Skip to main content
Erschienen in: Die Gynäkologie 1/2022

21.12.2021 | Echokardiografie | Leitthema

Künstliche Intelligenz in der pränatalen kardialen Diagnostik

verfasst von: Prof. Dr. Jan Weichert, Amrei Welp, Jann Lennard Scharf, Christoph Dracopoulos, Achim Rody, Michael Gembicki

Erschienen in: Die Gynäkologie | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die pränatale Detektionsrate von fetalen Herzfehlern ist trotz Auflage nationaler und internationaler Screeningprogramme niedrig geblieben. Die Entdeckungsraten im Niedrigrisikokollektiv reichen von 22,5–52,8 %. Erfolgversprechende Ansätze hin zu verbesserten Detektionsraten könnten automatisierte Anwendungen der künstlichen Intelligenz (KI) darstellen. Bezug nehmend auf neuartige und bereits etablierte KI-Lösungen aus der Erwachsenenkardiologie sollen in dieser Übersicht die Möglichkeiten und Limitierungen von KI-Algorithmen für die fetale Echokardiographie diskutiert werden.
Literatur
1.
Zurück zum Zitat Kuhn S, Heusel-Weiss M, Kadioglu D, Michl S (2019) Digitale Transformation der Medizin – Die Zukunft aktiv gestalten. Dtsch Arztebl 116(17):A830–834 Kuhn S, Heusel-Weiss M, Kadioglu D, Michl S (2019) Digitale Transformation der Medizin – Die Zukunft aktiv gestalten. Dtsch Arztebl 116(17):A830–834
2.
Zurück zum Zitat Thomford NE, Bope CD, Agamah FE et al (2020) Implementing artificial intelligence and digital health in resource-limited settings? Top 10 lessons we learned in congenital heart defects and cardiology. OMICS 24(5):264–277PubMed Thomford NE, Bope CD, Agamah FE et al (2020) Implementing artificial intelligence and digital health in resource-limited settings? Top 10 lessons we learned in congenital heart defects and cardiology. OMICS 24(5):264–277PubMed
3.
Zurück zum Zitat Obermeyer Z, Emanuel EJ (2016) Predicting the future – big data, machine learning, and clinical medicine. N Engl J Med 375(13):1216–1219PubMedPubMedCentral Obermeyer Z, Emanuel EJ (2016) Predicting the future – big data, machine learning, and clinical medicine. N Engl J Med 375(13):1216–1219PubMedPubMedCentral
4.
Zurück zum Zitat McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577(7788):89–94PubMed McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577(7788):89–94PubMed
5.
Zurück zum Zitat Ou WC, Polat D, Dogan BE (2021) Deep learning in breast radiology: current progress and future directions. Eur Radiol 31(7):4872–4885PubMed Ou WC, Polat D, Dogan BE (2021) Deep learning in breast radiology: current progress and future directions. Eur Radiol 31(7):4872–4885PubMed
6.
Zurück zum Zitat Day TG, Kainz B, Hajnal J, Razavi R, Simpson JM (2021) Artificial intelligence, fetal echocardiography, and congenital heart disease. Prenat Diagn 41:733–742PubMedCentral Day TG, Kainz B, Hajnal J, Razavi R, Simpson JM (2021) Artificial intelligence, fetal echocardiography, and congenital heart disease. Prenat Diagn 41:733–742PubMedCentral
7.
Zurück zum Zitat Zhou J, Du M, Chang S, Chen Z (2021) Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis. Cardiovasc Ultrasound 19(1):29PubMedPubMedCentral Zhou J, Du M, Chang S, Chen Z (2021) Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis. Cardiovasc Ultrasound 19(1):29PubMedPubMedCentral
8.
Zurück zum Zitat Knackstedt C, Bekkers SC, Schummers G et al (2015) Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study. J Am Coll Cardiol 66(13):1456–1466PubMed Knackstedt C, Bekkers SC, Schummers G et al (2015) Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study. J Am Coll Cardiol 66(13):1456–1466PubMed
9.
