS, Yunis EJ. Fluorescence in situ hybridization (FISH) detection of MYCN oncogene amplification in neuroblastoma using paraffin-embedded tissues. Diagnostic molecular pathology : the American journal of surgical pathology, part B. 1995;4(2):128–35.CrossRef
33.
Zurück zum Zitat Squire JA, Thorner P, Marrano P, Parkinson D, Ng YK, Gerrie B, Chilton-Macneill S, Zielenska M. Identification of MYCN copy number heterogeneity by direct FISH analysis of neuroblastoma preparations. Molecular diagnosis : a journal devoted to the understanding of human disease through the clinical application of molecular biology. 1996;1(4):281–9.CrossRef Squire JA, Thorner P, Marrano P, Parkinson D, Ng YK, Gerrie B, Chilton-Macneill S, Zielenska M. Identification of MYCN copy number heterogeneity by direct FISH analysis of neuroblastoma preparations. Molecular diagnosis : a journal devoted to the understanding of human disease through the clinical application of molecular biology. 1996;1(4):281–9.CrossRef
34.
Zurück zum Zitat Narath R, Lorch T, Rudas M, Ambros PF. Automatic quantification of gene amplification in clinical samples by IQ-FISH. Cytometry B Clin Cytom. 2004;57(1):15–22.CrossRef Narath R, Lorch T, Rudas M, Ambros PF. Automatic quantification of gene amplification in clinical samples by IQ-FISH. Cytometry B Clin Cytom. 2004;57(1):15–22.CrossRef
35.
Zurück zum Zitat Bhargava R, Oppenheimer O, Gerald W, Jhanwar SC, Chen B. Identification of MYCN gene amplification in neuroblastoma using chromogenic in situ hybridization (CISH): an alternative and practical method. Diagnostic molecular pathology : the American journal of surgical pathology, part B. 2005;14(2):72–6.CrossRef Bhargava R, Oppenheimer O, Gerald W, Jhanwar SC, Chen B. Identification of MYCN gene amplification in neuroblastoma using chromogenic in situ hybridization (CISH): an alternative and practical method. Diagnostic molecular pathology : the American journal of surgical pathology, part B. 2005;14(2):72–6.CrossRef
36.
Zurück zum Zitat Hiyama E, Hiyama K, Yokoyama T, Ishii T. Immunohistochemical analysis of N-myc protein expression in neuroblastoma: correlation with prognosis of patients. J Pediatr Surg. 1991;26(7):838–43.CrossRef Hiyama E, Hiyama K, Yokoyama T, Ishii T. Immunohistochemical analysis of N-myc protein expression in neuroblastoma: correlation with prognosis of patients. J Pediatr Surg. 1991;26(7):838–43.CrossRef
37.
Zurück zum Zitat Wang LL, Teshiba R, Ikegaki N, Tang XX, Naranjo A, London WB, Hogarty MD, Gastier-Foster JM, Look AT, Park JR, et al. Augmented expression of MYC and/or MYCN protein defines highly aggressive MYC-driven neuroblastoma: a Children's oncology group study. Br J Cancer. 2015;113(1):57–63.CrossRef Wang LL, Teshiba R, Ikegaki N, Tang XX, Naranjo A, London WB, Hogarty MD, Gastier-Foster JM, Look AT, Park JR, et al. Augmented expression of MYC and/or MYCN protein defines highly aggressive MYC-driven neuroblastoma: a Children's oncology group study. Br J Cancer. 2015;113(1):57–63.CrossRef
38.
Zurück zum Zitat Wu YC, Chang IC, Wang CL, Chen TD, Chen YT, Liu HP, Chu Y, Chiu YT, Wu TH, Chou LH, et al. Comparison of IHC, FISH and RT-PCR methods for detection of ALK rearrangements in 312 non-small cell lung cancer patients in Taiwan. PLoS One. 2013;8(8):e70839.CrossRef Wu YC, Chang IC, Wang CL, Chen TD, Chen YT, Liu HP, Chu Y, Chiu YT, Wu TH, Chou LH, et al. Comparison of IHC, FISH and RT-PCR methods for detection of ALK rearrangements in 312 non-small cell lung cancer patients in Taiwan. PLoS One. 2013;8(8):e70839.CrossRef
