Skip to main content
Erschienen in: Journal of Assisted Reproduction and Genetics 9/2019

28.08.2019 | Commentary

Easing US restrictions on mitochondrial replacement therapy would protect research interests but grease the slippery slope

verfasst von: David L. Keefe

Erschienen in: Journal of Assisted Reproduction and Genetics | Ausgabe 9/2019

Einloggen, um Zugang zu erhalten

Excerpt

Mitochondria are essential organelles found in most eukaryotic cells [1, 2]. They play important roles not only in the production of cellular energy but also in metabolic [3], immune [4], neural [5], and psychiatric function [6, 7], as well as aging [2, 8]. Mitochondria originated billions of years ago as separate bacteria-like organisms, and over the intervening millennia developed symbiotic relationships with our eukaryotic ancestors. The relationship between mitochondria and eukaryotic cells has proven mutually beneficial, though at times precarious [9, 10]. Concordant with their origin as separate organisms, mitochondria contain their own DNA, called mitochondrial DNA [11] (mtDNA). mtDNA retains many features of bacterial DNA, including exquisite susceptibility to damage, rapid mutagenesis, and limited repair capacity. …
Literatur
1.
Zurück zum Zitat Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol. 2017;241(2):236–50.CrossRefPubMed Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol. 2017;241(2):236–50.CrossRefPubMed
2.
Zurück zum Zitat Wallace DC. Genetics: mitochondrial DNA in evolution and disease. Nature. 2016;535(7613):498–500.CrossRefPubMed Wallace DC. Genetics: mitochondrial DNA in evolution and disease. Nature. 2016;535(7613):498–500.CrossRefPubMed
3.
4.
Zurück zum Zitat West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017;17(6):363–75.CrossRefPubMed West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017;17(6):363–75.CrossRefPubMed
5.
Zurück zum Zitat Burte F, et al. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol. 2015;11(1):11–24.CrossRefPubMed Burte F, et al. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol. 2015;11(1):11–24.CrossRefPubMed
6.
Zurück zum Zitat Wallace DC, Chalkia D, Singh LN. Mitochondrial etiology of psychiatric disorders-reply. JAMA Psychiatry. 2018;75(5):527–8.CrossRefPubMed Wallace DC, Chalkia D, Singh LN. Mitochondrial etiology of psychiatric disorders-reply. JAMA Psychiatry. 2018;75(5):527–8.CrossRefPubMed
7.
Zurück zum Zitat Pei L, Wallace DC. Mitochondrial etiology of neuropsychiatric disorders. Biol Psychiatry. 2018;83(9):722–30.CrossRefPubMed Pei L, Wallace DC. Mitochondrial etiology of neuropsychiatric disorders. Biol Psychiatry. 2018;83(9):722–30.CrossRefPubMed
8.
Zurück zum Zitat Kubben N, Misteli T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol. 2017;18(10):595–609.CrossRefPubMedPubMedCentral Kubben N, Misteli T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol. 2017;18(10):595–609.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 2015;16(9):530–42.CrossRefPubMed Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 2015;16(9):530–42.CrossRefPubMed
10.
Zurück zum Zitat Morava E, Kozicz T, Wallace DC. The phenotype modifier: is the mitochondrial DNA background responsible for individual differences in disease severity. J Inherit Metab Dis. 2019;42(1):3–4.CrossRefPubMed Morava E, Kozicz T, Wallace DC. The phenotype modifier: is the mitochondrial DNA background responsible for individual differences in disease severity. J Inherit Metab Dis. 2019;42(1):3–4.CrossRefPubMed
11.
Zurück zum Zitat Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S. Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril. 1995;64(3):577–83.CrossRefPubMed Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S. Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril. 1995;64(3):577–83.CrossRefPubMed