Zurück zum Zitat Tsang W, Salgo IS, Medvedofsky D et al (2016) Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC Cardiovasc Imaging 9(7):769–782PubMed Tsang W, Salgo IS, Medvedofsky D et al (2016) Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC Cardiovasc Imaging 9(7):769–782PubMed
11.
Zurück zum Zitat Garcia-Canadilla P, Sanchez-Martinez S, Crispi F, Bijnens B (2020) Machine learning in fetal cardiology: what to expect. Fetal Diagn Ther 47(5):363–372PubMed Garcia-Canadilla P, Sanchez-Martinez S, Crispi F, Bijnens B (2020) Machine learning in fetal cardiology: what to expect. Fetal Diagn Ther 47(5):363–372PubMed
12.
Zurück zum Zitat Johnson KW, Torres Soto J, Glicksberg BS et al (2018) Artificial intelligence in cardiology. J Am Coll Cardiol 71(23):2668–2679PubMed Johnson KW, Torres Soto J, Glicksberg BS et al (2018) Artificial intelligence in cardiology. J Am Coll Cardiol 71(23):2668–2679PubMed
13.
Zurück zum Zitat Hinton GE (2007) To recognize shapes, first learn to generate images. Prog Brain Res 165:535–547PubMed Hinton GE (2007) To recognize shapes, first learn to generate images. Prog Brain Res 165:535–547PubMed
14.
Zurück zum Zitat Kusunose K (2021) Steps to use artificial intelligence in echocardiography. J Echocardiogr 19(1):21–27PubMed Kusunose K (2021) Steps to use artificial intelligence in echocardiography. J Echocardiogr 19(1):21–27PubMed
15.
Zurück zum Zitat Yoon YE, Kim S, Chang HJ (2021) Artificial intelligence and echocardiography. J Cardiovasc Imaging 29(3):193–204PubMedPubMedCentral Yoon YE, Kim S, Chang HJ (2021) Artificial intelligence and echocardiography. J Cardiovasc Imaging 29(3):193–204PubMedPubMedCentral
16.
Zurück zum Zitat Yu L, Guo Y, Wang Y, Yu J, Chen P (2017) Segmentation of fetal left ventricle in echocardiographic sequences based on dynamic convolutional neural networks. IEEE Trans Biomed Eng 64(8):1886–1895PubMed Yu L, Guo Y, Wang Y, Yu J, Chen P (2017) Segmentation of fetal left ventricle in echocardiographic sequences based on dynamic convolutional neural networks. IEEE Trans Biomed Eng 64(8):1886–1895PubMed
17.
Zurück zum Zitat Xu L, Liu M, Shen Z et al (2020) DW-Net: a cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography. Comput Med Imaging Graph 80:101690PubMed Xu L, Liu M, Shen Z et al (2020) DW-Net: a cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography. Comput Med Imaging Graph 80:101690PubMed
18.
Zurück zum Zitat Zhang J, Gajjala S, Agrawal P et al (2018) Fully automated echocardiogram interpretation in clinical practice. Circulation 138(16):1623–1635PubMedPubMedCentral Zhang J, Gajjala S, Agrawal P et al (2018) Fully automated echocardiogram interpretation in clinical practice. Circulation 138(16):1623–1635PubMedPubMedCentral
19.
Zurück zum Zitat Arnaout R, Curran L, Zhao Y, Levine JC, Chinn E, Moon-Grady AJ (2020) Expert-level prenatal detection of complex congenital heart disease from screening ultrasound using deep learning (medRxiv) Arnaout R, Curran L, Zhao Y, Levine JC, Chinn E, Moon-Grady AJ (2020) Expert-level prenatal detection of complex congenital heart disease from screening ultrasound using deep learning (medRxiv)
20.
Zurück zum Zitat Le TK, Truong V, Nguyen-Vo TH (2020) Application of machine learning in screening of congenital heart diseases using fetal echo-cardiography. J Am Coll Cardiol 75(11):648 Le TK, Truong V, Nguyen-Vo TH (2020) Application of machine learning in screening of congenital heart diseases using fetal echo-cardiography. J Am Coll Cardiol 75(11):648
22.
Zurück zum Zitat Dong J, Liu S, Liao Y et al (2020) A generic quality control framework for fetal ultrasound cardiac four-chamber planes. IEEE J Biomed Health Inform 24(4):931–942PubMed Dong J, Liu S, Liao Y et al (2020) A generic quality control framework for fetal ultrasound cardiac four-chamber planes. IEEE J Biomed Health Inform 24(4):931–942PubMed
