Skip to main content
Erschienen in: Medical Gas Research 1/2011

Open Access 01.12.2011 | Short communication

Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors

verfasst von: Ki-Mun Kang, Young-Nam Kang, Ihil-Bong Choi, Yeunhwa Gu, Tomohiro Kawamura, Yoshiya Toyoda, Atsunori Nakao

Erschienen in: Medical Gas Research | Ausgabe 1/2011

Abstract

Background

Cancer patients receiving radiotherapy often experience fatigue and impaired quality of life (QOL). Many side effects of radiotherapy are believed to be associated with increased oxidative stress and inflammation due to the generation of reactive oxygen species during radiotherapy. Hydrogen can be administered as a therapeutic medical gas, has antioxidant properties, and reduces inflammation in tissues. This study examined whether hydrogen treatment, in the form of hydrogen-supplemented water, improved QOL in patients receiving radiotherapy.

Methods

A randomized, placebo-controlled study was performed to evaluate the effects of drinking hydrogen-rich water on 49 patients receiving radiotherapy for malignant liver tumors. Hydrogen-rich water was produced by placing a metallic magnesium stick into drinking water (final hydrogen concentration; 0.55~0.65 mM). The Korean version of the European Organization for Research and Treatment of Cancer's QLQ-C30 instrument was used to evaluate global health status and QOL. The concentration of derivatives of reactive oxidative metabolites and biological antioxidant power in the peripheral blood were assessed.

Results

The consumption of hydrogen-rich water for 6 weeks reduced reactive oxygen metabolites in the blood and maintained blood oxidation potential. QOL scores during radiotherapy were significantly improved in patients treated with hydrogen-rich water compared to patients receiving placebo water. There was no difference in tumor response to radiotherapy between the two groups.

Conclusions

Daily consumption of hydrogen-rich water is a potentially novel, therapeutic strategy for improving QOL after radiation exposure. Consumption of hydrogen-rich water reduces the biological reaction to radiation-induced oxidative stress without compromising anti-tumor effects.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​2045-9912-1-11) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

KMK, YNK and IBC participated in the radiation therapy and the data accumulation. YG participated in the design of the study and performed the statistical analysis. TK and YT and participated in its design and coordination. AN conceived of the study, and drafted the manuscript. All authors read and approved the final manuscript.
Abkürzungen
ROS
reactive oxygen species
QOL
quality of life

Background

Radiotherapy is one of the major treatment options for malignant neoplasms. Nearly half of all newly diagnosed cancer patients will receive radiotherapy at some point during treatment and up to 25% may receive radiotherapy a second time [1]. While radiotherapy destroys malignant cells, it adversely affects the surrounding normal cells [2]. Acute radiation-associated side effects include fatigue, nausea, diarrhea, dry mouth, loss of appetite, hair loss, sore skin, and depression. Radiation increases the long-term risk of cancer, central nervous system disorders, cardiovascular disease, and cataracts. The likelihood of radiation-induced complications is related to the volume of the irradiated organ, the radiation dose delivered, the fractionation of the delivered dose, the delivery of radiation modifiers, and individual radiosensitivity [3]. Most radiation-induced symptoms are believed to be associated with increased oxidative stress and inflammation, due to the generation of reactive oxygen species (ROS) during radiotherapy, and may significantly affect the patient's quality of life (QOL) [2].
Hydrogen, a therapeutic medical gas, has antioxidant properties and reduces inflammatory events in tissues [46]. Drinking liquids supplemented with hydrogen represents a novel method of hydrogen gas delivery that is easily translatable into clinical practice, with beneficial effects for several medical conditions, including atherosclerosis, type 2 diabetes, metabolic syndrome, and cognitive impairment during aging and in Parkinson's disease [711]. Currently, there is no definitive therapy to improve the QOL of patients receiving radiotherapy. Drinking solubilized hydrogen on a daily basis may be beneficial and would be quite easy to administer without complicating or changing a patient's lifestyle. We hypothesized that oral intake of hydrogen-rich water, generated via a magnesium stick, would reduce adverse events in patients receiving radiotherapy.