12.
Zurück zum Zitat Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:16080.CrossRefPubMed Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:16080.CrossRefPubMed
13.
Zurück zum Zitat Baumann K. Development: eliminating paternal mitochondria. Nat Rev Mol Cell Biol. 2016;17(8):464.CrossRefPubMed Baumann K. Development: eliminating paternal mitochondria. Nat Rev Mol Cell Biol. 2016;17(8):464.CrossRefPubMed
14.
Zurück zum Zitat Trimarchi JR, Liu L, Porterfield DM, Smith PJS, Keefe DL. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod. 2000;62(6):1866–74.CrossRefPubMed Trimarchi JR, Liu L, Porterfield DM, Smith PJS, Keefe DL. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod. 2000;62(6):1866–74.CrossRefPubMed
15.
Zurück zum Zitat Porterfield DM, Trimarchi JR, Keefe DL, Smith PJS. Characterization of oxygen and calcium fluxes from early mouse embryos and oocytes. Biol Bull. 1998;195(2):208–9.CrossRefPubMed Porterfield DM, Trimarchi JR, Keefe DL, Smith PJS. Characterization of oxygen and calcium fluxes from early mouse embryos and oocytes. Biol Bull. 1998;195(2):208–9.CrossRefPubMed
17.
Zurück zum Zitat Liu L, Keefe DL. Nuclear transfer methods to study aging. Methods Mol Biol. 2007;371:191–207.CrossRefPubMed Liu L, Keefe DL. Nuclear transfer methods to study aging. Methods Mol Biol. 2007;371:191–207.CrossRefPubMed
18.
Zurück zum Zitat Liu L, Oldenbourg R, Trimarchi JR, Keefe DL. A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes. Nat Biotechnol. 2000;18(2):223–5.CrossRefPubMed Liu L, Oldenbourg R, Trimarchi JR, Keefe DL. A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes. Nat Biotechnol. 2000;18(2):223–5.CrossRefPubMed
19.
Zurück zum Zitat Hyslop LA, Blakeley P, Craven L, Richardson J, Fogarty NME, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534(7607):383–6.CrossRefPubMedPubMedCentral Hyslop LA, Blakeley P, Craven L, Richardson J, Fogarty NME, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534(7607):383–6.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Adashi EY, Cohen IG. Mitochondrial replacement therapy: unmade in the USA. JAMA. 2017;317(6):574–5.CrossRefPubMed Adashi EY, Cohen IG. Mitochondrial replacement therapy: unmade in the USA. JAMA. 2017;317(6):574–5.CrossRefPubMed
21.
Zurück zum Zitat Adashi EY, Cohen IG. Mitochondrial replacement therapy: born in the USA: the untold story of a conceptual breakthrough. Am J Obstet Gynecol. 2017;217(5):561–3.CrossRefPubMed Adashi EY, Cohen IG. Mitochondrial replacement therapy: born in the USA: the untold story of a conceptual breakthrough. Am J Obstet Gynecol. 2017;217(5):561–3.CrossRefPubMed
22.
Zurück zum Zitat Adashi EY, Cohen IG. Preventing mitochondrial disease: a path forward. Obstet Gynecol. 2018;131(3):553–6.CrossRefPubMed Adashi EY, Cohen IG. Preventing mitochondrial disease: a path forward. Obstet Gynecol. 2018;131(3):553–6.CrossRefPubMed
23.
Zurück zum Zitat McCarthy M. Scientists call for moratorium on clinical use of human germline editing. BMJ. 2015;351:h6603.CrossRefPubMed McCarthy M. Scientists call for moratorium on clinical use of human germline editing. BMJ. 2015;351:h6603.CrossRefPubMed
24.
Zurück zum Zitat Treff NR, Campos J, Tao X, Levy B, Ferry KM, Scott RT Jr. Blastocyst preimplantation genetic diagnosis (PGD) of a mitochondrial DNA disorder. Fertil Steril. 2012;98(5):1236–40.CrossRefPubMed Treff NR, Campos J, Tao X, Levy B, Ferry KM, Scott RT Jr. Blastocyst preimplantation genetic diagnosis (PGD) of a mitochondrial DNA disorder. Fertil Steril. 2012;98(5):1236–40.CrossRefPubMed
25.
Zurück zum Zitat Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature. 2013;493(7434):632–7.CrossRefPubMed Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature. 2013;493(7434):632–7.CrossRefPubMed
26.