23.
Zurück zum Zitat Nagendran M, Chen Y, Lovejoy CA et al (2020) Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 368:m689PubMedPubMedCentral Nagendran M, Chen Y, Lovejoy CA et al (2020) Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 368:m689PubMedPubMedCentral
24.
Zurück zum Zitat Lee CS, Lee AY (2020) How artificial intelligence can transform randomized controlled trials. Transl Vis Sci Technol 9(2):9PubMedPubMedCentral Lee CS, Lee AY (2020) How artificial intelligence can transform randomized controlled trials. Transl Vis Sci Technol 9(2):9PubMedPubMedCentral
25.
Zurück zum Zitat Kim YH (2021) Artificial intelligence in medical ultrasonography: driving on an unpaved road. Ultrasonography 40(3):313–317PubMedPubMedCentral Kim YH (2021) Artificial intelligence in medical ultrasonography: driving on an unpaved road. Ultrasonography 40(3):313–317PubMedPubMedCentral
26.
Zurück zum Zitat Patra A, Noble JA (2020) Hierarchical class incremental learning of anatomical structures in fetal echocardiography videos. IEEE J Biomed Health Inform 24(4):1046–1058PubMed Patra A, Noble JA (2020) Hierarchical class incremental learning of anatomical structures in fetal echocardiography videos. IEEE J Biomed Health Inform 24(4):1046–1058PubMed
27.
Zurück zum Zitat Huang W, Bridge CP, Noble JA, Zisserman A (2017) Temporal heartnet: towards human-level automatic analysis of fetal cardiac screening video Huang W, Bridge CP, Noble JA, Zisserman A (2017) Temporal heartnet: towards human-level automatic analysis of fetal cardiac screening video
28.
Zurück zum Zitat Sharma H, Drukker L, Chatelain P, Droste R, Papageorghiou AT, Noble JA (2021) Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos. Med Image Anal 69:101973PubMed Sharma H, Drukker L, Chatelain P, Droste R, Papageorghiou AT, Noble JA (2021) Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos. Med Image Anal 69:101973PubMed
29.
Zurück zum Zitat Droste R, Drukker L, Papageorghiou AT, Noble JA (2020) Automatic probe movement guidance for freehand obstetric ultrasound. Med Image Comput Comput Assist Interv 12263:583–592PubMedPubMedCentral Droste R, Drukker L, Papageorghiou AT, Noble JA (2020) Automatic probe movement guidance for freehand obstetric ultrasound. Med Image Comput Comput Assist Interv 12263:583–592PubMedPubMedCentral
30.
Zurück zum Zitat Alsharid M, Sharma H, Drukker L, Chatelain P, Papageorghiou AT, Noble JA (2019) Captioning ultrasound images automatically (Paper presented at: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019) Alsharid M, Sharma H, Drukker L, Chatelain P, Papageorghiou AT, Noble JA (2019) Captioning ultrasound images automatically (Paper presented at: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019)
31.
Zurück zum Zitat Cai Y, Droste R, Sharma H et al (2020) Spatio-temporal visual attention modelling of standard biometry plane-finding navigation. Med Image Anal 65:101762PubMed Cai Y, Droste R, Sharma H et al (2020) Spatio-temporal visual attention modelling of standard biometry plane-finding navigation. Med Image Anal 65:101762PubMed
32.
Zurück zum Zitat Baumgartner CF, Kamnitsas K, Matthew J et al (2017) SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans Med Imaging 36(11):2204–2215PubMed Baumgartner CF, Kamnitsas K, Matthew J et al (2017) SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans Med Imaging 36(11):2204–2215PubMed
33.
Zurück zum Zitat Yaqub M, Kelly B, Noble JA, Papageorghiou AT (2018) An AI system to support sonologists during fetal ultrasound anomaly screening. Ultrasound Obstet Gynecol 52(S1):9–10 Yaqub M, Kelly B, Noble JA, Papageorghiou AT (2018) An AI system to support sonologists during fetal ultrasound anomaly screening. Ultrasound Obstet Gynecol 52(S1):9–10