Methods

Subjects and design

The study was a two-arm, randomized, controlled clinical trial. Patients were randomly assigned to receive either hydrogen-rich water or placebo water on the first day of radiation treatment, and received follow-up questionnaires on compliance and potential adverse effects. Eligible patients were informed of the study during scheduling of pre-radiation testing. Patient characteristics, including tumor origin and the specifics of radiotherapy, are listed in Table 1. Forty-nine subjects (33 men and 16 women) were enrolled between April and October 2006. The age of the patients ranged from 21 to 82 years (mean age 58.6 years). All patients were diagnosed either histologically or pathologically with hepatocellular carcinoma (HCC) or metastatic hepatic tumors. All participants received 5040-6500 cGy of radiotherapy for 7-8 weeks using a 6 MV system (Cyber Knife, Fanuc, Yamanashi, Japan). The planned target volume of the initial field was assessed by a localization/simulation procedure or by computed tomography (CT)-assisted planning and encompassed the primary tumors and a 2 cm margin. Blocks were used to shield normal tissue.
Table 1
Patient Characteristics
 
water
Age
gender
times
diagnosis
isodose curve (%)
total cGy
volume (cc)
collimater (cc)
response
 
water
age
gender
times
diagnosis
isodose curve (%)
total cGy
volume (cc)
collimater (cc)
response
1
placebo
76
M
3
3
HCC
80
75
3,900
3,900
2.521
2.746
7.5
7.5
NR
 
HW
52
M
3
liver meta of colon ca
74
3,600
12.283
15
NR
2
placebo
82
M
1
HCC
70
1,200
11.769
20
CR
 
HW
56
M
3
liver meta of colon ca
85
3,600
2.552
12.5
PR
3
placebo
57
F
3
bile duct ca
80
3,000
40.334
30
PR
 
HW
77
F
3
liver meta of colon ca
75
3,000
107.136
20
CR
4
placebo
47
F
9
liver meta. of sarcoma
80
82
84
3,600
3,600
3,900
10.628
6.542
2.673
25
20
15
NR
 
HW
57
M
3
HCC
70
3,600
47.679
15
NR
5
placebo
50
F
3
liver meta of colon ca
80
3,900
16.237
20
NR
 
HW
66
M
3
HCC
80
3,600
16.216
25
PR
6
placebo
21
F
3
liver meta. of ovarian ca
85
3,600
29.398
30
CR
 
HW
57
M
3
HCC
80
3,600
35.303
30
NR
7
placebo
65
M
3
liver meta. of rectal ca
70
3,000
182.871
40
PR
 
HW
47
M
3
HCC
77
3,000
17.65
20
CR
8
placebo
73
M
3
liver meta. of rectal ca
75
3,600
37.937
20
PR
 
HW
49
M
3
HCC
80
3,300
53.578
12.5
PR
9
placebo
58
M
3
liver meta. of pancreatic ca
75
3,000
65.637
35
CR
 
HW
71
F
3
HCC
85
3,000
3.861
10
NR
10
placebo
64
M
3
HCC
70
3,000
140.136
20
PR
 
HW
45
M
3
HCC
80
3,600
28.286
15
NR
11
placebo
65
F
3
HCC
70
3,600
48.645
25
PR
 
HW
45
F
3
liver meta. of gastric ca
85
3,000
38.938
15
PR
12
placebo
80
M
3
HCC
80
3,000
209.954
25
NR
 
HW
56
F
3
Adrenal metastasis of HCC
80
3,600
9.494
15
PR
13
placebo
56
M
3
HCC
85
3,600
15.365
15
CR
 
HW
49
M
3
Adrenal metastasis of HCC
75
3,000
91.223
20
NR
14
placebo
61
F
3
HCC
70
3,000
98.957
30
NR
 
HW
60
M
3
LN metastasis of HCC
75
3,000
120.366
25
NR
15
placebo
46
M
3
HCC
80
3,000
20.848
25
CR
 
HW
47
M
3
LN metastasis of HCC
80
3,000
80.459
25
NR
16
placebo
70
F
3
HCC
85
3,600
16.908
20
PR
 