Zurück zum Zitat Kang E, Wu J, Gutierrez NM, Koski A, Tippner-Hedges R, Agaronyan K, et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature. 2016;540(7632):270–5.CrossRefPubMed Kang E, Wu J, Gutierrez NM, Koski A, Tippner-Hedges R, Agaronyan K, et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature. 2016;540(7632):270–5.CrossRefPubMed
27.
Zurück zum Zitat Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009;461(7262):367–72.CrossRefPubMedPubMedCentral Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009;461(7262):367–72.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Adashi EY, Caplan AL, Capron A, Chapman AR, Cho M, Clayton EW, et al. In support of mitochondrial replacement therapy. Nat Med. 2019;25(6):870–1.CrossRefPubMed Adashi EY, Caplan AL, Capron A, Chapman AR, Cho M, Clayton EW, et al. In support of mitochondrial replacement therapy. Nat Med. 2019;25(6):870–1.CrossRefPubMed
29.
Zurück zum Zitat Sauer MV, Kavic SM. Oocyte and embryo donation 2006: reviewing two decades of innovation and controversy. Reprod BioMed Online. 2006;12(2):153–62.CrossRefPubMed Sauer MV, Kavic SM. Oocyte and embryo donation 2006: reviewing two decades of innovation and controversy. Reprod BioMed Online. 2006;12(2):153–62.CrossRefPubMed
30.
34.
35.
Zurück zum Zitat Zhang J, Liu H, Luo S, Lu Z, Chávez-Badiola A, Liu Z, et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod BioMed Online. 2017;34(4):361–8.CrossRefPubMed Zhang J, Liu H, Luo S, Lu Z, Chávez-Badiola A, Liu Z, et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod BioMed Online. 2017;34(4):361–8.CrossRefPubMed
36.
Zurück zum Zitat Chalkia D, Singh LN, Leipzig J, Lvova M, Derbeneva O, Lakatos A, et al. Association between mitochondrial DNA haplogroup variation and autism spectrum disorders. JAMA Psychiatry. 2017;74(11):1161–8.CrossRefPubMedPubMedCentral Chalkia D, Singh LN, Leipzig J, Lvova M, Derbeneva O, Lakatos A, et al. Association between mitochondrial DNA haplogroup variation and autism spectrum disorders. JAMA Psychiatry. 2017;74(11):1161–8.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Jeon H, Lee J, Lee S, Kang SK, Park SJ, Yoo SM, et al. Extracellular vesicles from KSHV-infected cells stimulate antiviral immune response through mitochondrial DNA. Front Immunol. 2019;10:876.CrossRefPubMedPubMedCentral Jeon H, Lee J, Lee S, Kang SK, Park SJ, Yoo SM, et al. Extracellular vesicles from KSHV-infected cells stimulate antiviral immune response through mitochondrial DNA. Front Immunol. 2019;10:876.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Nguyen T, Jeyakumar A. Genetic susceptibility to aminoglycoside ototoxicity. Int J Pediatr Otorhinolaryngol. 2019;120:15–9.CrossRefPubMed Nguyen T, Jeyakumar A. Genetic susceptibility to aminoglycoside ototoxicity. Int J Pediatr Otorhinolaryngol. 2019;120:15–9.CrossRefPubMed
39.
Zurück zum Zitat Govindaraj P, Rani B, Sundaravadivel P, Vanniarajan A, Indumathi KP, Khan NA, et al. Mitochondrial genome variations in idiopathic dilated cardiomyopathy. Mitochondrion. 2019. Govindaraj P, Rani B, Sundaravadivel P, Vanniarajan A, Indumathi KP, Khan NA, et al. Mitochondrial genome variations in idiopathic dilated cardiomyopathy. Mitochondrion. 2019.
40.
Zurück zum Zitat Sunderam S, Kissin DM, Zhang Y, Folger SG, Boulet SL, Warner L, et al. Assisted reproductive technology surveillance - United States, 2016. MMWR Surveill Summ. 2019;68(4):1–23.CrossRefPubMedPubMedCentral Sunderam S, Kissin DM, Zhang Y, Folger SG, Boulet SL, Warner L, et al. Assisted reproductive technology surveillance - United States, 2016. MMWR Surveill Summ. 2019;68(4):1–23.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Harton GL, Munné S, Surrey M, Grifo J, Kaplan B, McCulloh DH, et al. Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013;100(6):1695–703.CrossRefPubMed Harton GL, Munné S, Surrey M, Grifo J, Kaplan B, McCulloh DH, et al. Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013;100(6):1695–703.CrossRefPubMed