34.
Zurück zum Zitat Yaqub M, Sleep N, Syme S et al (2021) ScanNav® audit: an AI-powered screening assistant for fetal anatomical ultrasound. Am J Obstet Gynecol 224(Suppl):312 Yaqub M, Sleep N, Syme S et al (2021) ScanNav® audit: an AI-powered screening assistant for fetal anatomical ultrasound. Am J Obstet Gynecol 224(Suppl):312
35.
Zurück zum Zitat Yeo L, Romero R (2013) Fetal intelligent navigation echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart. Ultrasound Obstet Gynecol 42(3):268–284PubMed Yeo L, Romero R (2013) Fetal intelligent navigation echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart. Ultrasound Obstet Gynecol 42(3):268–284PubMed
36.
Zurück zum Zitat Yeo L, Luewan S, Romero R (2018) Fetal intelligent navigation echocardiography (FINE) detects 98 % of congenital heart disease. J Ultrasound Med 37(11):2577–2593PubMedPubMedCentral Yeo L, Luewan S, Romero R (2018) Fetal intelligent navigation echocardiography (FINE) detects 98 % of congenital heart disease. J Ultrasound Med 37(11):2577–2593PubMedPubMedCentral
37.
Zurück zum Zitat Garcia M, Yeo L, Romero R et al (2016) Prospective evaluation of the fetal heart using fetal intelligent navigation echocardiography (FINE). Ultrasound Obstet Gynecol 47(4):450–459PubMedPubMedCentral Garcia M, Yeo L, Romero R et al (2016) Prospective evaluation of the fetal heart using fetal intelligent navigation echocardiography (FINE). Ultrasound Obstet Gynecol 47(4):450–459PubMedPubMedCentral
38.
Zurück zum Zitat Huang C, Zhao BW, Chen R et al (2020) Is fetal intelligent navigation echocardiography helpful in screening for d‑transposition of the great arteries? J Ultrasound Med 39(4):775–784PubMed Huang C, Zhao BW, Chen R et al (2020) Is fetal intelligent navigation echocardiography helpful in screening for d‑transposition of the great arteries? J Ultrasound Med 39(4):775–784PubMed
39.
Zurück zum Zitat DeVore GR, Haxel C, Satou G et al (2021) Improved detection of coarctation of the aorta using speckle-tracking analysis of fetal heart on last examination prior to delivery. Ultrasound Obstet Gynecol 57(2):282–291PubMed DeVore GR, Haxel C, Satou G et al (2021) Improved detection of coarctation of the aorta using speckle-tracking analysis of fetal heart on last examination prior to delivery. Ultrasound Obstet Gynecol 57(2):282–291PubMed
40.
Zurück zum Zitat DeVore GR, Klas B, Satou G, Sklansky M (2018) 24-segment sphericity index: a new technique to evaluate fetal cardiac diastolic shape. Ultrasound Obstet Gynecol 51(5):650–658PubMed DeVore GR, Klas B, Satou G, Sklansky M (2018) 24-segment sphericity index: a new technique to evaluate fetal cardiac diastolic shape. Ultrasound Obstet Gynecol 51(5):650–658PubMed
41.
Zurück zum Zitat DeVore GR, Klas B, Satou G, Sklansky M (2018) Twenty-four segment transverse ventricular fractional shortening: a new technique to evaluate fetal cardiac function. J Ultrasound Med 37(5):1129–1141PubMed DeVore GR, Klas B, Satou G, Sklansky M (2018) Twenty-four segment transverse ventricular fractional shortening: a new technique to evaluate fetal cardiac function. J Ultrasound Med 37(5):1129–1141PubMed
42.
Zurück zum Zitat DeVore GR, Polanco B, Satou G, Sklansky M (2016) Two-Dimensional Speckle Tracking of the Fetal Heart: A Practical Step-by-Step Approach for the Fetal Sonologist. J Ultrasound Med. 2016 Aug;35(8):1765–1781PubMed DeVore GR, Polanco B, Satou G, Sklansky M (2016) Two-Dimensional Speckle Tracking of the Fetal Heart: A Practical Step-by-Step Approach for the Fetal Sonologist. J Ultrasound Med. 2016 Aug;35(8):1765–1781PubMed
