Skip to main content
Erschienen in: Experimental Brain Research 3/2005

01.12.2005 | Research Note

Early phase of spatial mismatch negativity is localized to a posterior “where” auditory pathway

verfasst von: Matthew S. Tata, Lawrence M. Ward

Erschienen in: Experimental Brain Research | Ausgabe 3/2005

Einloggen, um Zugang zu erhalten

Abstract

The auditory mismatch negativity (MMN) is an event-related potential that reflects early processing of changes in acoustic stimulus features. Although the MMN has been well characterized by previous work, the number, roles, and anatomical locations of its cortical generators remain unresolved. Here, we report that the MMN elicited by occasional deviations in sound location is comprised of two temporally and anatomically distinct phases: an early phase with a generator posterior to auditory cortex and contralateral to the deviant stimulus, and a later phase with generators that are more frontal and bilaterally symmetric. The posterior location of the early-phase generator suggests the engagement of neurons within a putative “where” pathway for processing spatial auditory information.
Literatur
Zurück zum Zitat Alain C, Woods DL, Knight RT (1998) A distributed cortical network for auditory sensory memory in humans. Brain Res 81:23–37CrossRef Alain C, Woods DL, Knight RT (1998) A distributed cortical network for auditory sensory memory in humans. Brain Res 81:23–37CrossRef
Zurück zum Zitat Alain C, Arnott SR, Hevenor S, Graham S, Grady CL (2001) “What” and “where” in the human auditory system. Proc Natl Acad Sci USA 98(21):12301–12306CrossRefPubMed Alain C, Arnott SR, Hevenor S, Graham S, Grady CL (2001) “What” and “where” in the human auditory system. Proc Natl Acad Sci USA 98(21):12301–12306CrossRefPubMed
Zurück zum Zitat American Electroencephalographic Society (1994) Guidelines for standard electrode position nomenclature. J Neurophysiol 11:111–113 American Electroencephalographic Society (1994) Guidelines for standard electrode position nomenclature. J Neurophysiol 11:111–113
Zurück zum Zitat Bushara KO, Weeks RA, Ishii K, Catalan M-J, Tian B (1999) Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nat Neurosci 2:759–766CrossRefPubMed Bushara KO, Weeks RA, Ishii K, Catalan M-J, Tian B (1999) Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nat Neurosci 2:759–766CrossRefPubMed
Zurück zum Zitat Deouell LY, Bentin S (1998) Variable cerebral responses to equally distinct deviance in four auditory dimensions: a mismatch negativity study. Psychophysiology 35:745–754CrossRefPubMed Deouell LY, Bentin S (1998) Variable cerebral responses to equally distinct deviance in four auditory dimensions: a mismatch negativity study. Psychophysiology 35:745–754CrossRefPubMed
Zurück zum Zitat Deouell LY, Bentin S, Giard MH (1998) Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators. Psychophysiology 35:355–365CrossRefPubMed Deouell LY, Bentin S, Giard MH (1998) Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators. Psychophysiology 35:355–365CrossRefPubMed
Zurück zum Zitat Deouell LY, Bentin S, Soroker N (2000) Electrophysiological evidence for an early (pre-attentive) information processing deficit in patients with right hemisphere damage and unilateral neglect. Brain 123:353–365CrossRefPubMed Deouell LY, Bentin S, Soroker N (2000) Electrophysiological evidence for an early (pre-attentive) information processing deficit in patients with right hemisphere damage and unilateral neglect. Brain 123:353–365CrossRefPubMed
Zurück zum Zitat Giard M, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27:627–640PubMedCrossRef Giard M, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27:627–640PubMedCrossRef