39.
Zurück zum Zitat Le Quesne J, Maurya M, Yancheva SG, O'Brien M, Popat S, Wotherspoon AC, de Castro DG, Nicholson AG. A comparison of immunohistochemical assays and FISH in detecting the ALK translocation in diagnostic histological and cytological lung tumor material. J Thorac Oncol. 2014;9(6):769–74.CrossRef Le Quesne J, Maurya M, Yancheva SG, O'Brien M, Popat S, Wotherspoon AC, de Castro DG, Nicholson AG. A comparison of immunohistochemical assays and FISH in detecting the ALK translocation in diagnostic histological and cytological lung tumor material. J Thorac Oncol. 2014;9(6):769–74.CrossRef
40.
Zurück zum Zitat Eastmond DA, Schuler M, Rupa DS. Advantages and limitations of using fluorescence in situ hybridization for the detection of aneuploidy in interphase human cells. Mutat Res. 1995;348(4):153–62.CrossRef Eastmond DA, Schuler M, Rupa DS. Advantages and limitations of using fluorescence in situ hybridization for the detection of aneuploidy in interphase human cells. Mutat Res. 1995;348(4):153–62.CrossRef
41.
Zurück zum Zitat Heredia NJ, Belgrader P, Wang S, Koehler R, Regan J, Cosman AM, Saxonov S, Hindson B, Tanner SC, Brown AS, et al. Droplet digital PCR quantitation of HER2 expression in FFPE breast cancer samples. Methods. 2013;59(1):S20–3.CrossRef Heredia NJ, Belgrader P, Wang S, Koehler R, Regan J, Cosman AM, Saxonov S, Hindson B, Tanner SC, Brown AS, et al. Droplet digital PCR quantitation of HER2 expression in FFPE breast cancer samples. Methods. 2013;59(1):S20–3.CrossRef
42.
Zurück zum Zitat Aravindan S, Ramraj SK, Somasundaram ST, Aravindan N. Novel adjuvants from seaweed impede autophagy signaling in therapy-resistant residual pancreatic cancer. J Biomed Sci. 2015;22:28.CrossRef Aravindan S, Ramraj SK, Somasundaram ST, Aravindan N. Novel adjuvants from seaweed impede autophagy signaling in therapy-resistant residual pancreatic cancer. J Biomed Sci. 2015;22:28.CrossRef
43.
Zurück zum Zitat Khan FH, Pandian V, Ramraj S, Aravindan S, Herman TS, Aravindan N. Reorganization of metastamiRs in the evolution of metastatic aggressive neuroblastoma cells. BMC Genomics. 2015;16:501.CrossRef Khan FH, Pandian V, Ramraj S, Aravindan S, Herman TS, Aravindan N. Reorganization of metastamiRs in the evolution of metastatic aggressive neuroblastoma cells. BMC Genomics. 2015;16:501.CrossRef
44.
Zurück zum Zitat Khan FH, Pandian V, Ramraj SK, Aravindan S, Natarajan M, Azadi S, Herman TS, Aravindan N. RD3 loss dictates high-risk aggressive neuroblastoma and poor clinical outcomes. Oncotarget. 2015;6(34):36522–34.CrossRef Khan FH, Pandian V, Ramraj SK, Aravindan S, Natarajan M, Azadi S, Herman TS, Aravindan N. RD3 loss dictates high-risk aggressive neuroblastoma and poor clinical outcomes. Oncotarget. 2015;6(34):36522–34.CrossRef
45.
Zurück zum Zitat Khan FH, Pandian V, Ramraj S, Natarajan M, Aravindan S, Herman TS, Aravindan N. Acquired genetic alterations in tumor cells dictate the development of high-risk neuroblastoma and clinical outcomes. BMC Cancer. 2015;15:514.CrossRef Khan FH, Pandian V, Ramraj S, Natarajan M, Aravindan S, Herman TS, Aravindan N. Acquired genetic alterations in tumor cells dictate the development of high-risk neuroblastoma and clinical outcomes. BMC Cancer. 2015;15:514.CrossRef