43.
Zurück zum Zitat Lee M, Won H (2019) Novel technique for measurement of fetal right myocardial performance index using synchronised images of right ventricular inflow and outflow. Ultrasound Obstet Gynecol 54:178–179 Lee M, Won H (2019) Novel technique for measurement of fetal right myocardial performance index using synchronised images of right ventricular inflow and outflow. Ultrasound Obstet Gynecol 54:178–179
44.
Zurück zum Zitat Kang OJ, Kim SY, Lee MY et al (2021) Novel technique for the measurement of fetal right modified myocardial performance index using synchronized images of right ventricular inflow and outflow and clinical application to twin-to-twin transfusion syndrome. J Ultrasound Med 40(11):2467–2475. https://doi.org/10.1002/jum.15634CrossRefPubMed Kang OJ, Kim SY, Lee MY et al (2021) Novel technique for the measurement of fetal right modified myocardial performance index using synchronized images of right ventricular inflow and outflow and clinical application to twin-to-twin transfusion syndrome. J Ultrasound Med 40(11):2467–2475. https://​doi.​org/​10.​1002/​jum.​15634CrossRefPubMed
45.
Zurück zum Zitat Box G (1976) Science and statistics. J Am Stat Assoc 71:791–799 Box G (1976) Science and statistics. J Am Stat Assoc 71:791–799
46.
Zurück zum Zitat Wasserstein R (2010) George Box: a model statistician. Significance 7:134–135 Wasserstein R (2010) George Box: a model statistician. Significance 7:134–135
47.
Zurück zum Zitat Chen Z, Liu Z, Du M, Wang Z (2021) Artificial intelligence in obstetric ultrasound: an update and future applications. Front Med (Lausanne) 8:733468 Chen Z, Liu Z, Du M, Wang Z (2021) Artificial intelligence in obstetric ultrasound: an update and future applications. Front Med (Lausanne) 8:733468
48.
Zurück zum Zitat Bates DW, Auerbach A, Schulam P, Wright A, Saria S (2020) Reporting and implementing interventions involving machine learning and artificial intelligence. Ann Intern Med 172(11):S137–s144PubMed Bates DW, Auerbach A, Schulam P, Wright A, Saria S (2020) Reporting and implementing interventions involving machine learning and artificial intelligence. Ann Intern Med 172(11):S137–s144PubMed
49.
Zurück zum Zitat Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D (2019) Key challenges for delivering clinical impact with artificial intelligence. BMC Med 17(1):195PubMedPubMedCentral Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D (2019) Key challenges for delivering clinical impact with artificial intelligence. BMC Med 17(1):195PubMedPubMedCentral
50.
Zurück zum Zitat Sengupta PP, Shrestha S, Berthon B et al (2020) Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): a checklist: reviewed by the American college of cardiology Healthcare innovation council. JACC Cardiovasc Imaging 13(9):2017–2035PubMedPubMedCentral Sengupta PP, Shrestha S, Berthon B et al (2020) Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): a checklist: reviewed by the American college of cardiology Healthcare innovation council. JACC Cardiovasc Imaging 13(9):2017–2035PubMedPubMedCentral
52.
Zurück zum Zitat Quer G, Arnaout R, Henne M, Arnaout R (2021) Machine learning and the future of cardiovascular care: JACC state-of-the-art review. J Am Coll Cardiol 77(3):300–313PubMedPubMedCentral Quer G, Arnaout R, Henne M, Arnaout R (2021) Machine learning and the future of cardiovascular care: JACC state-of-the-art review. J Am Coll Cardiol 77(3):300–313PubMedPubMedCentral
53.