Zurück zum Zitat Griffiths TD, Green GGR, Rees A, Rees G (2000) Human brain areas involved in the analysis of auditory movement. Hum Brain Mapp 9:72–80CrossRefPubMed Griffiths TD, Green GGR, Rees A, Rees G (2000) Human brain areas involved in the analysis of auditory movement. Hum Brain Mapp 9:72–80CrossRefPubMed
Zurück zum Zitat Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levänen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, Belliveau JW (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci USA 101:6809–6814CrossRefPubMed Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levänen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, Belliveau JW (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci USA 101:6809–6814CrossRefPubMed
Zurück zum Zitat Kaiser J, Lutzendberger W (2001) Location changes enhance hemispheric asymmetry of magnetic fields evoked by lateralized sounds in humans. Neurosci Lett 314:17–20CrossRefPubMed Kaiser J, Lutzendberger W (2001) Location changes enhance hemispheric asymmetry of magnetic fields evoked by lateralized sounds in humans. Neurosci Lett 314:17–20CrossRefPubMed
Zurück zum Zitat Kasai K, Nakagome K, Itoh K, Koshida I, Hata A, Iwanami A, Fukuda M, Hiramatsu KL, Kato N (1999) Multiple generators in the auditory automatic discrimination process in humans. Neuroreport 10(11):2267–2271PubMedCrossRef Kasai K, Nakagome K, Itoh K, Koshida I, Hata A, Iwanami A, Fukuda M, Hiramatsu KL, Kato N (1999) Multiple generators in the auditory automatic discrimination process in humans. Neuroreport 10(11):2267–2271PubMedCrossRef
Zurück zum Zitat Kaiser J, Lutzenberger W, Birbaumer N (2000) Simultaneous bilateral mismatch response to right- but not leftward sound lateralization. Neuroreport 11(13):2889–2892PubMedCrossRef Kaiser J, Lutzenberger W, Birbaumer N (2000) Simultaneous bilateral mismatch response to right- but not leftward sound lateralization. Neuroreport 11(13):2889–2892PubMedCrossRef
Zurück zum Zitat Leinonen L, Hyvarinen J, Sovijarvi ARA (1980) Functional properties of neurons in the temporo-parietal association cortex of awake monkey. Exp Brain Res 39:203–215CrossRefPubMed Leinonen L, Hyvarinen J, Sovijarvi ARA (1980) Functional properties of neurons in the temporo-parietal association cortex of awake monkey. Exp Brain Res 39:203–215CrossRefPubMed
Zurück zum Zitat Levänen S, Ahonen A, Hari R, McEvoy L, Sams M (1996) Deviant auditory stimuli activate human left and right auditory cortex differently. Cereb Cortex 6:288–296PubMedCrossRef Levänen S, Ahonen A, Hari R, McEvoy L, Sams M (1996) Deviant auditory stimuli activate human left and right auditory cortex differently. Cereb Cortex 6:288–296PubMedCrossRef
Zurück zum Zitat Lewis JW, Beauchamp MS, DeYoe EA (2000) A comparison of visual and auditory motion processing in human cerebral cortex. Cereb Cortex 10(9):873–888CrossRefPubMed Lewis JW, Beauchamp MS, DeYoe EA (2000) A comparison of visual and auditory motion processing in human cerebral cortex. Cereb Cortex 10(9):873–888CrossRefPubMed
Zurück zum Zitat Molholm S, Martinez A, Ritter W, Javitt DC, Foxe JJ (2005) The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. Cereb Cortex 15:545–551CrossRefPubMed Molholm S, Martinez A, Ritter W, Javitt DC, Foxe JJ (2005) The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. Cereb Cortex 15:545–551CrossRefPubMed
Zurück zum Zitat Näätänen R (1992) Attention and brain function. Erlbaum, Hillsdale, NJ Näätänen R (1992) Attention and brain function. Erlbaum, Hillsdale, NJ
Zurück zum Zitat Näätänen R, Alho K (1997) Higher-order processes in auditory-change detection. Trends Cogn Sci 1(2):44–45CrossRef Näätänen R, Alho K (1997) Higher-order processes in auditory-change detection. Trends Cogn Sci 1(2):44–45CrossRef
Zurück zum Zitat Näätänen R, Michie PT (1979) Early selective-attention effects on the evoked potential: a critical review and reinterpretation. Biol Psychol 8:81–136CrossRefPubMed Näätänen R, Michie PT (1979) Early selective-attention effects on the evoked potential: a critical review and reinterpretation. Biol Psychol 8:81–136CrossRefPubMed