42.
Zurück zum Zitat Felicio LS, Nelson JF, Gosden RG, Finch CE. Restoration of ovulatory cycles by young ovarian grafts in aging mice: potentiation by long-term ovariectomy decreases with age. Proc Natl Acad Sci U S A. 1983;80(19):6076–80.CrossRefPubMedPubMedCentral Felicio LS, Nelson JF, Gosden RG, Finch CE. Restoration of ovulatory cycles by young ovarian grafts in aging mice: potentiation by long-term ovariectomy decreases with age. Proc Natl Acad Sci U S A. 1983;80(19):6076–80.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Liu L, Keefe DL. Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod BioMed Online. 2008;16(1):103–12.CrossRefPubMed Liu L, Keefe DL. Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod BioMed Online. 2008;16(1):103–12.CrossRefPubMed
44.
Zurück zum Zitat Wang S, Hassold T, Hunt P, White MA, Zickler D, Kleckner N, et al. Inefficient crossover maturation underlies elevated aneuploidy in human female meiosis. Cell. 2017;168(6):977–989.e17.CrossRefPubMedPubMedCentral Wang S, Hassold T, Hunt P, White MA, Zickler D, Kleckner N, et al. Inefficient crossover maturation underlies elevated aneuploidy in human female meiosis. Cell. 2017;168(6):977–989.e17.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Lin W, Titus S, Moy F, Ginsburg ES, Oktay K. Ovarian aging in women with BRCA germline mutations. J Clin Endocrinol Metab. 2017;102(10):3839–47.CrossRefPubMedPubMedCentral Lin W, Titus S, Moy F, Ginsburg ES, Oktay K. Ovarian aging in women with BRCA germline mutations. J Clin Endocrinol Metab. 2017;102(10):3839–47.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Leese HJ, Guerif F, Allgar V, Brison DR, Lundin K, Sturmey RG. Biological optimization, the Goldilocks principle, and how much is lagom in the preimplantation embryo. Mol Reprod Dev. 2016;83(9):748–54.CrossRefPubMed Leese HJ, Guerif F, Allgar V, Brison DR, Lundin K, Sturmey RG. Biological optimization, the Goldilocks principle, and how much is lagom in the preimplantation embryo. Mol Reprod Dev. 2016;83(9):748–54.CrossRefPubMed
48.
Zurück zum Zitat Krisher RL, Prather RS. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev. 2012;79(5):311–20.CrossRefPubMedPubMedCentral Krisher RL, Prather RS. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev. 2012;79(5):311–20.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Scantland S, Tessaro I, Macabelli CH, Macaulay AD, Cagnone G, Fournier É, et al. The adenosine salvage pathway as an alternative to mitochondrial production of ATP in maturing mammalian oocytes. Biol Reprod. 2014;91(3):75.CrossRefPubMed Scantland S, Tessaro I, Macabelli CH, Macaulay AD, Cagnone G, Fournier É, et al. The adenosine salvage pathway as an alternative to mitochondrial production of ATP in maturing mammalian oocytes. Biol Reprod. 2014;91(3):75.CrossRefPubMed
50.
Zurück zum Zitat Liu L, Keefe DL. Nuclear origin of aging-associated meiotic defects in senescence-accelerated mice. Biol Reprod. 2004;71(5):1724–9.CrossRefPubMed Liu L, Keefe DL. Nuclear origin of aging-associated meiotic defects in senescence-accelerated mice. Biol Reprod. 2004;71(5):1724–9.CrossRefPubMed
51.
Zurück zum Zitat Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod. 2010;83(1):52–62.CrossRefPubMedPubMedCentral Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod. 2010;83(1):52–62.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C, Li LH, et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 2019;176(6):1325–1339.e22.CrossRefPubMed Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C, Li LH, et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 2019;176(6):1325–1339.e22.CrossRefPubMed
53.