46.
Zurück zum Zitat Schwab M, Varmus HE, Bishop JM. Human N-myc gene contributes to neoplastic transformation of mammalian cells in culture. Nature. 1985;316(6024):160–2.CrossRef Schwab M, Varmus HE, Bishop JM. Human N-myc gene contributes to neoplastic transformation of mammalian cells in culture. Nature. 1985;316(6024):160–2.CrossRef
47.
Zurück zum Zitat Corvi R, Amler LC, Savelyeva L, Gehring M, Schwab M. MYCN is retained in single copy at chromosome 2 band p23-24 during amplification in human neuroblastoma cells. Proc Natl Acad Sci U S A. 1994;91(12):5523–7.CrossRef Corvi R, Amler LC, Savelyeva L, Gehring M, Schwab M. MYCN is retained in single copy at chromosome 2 band p23-24 during amplification in human neuroblastoma cells. Proc Natl Acad Sci U S A. 1994;91(12):5523–7.CrossRef
48.
Zurück zum Zitat Schwab M. Human neuroblastoma: amplification of the N-myc oncogene and loss of a putative cancer-preventing gene on chromosome 1p. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer. 1994;135:7–16.PubMed Schwab M. Human neuroblastoma: amplification of the N-myc oncogene and loss of a putative cancer-preventing gene on chromosome 1p. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer. 1994;135:7–16.PubMed
49.
Zurück zum Zitat Chen QR, Bilke S, Wei JS, Whiteford CC, Cenacchi N, Krasnoselsky AL, Greer BT, Son CG, Westermann F, Berthold F, et al. cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma. BMC Genomics. 2004;5:70.CrossRef Chen QR, Bilke S, Wei JS, Whiteford CC, Cenacchi N, Krasnoselsky AL, Greer BT, Son CG, Westermann F, Berthold F, et al. cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma. BMC Genomics. 2004;5:70.CrossRef
50.
Zurück zum Zitat Tonini GP, Boni L, Pession A, Rogers D, Iolascon A, Basso G, Cordero di Montezemolo L, Casale F, Pession A, Perri P, et al. MYCN oncogene amplification in neuroblastoma is associated with worse prognosis, except in stage 4s: the Italian experience with 295 children. J Clin Oncol. 1997;15(1):85–93.CrossRef Tonini GP, Boni L, Pession A, Rogers D, Iolascon A, Basso G, Cordero di Montezemolo L, Casale F, Pession A, Perri P, et al. MYCN oncogene amplification in neuroblastoma is associated with worse prognosis, except in stage 4s: the Italian experience with 295 children. J Clin Oncol. 1997;15(1):85–93.CrossRef
51.
Zurück zum Zitat Wang Y, Tsang JYS, Cui Y, Cui J, Lin Y, Zhao S, Law PTW, Cheung SY, Ng EKO, Tse GMK, et al. Robust and accurate digital measurement for HER2 amplification in HER2 equivocal breast cancer diagnosis. Sci Rep. 2017;7(1):6752.CrossRef Wang Y, Tsang JYS, Cui Y, Cui J, Lin Y, Zhao S, Law PTW, Cheung SY, Ng EKO, Tse GMK, et al. Robust and accurate digital measurement for HER2 amplification in HER2 equivocal breast cancer diagnosis. Sci Rep. 2017;7(1):6752.CrossRef
52.
Zurück zum Zitat Kinugasa H, Nouso K, Tanaka T, Miyahara K, Morimoto Y, Dohi C, Matsubara T, Okada H, Yamamoto K. Droplet digital PCR measurement of HER2 in patients with gastric cancer. Br J Cancer. 2015;112(10):1652–5.CrossRef Kinugasa H, Nouso K, Tanaka T, Miyahara K, Morimoto Y, Dohi C, Matsubara T, Okada H, Yamamoto K. Droplet digital PCR measurement of HER2 in patients with gastric cancer. Br J Cancer. 2015;112(10):1652–5.CrossRef
53.