Zurück zum Zitat Näätänen R, Winkler I (1999) The concept of auditory stimulus representation in cognitive neuroscience. Psychol Bull 125(6):826–859CrossRefPubMed Näätänen R, Winkler I (1999) The concept of auditory stimulus representation in cognitive neuroscience. Psychol Bull 125(6):826–859CrossRefPubMed
Zurück zum Zitat Näätänen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I (2001) ‘Primitive Intelligence’ in the auditory cortex. Trends Neurosci 24(5):283–288CrossRefPubMed Näätänen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I (2001) ‘Primitive Intelligence’ in the auditory cortex. Trends Neurosci 24(5):283–288CrossRefPubMed
Zurück zum Zitat Nager W, Kohlmetz C, Joppich G, Möbes J, Münte TF (2003) Tracking of multiple sound sources defined by interaural time differences: brain potential evidence in humans. Neurosci Lett 344:181–184CrossRefPubMed Nager W, Kohlmetz C, Joppich G, Möbes J, Münte TF (2003) Tracking of multiple sound sources defined by interaural time differences: brain potential evidence in humans. Neurosci Lett 344:181–184CrossRefPubMed
Zurück zum Zitat Paavilainen P, Karlsson M-L, Reinikainen K, Näätänen R (1989) Mismatch negativity to change in spatial location of an auditory stimulus. Electroencephalogr Clin Neurophysiol 73:129–141CrossRefPubMed Paavilainen P, Karlsson M-L, Reinikainen K, Näätänen R (1989) Mismatch negativity to change in spatial location of an auditory stimulus. Electroencephalogr Clin Neurophysiol 73:129–141CrossRefPubMed
Zurück zum Zitat Paavilainen P, Alho K, Reinikainen K, Sams M, Näätänen R (1991) Right hemisphere dominance of different mismatch negativities. Electroencephalogr Clin Neurophysiol 78:466–479CrossRefPubMed Paavilainen P, Alho K, Reinikainen K, Sams M, Näätänen R (1991) Right hemisphere dominance of different mismatch negativities. Electroencephalogr Clin Neurophysiol 78:466–479CrossRefPubMed
Zurück zum Zitat Picton TW, Alain C, Otten L, Ritter W, Achim A (2000) Mismatch negativity: different water in the same river. Audiol Neurootol 5:111–139CrossRefPubMed Picton TW, Alain C, Otten L, Ritter W, Achim A (2000) Mismatch negativity: different water in the same river. Audiol Neurootol 5:111–139CrossRefPubMed
Zurück zum Zitat Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund HJ, Zilles K (2001) Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage 13:669–683CrossRefPubMed Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund HJ, Zilles K (2001) Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage 13:669–683CrossRefPubMed
Zurück zum Zitat Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci USA 97:11800–11806CrossRefPubMed Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci USA 97:11800–11806CrossRefPubMed
Zurück zum Zitat Rinne T, Alho K, Alku P, Holi m. Sinkkonen J, Vrtanen J, Bertrand O, Näätänen R (1999) Analysis of speech sounds is left-hemisphere predominant at 100–150 ms after sound onset. Neuroreport 10:1113–1117PubMedCrossRef Rinne T, Alho K, Alku P, Holi m. Sinkkonen J, Vrtanen J, Bertrand O, Näätänen R (1999) Analysis of speech sounds is left-hemisphere predominant at 100–150 ms after sound onset. Neuroreport 10:1113–1117PubMedCrossRef
Zurück zum Zitat Rinne T, Alho K, Ilmoniemi R, Virtanen J, Näätänen R (2000) Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage 12:14–19CrossRefPubMed Rinne T, Alho K, Ilmoniemi R, Virtanen J, Näätänen R (2000) Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage 12:14–19CrossRefPubMed
Zurück zum Zitat Scherg MS, Vajsar J, Picton TW (1989) A source analysis of the late human auditory evoked potentials. J Cogn Neurosci 1(4):336–355CrossRef Scherg MS, Vajsar J, Picton TW (1989) A source analysis of the late human auditory evoked potentials. J Cogn Neurosci 1(4):336–355CrossRef