Zurück zum Zitat Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell. 2012;151(2):333–43.CrossRefPubMedPubMedCentral Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell. 2012;151(2):333–43.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Chen SH, Pascale C, Jackson M, Szvetecz MA, Cohen J. A limited survey-based uncontrolled follow-up study of children born after ooplasmic transplantation in a single centre. Reprod BioMed Online. 2016;33(6):737–44.CrossRefPubMed Chen SH, Pascale C, Jackson M, Szvetecz MA, Cohen J. A limited survey-based uncontrolled follow-up study of children born after ooplasmic transplantation in a single centre. Reprod BioMed Online. 2016;33(6):737–44.CrossRefPubMed
55.
Zurück zum Zitat Barritt J, et al. Cytoplasmic transfer in assisted reproduction. Hum Reprod Update. 2001;7(4):428–35.CrossRefPubMed Barritt J, et al. Cytoplasmic transfer in assisted reproduction. Hum Reprod Update. 2001;7(4):428–35.CrossRefPubMed
56.
Zurück zum Zitat Woods DC, Tilly JL. Autologous germline mitochondrial energy transfer (AUGMENT) in human assisted reproduction. Semin Reprod Med. 2015;33(6):410–21.CrossRefPubMedPubMedCentral Woods DC, Tilly JL. Autologous germline mitochondrial energy transfer (AUGMENT) in human assisted reproduction. Semin Reprod Med. 2015;33(6):410–21.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Weintraub K. Turmoil at troubled fertility company Ovascience. In: MIT Technology Review. Cambridge: MIT Press; 2016. Weintraub K. Turmoil at troubled fertility company Ovascience. In: MIT Technology Review. Cambridge: MIT Press; 2016.
59.
Zurück zum Zitat Meiling B. Once a multibillion dollar company, OvaScience ends a pennystock vehicle for Millendo’s reverse merger. Endpoints News; 2018. Meiling B. Once a multibillion dollar company, OvaScience ends a pennystock vehicle for Millendo’s reverse merger. Endpoints News; 2018.
60.
Zurück zum Zitat Labarta E, de los Santos MJ, Herraiz S, Escribá MJ, Marzal A, Buigues A, et al. Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing in vitro fertilization-a randomized pilot study. Fertil Steril. 2019;111(1):86–96.CrossRefPubMed Labarta E, de los Santos MJ, Herraiz S, Escribá MJ, Marzal A, Buigues A, et al. Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing in vitro fertilization-a randomized pilot study. Fertil Steril. 2019;111(1):86–96.CrossRefPubMed
Metadaten
Titel
Easing US restrictions on mitochondrial replacement therapy would protect research interests but grease the slippery slope
verfasst von
David L. Keefe
Publikationsdatum
28.08.2019
Verlag
Springer US
Erschienen in
Journal of Assisted Reproduction and Genetics / Ausgabe 9/2019
Print ISSN: 1058-0468
Elektronische ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-019-01529-3

Weitere Artikel der Ausgabe 9/2019

Journal of Assisted Reproduction and Genetics 9/2019 Zur Ausgabe

Hirsutismus bei PCOS: Laser- und Lichttherapien helfen

26.04.2024 Hirsutismus Nachrichten

Laser- und Lichtbehandlungen können bei Frauen mit polyzystischem Ovarialsyndrom (PCOS) den übermäßigen Haarwuchs verringern und das Wohlbefinden verbessern – bei alleiniger Anwendung oder in Kombination mit Medikamenten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Weniger postpartale Depressionen nach Esketamin-Einmalgabe

Bislang gibt es kein Medikament zur Prävention von Wochenbettdepressionen. Das Injektionsanästhetikum Esketamin könnte womöglich diese Lücke füllen.

Bei RSV-Impfung vor 60. Lebensjahr über Off-Label-Gebrauch aufklären!

22.04.2024 DGIM 2024 Kongressbericht

Durch die Häufung nach der COVID-19-Pandemie sind Infektionen mit dem Respiratorischen Synzytial-Virus (RSV) in den Fokus gerückt. Fachgesellschaften empfehlen eine Impfung inzwischen nicht nur für Säuglinge und Kleinkinder.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.