Zurück zum Zitat Allen B Jr., Seltzer SE, Langlotz CP et al (2019) A road map for translational research on artificial intelligence in medical imaging: from the 2018 national institutes of health/RSNA/ACR/the academy workshop. J Am Coll Radiol 16(9 Pt A):1179–1189PubMed Allen B Jr., Seltzer SE, Langlotz CP et al (2019) A road map for translational research on artificial intelligence in medical imaging: from the 2018 national institutes of health/RSNA/ACR/the academy workshop. J Am Coll Radiol 16(9 Pt A):1179–1189PubMed
54.
Zurück zum Zitat Langlotz CP, Allen B, Erickson BJ et al (2019) A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology 291(3):781–791PubMed Langlotz CP, Allen B, Erickson BJ et al (2019) A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology 291(3):781–791PubMed
55.
Zurück zum Zitat Gaffar S, Gearhart AS, Chang AC (2020) The next frontier in pediatric cardiology: artificial intelligence. Pediatr Clin North Am 67(5):995–1009PubMed Gaffar S, Gearhart AS, Chang AC (2020) The next frontier in pediatric cardiology: artificial intelligence. Pediatr Clin North Am 67(5):995–1009PubMed
56.
Zurück zum Zitat Krittanawong C, Rogers AJ, Johnson KW et al (2021) Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat Rev Cardiol 18(2):75–91PubMed Krittanawong C, Rogers AJ, Johnson KW et al (2021) Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat Rev Cardiol 18(2):75–91PubMed
57.
Zurück zum Zitat Benjamins JW, Hendriks T, Knuuti J, Juarez-Orozco LE, van der Harst P (2019) A primer in artificial intelligence in cardiovascular medicine. Neth Heart J 27(9):392–402PubMedPubMedCentral Benjamins JW, Hendriks T, Knuuti J, Juarez-Orozco LE, van der Harst P (2019) A primer in artificial intelligence in cardiovascular medicine. Neth Heart J 27(9):392–402PubMedPubMedCentral
58.
Zurück zum Zitat Schuuring MJ, Išgum I, Cosyns B, Chamuleau SAJ, Bouma BJ (2021) Routine echocardiography and artificial intelligence solutions. Front Cardiovasc Med 8:648877PubMedPubMedCentral Schuuring MJ, Išgum I, Cosyns B, Chamuleau SAJ, Bouma BJ (2021) Routine echocardiography and artificial intelligence solutions. Front Cardiovasc Med 8:648877PubMedPubMedCentral
59.
Zurück zum Zitat Sonntag D (2021) Künstliche Intelligenz in der Medizin und Gynäkologie – Holzweg oder Heilversprechen? Gynäkologe 54:476–482PubMedPubMedCentral Sonntag D (2021) Künstliche Intelligenz in der Medizin und Gynäkologie – Holzweg oder Heilversprechen? Gynäkologe 54:476–482PubMedPubMedCentral
60.
Zurück zum Zitat Banerjee M, Chiew D, Patel KT et al (2021) The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med Educ 21(1):429PubMedPubMedCentral Banerjee M, Chiew D, Patel KT et al (2021) The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med Educ 21(1):429PubMedPubMedCentral
61.
Zurück zum Zitat Kleesiek J, Murray J, Kaissis G, Braren R (2020) Künstliche Intelligenz und maschinelles Lernen in der onkologischen Bildgebung. Onkologe 26:60–65 Kleesiek J, Murray J, Kaissis G, Braren R (2020) Künstliche Intelligenz und maschinelles Lernen in der onkologischen Bildgebung. Onkologe 26:60–65
Metadaten
Titel
Künstliche Intelligenz in der pränatalen kardialen Diagnostik
verfasst von
Prof. Dr. Jan Weichert
Amrei Welp
Jann Lennard Scharf
Christoph Dracopoulos
Achim Rody
Michael Gembicki
Publikationsdatum
21.12.2021
Verlag
Springer Medizin
Erschienen in
Die Gynäkologie / Ausgabe 1/2022
Print ISSN: 2731-7102
Elektronische ISSN: 2731-7110
DOI
https://doi.org/10.1007/s00129-021-04890-6

Weitere Artikel der Ausgabe 1/2022

Die Gynäkologie 1/2022 Zur Ausgabe

Einführung zum Thema

Update fetale Echokardiographie

Medizinrecht

Medizinrecht

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Fehlerkultur in der Medizin – Offenheit zählt!

28.05.2024 Fehlerkultur Podcast

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.