Zurück zum Zitat Schröger E (1997a) On the detection of auditory deviations: a pre-attentive activation model. Psychophysiology 34:245–257PubMedCrossRef Schröger E (1997a) On the detection of auditory deviations: a pre-attentive activation model. Psychophysiology 34:245–257PubMedCrossRef
Zurück zum Zitat Schröger E (1997b) Response from Schröger. Trends Cogn Sci 1(2):45–46CrossRef Schröger E (1997b) Response from Schröger. Trends Cogn Sci 1(2):45–46CrossRef
Zurück zum Zitat Schröger E, Wolff C (1996) Mismatch responses of the human brain to changes in sound location. Neuroreport 7:3005–3008PubMedCrossRef Schröger E, Wolff C (1996) Mismatch responses of the human brain to changes in sound location. Neuroreport 7:3005–3008PubMedCrossRef
Zurück zum Zitat Takegata R, Huotilainen M, Rinne T, Näätänen R, Winkler I (2001) Changes in acoustic features and their conjunctions are processed by separate neuronal populations. Neuroreport 12:525–529CrossRefPubMed Takegata R, Huotilainen M, Rinne T, Näätänen R, Winkler I (2001) Changes in acoustic features and their conjunctions are processed by separate neuronal populations. Neuroreport 12:525–529CrossRefPubMed
Zurück zum Zitat Tata MS, Ward LM (2005) Spatial attention modulates activity in a posterior “where” auditory pathway. Neuropsychologia 43:509–516CrossRefPubMed Tata MS, Ward LM (2005) Spatial attention modulates activity in a posterior “where” auditory pathway. Neuropsychologia 43:509–516CrossRefPubMed
Zurück zum Zitat Tian B, Reser D, Durham A, Kustov A, Rauschecker JP (2001) Functional specialization of rhesus monkey auditory cortex. Science 292:290–293CrossRefPubMed Tian B, Reser D, Durham A, Kustov A, Rauschecker JP (2001) Functional specialization of rhesus monkey auditory cortex. Science 292:290–293CrossRefPubMed
Zurück zum Zitat Weeks RA, Aziz-Sultan A, Bushara KO, Tian B, Wessinger CM, Dang N, Rauschecker JP, Hallet M (1999) A PET study of human auditory spatial processing. Neurosci Lett 262:155–158CrossRefPubMed Weeks RA, Aziz-Sultan A, Bushara KO, Tian B, Wessinger CM, Dang N, Rauschecker JP, Hallet M (1999) A PET study of human auditory spatial processing. Neurosci Lett 262:155–158CrossRefPubMed
Zurück zum Zitat Woldorff MG, Tempelmann C, Fell J, Tegeler C, Gaschler-Markefski B, Hinrichs H, Heinze H-J, Scheich H (1999) Lateralized auditory spatial perception and the contralaterality of cortical processing as studied with functional magnetic resonance imaging and magnetoencephalography. Hum Brain Mapp 7:49–66CrossRefPubMed Woldorff MG, Tempelmann C, Fell J, Tegeler C, Gaschler-Markefski B, Hinrichs H, Heinze H-J, Scheich H (1999) Lateralized auditory spatial perception and the contralaterality of cortical processing as studied with functional magnetic resonance imaging and magnetoencephalography. Hum Brain Mapp 7:49–66CrossRefPubMed
Zurück zum Zitat Yago E, Escera C, Alho K, Giard MH (2001) Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. Neuroreport 12(11):2583–2587CrossRefPubMed Yago E, Escera C, Alho K, Giard MH (2001) Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. Neuroreport 12(11):2583–2587CrossRefPubMed
Zurück zum Zitat Zattore RJ, Bouffard M, Ahad P, Belin P (2002) Where is ‘where’ in the human auditory cortex? Nat Neurosci 5(9):905–909CrossRefPubMed Zattore RJ, Bouffard M, Ahad P, Belin P (2002) Where is ‘where’ in the human auditory cortex? Nat Neurosci 5(9):905–909CrossRefPubMed
Metadaten
Titel
Early phase of spatial mismatch negativity is localized to a posterior “where” auditory pathway
verfasst von
Matthew S. Tata
Lawrence M. Ward
Publikationsdatum
01.12.2005
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 3/2005
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-005-0183-y

Weitere Artikel der Ausgabe 3/2005

Experimental Brain Research 3/2005 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.