Zurück zum Zitat Li X, Liu Y, Shi W, Xu H, Hu H, Dong Z, Zhu G, Sun Y, Liu B, Gao H, et al. Droplet digital PCR improved the EGFR mutation diagnosis with pleural fluid samples in non-small-cell lung cancer patients. Clin Chim Acta. 2017;471:177–84.CrossRef Li X, Liu Y, Shi W, Xu H, Hu H, Dong Z, Zhu G, Sun Y, Liu B, Gao H, et al. Droplet digital PCR improved the EGFR mutation diagnosis with pleural fluid samples in non-small-cell lung cancer patients. Clin Chim Acta. 2017;471:177–84.CrossRef
54.
Zurück zum Zitat Nadauld L, Regan JF, Miotke L, Pai RK, Longacre TA, Kwok SS, Saxonov S, Ford JM, Ji HP. Quantitative and sensitive detection of Cancer genome amplifications from formalin fixed paraffin embedded tumors with droplet digital PCR. Transl Med (Sunnyvale). 2012;2(2). https://doi.org/10.4172/2161-1025.1000107. Nadauld L, Regan JF, Miotke L, Pai RK, Longacre TA, Kwok SS, Saxonov S, Ford JM, Ji HP. Quantitative and sensitive detection of Cancer genome amplifications from formalin fixed paraffin embedded tumors with droplet digital PCR. Transl Med (Sunnyvale). 2012;2(2). https://​doi.​org/​10.​4172/​2161-1025.​1000107.
55.
Zurück zum Zitat Zhu Y, Lu D, Lira ME, Xu Q, Du Y, Xiong J, Mao M, Chung HC, Zheng G. Droplet digital polymerase chain reaction detection of HER2 amplification in formalin fixed paraffin embedded breast and gastric carcinoma samples. Exp Mol Pathol. 2016;100(2):287–93.CrossRef Zhu Y, Lu D, Lira ME, Xu Q, Du Y, Xiong J, Mao M, Chung HC, Zheng G. Droplet digital polymerase chain reaction detection of HER2 amplification in formalin fixed paraffin embedded breast and gastric carcinoma samples. Exp Mol Pathol. 2016;100(2):287–93.CrossRef
56.
Zurück zum Zitat Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83(22):8604–10.CrossRef Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83(22):8604–10.CrossRef
57.
Zurück zum Zitat Jacobs TW, Gown AM, Yaziji H, Barnes MJ, Schnitt SJ. HER-2/neu protein expression in breast cancer evaluated by immunohistochemistry. A study of interlaboratory agreement. Am J Clin Pathol. 2000;113(2):251–8.CrossRef Jacobs TW, Gown AM, Yaziji H, Barnes MJ, Schnitt SJ. HER-2/neu protein expression in breast cancer evaluated by immunohistochemistry. A study of interlaboratory agreement. Am J Clin Pathol. 2000;113(2):251–8.CrossRef
Metadaten
Titel
Droplet digital PCR as an alternative to FISH for MYCN amplification detection in human neuroblastoma FFPE samples
verfasst von
Dinesh Babu Somasundaram
Sheeja Aravindan
Zhongxin Yu
Muralidharan Jayaraman
Ngoc T. B. Tran
Shibo Li
Terence S. Herman
Natarajan Aravindan
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2019
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5306-0

Weitere Artikel der Ausgabe 1/2019

BMC Cancer 1/2019 Zur Ausgabe

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Viel pflanzliche Nahrung, seltener Prostata-Ca.-Progression

12.05.2024 Prostatakarzinom Nachrichten

Ein hoher Anteil pflanzlicher Nahrung trägt möglicherweise dazu bei, das Progressionsrisiko von Männern mit Prostatakarzinomen zu senken. In einer US-Studie war das Risiko bei ausgeprägter pflanzlicher Ernährung in etwa halbiert.

Alter verschlechtert Prognose bei Endometriumkarzinom

11.05.2024 Endometriumkarzinom Nachrichten

Ein höheres Alter bei der Diagnose eines Endometriumkarzinoms ist mit aggressiveren Tumorcharakteristika assoziiert, scheint aber auch unabhängig von bekannten Risikofaktoren die Prognose der Erkrankung zu verschlimmern.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.