HW
50
M
3
HCC
75
3,600
29.422
20
NR
17
placebo
44
M
3
HCC
85
3,600
16.612
30
NR
 
HW
49
F
3
HCC
70
3,000
156.289
40
PR
18
placebo
48
M
3
HCC
85
3,000
35.093
20
NR
 
HW
63
F
3
HCC
75
3,900
5.425
20
NR
19
placebo
76
F
3
HCC
85
3,600
5.75
15
NR
 
HW
51
M
3
HCC
70
4,000
28.637
35
NR
20
placebo
60
M
3
HCC
83
3,600
6.802
12.5
NR
 
HW
67
F
3
HCC
80
3,600
20.122
20
PR
21
placebo
77
M
3
HCC
75
3,300
33.282
25
PR
 
HW
56
M
3
HCC
70
3,600
23.5
20
CR
22
placebo
55
M
3
HCC
83
3,600
11.963
20
NR
 
HW
78
F
3
HCC
83
3,600
26.456
25
NR
23
placebo
57
M
3
HCC
70
3,000
75.782
40
NR
 
HW
56
M
3
HCC
77
3,600
31.908
20
CR
24
placebo
65
M
2
HCC
75
3,000
55.191
25
NR
 
HW
60
M
3
HCC
70
3,600
36.479
30
PR
            
HW
70
M
3
HCC
76
3,600
63.434
40
NR
M: male, F: female, HCC: hepatocellular carcinoma, NR: no response, PR: partial response, CR: complete response, HW: hydrogen water
Hydrogen-rich water was produced by placing a metallic magnesium stick (Doctor SUISOSUI®, Friendear, Tokyo, Japan) into drinking water (Mg + 2H2O → Mg (OH)2 + H2; final hydrogen concentration: 0.55~0.65 mM). The magnesium stick contained 99.9% pure metallic magnesium and natural stones in a polypropylene and ceramic container. The subjects were randomly assigned to groups to either drink hydrogen-rich water for 6 weeks (n = 25) or drink water containing a placebo (a casing-only stick placed in drinking water) (n = 24). Subjects were provided with four 500 mL bottles of drinking water per day and instructed to place two magnesium sticks in each bottle of water at the end of each day in preparation for consumption the following day. Participants were asked to drink 200-300 mL from one bottle each morning, and 100-200 mL every a few hours from the remaining three bottles. Subjects were instructed to reuse the magnesium sticks by transferring the sticks to a new bottle of water after use. The subjects were expected to consume 100-300 mL of hydrogen-rich water more than 10 times per day for a total minimum consumption of 1500 mL (1.5 L) and a maximum consumption of 2000 mL (2.0 L). Oral intake of hydrogen water or placebo water started on the first day of radiotherapy and continued for 6 weeks. All the patients survived through the 6 week follow-up period when the QOL questionnaire was administered. This study was conducted in accordance with Good Clinical Practice guidelines and the ethical principles of the Declaration of Helsinki (2000). The study protocol and materials were approved by the Institutional Review Board of Catholic University Medical College, and all subjects provided written informed consent prior to participation.

QOL Assessment

The Korean version of the European Organization for Research and Treatment of Cancer's QLQ-C30 instrument with modifications was used to evaluate global health status and create QOL scales [12]. The descriptive, mailed survey developed by our institute was used in this study. The questionnaire contains five functional scales (physical, cognitive, emotional, social, and role-functioning), three symptom scales (pain, fatigue, and nausea/vomiting), and six single items to assess additional symptoms (dyspnea, insomnia, loss of appetite, constipation, diarrhea). For all items, a response scale ranging from 0-5 was used. A higher score reflected a higher level of symptoms and decreased QOL. Assessments were performed before radiotherapy and every week for 6 weeks after the initiation of radiotherapy.

Biomarker analysis

The concentrations of derivatives of reactive oxidative metabolites (dROMs) and biological antioxidant power (BAP) in the peripheral blood were assessed using a free Radical Analytical System (FRAS4; H&D, Parma, Italy) on the first day of radiation therapy (week 0) and after 6 weeks of radiotherapy. Blood samples were obtained from all patients after overnight fasting. FRAS4 dROMs kits were used to measure total hydroperoxide levels, which are representative of the total dROMs produced as a result of peroxidation chain reactions of proteins, lipids, and amino acids. Results were expressed in U.CARR; 1 U.CARR is equivalent to 0.08 mg/dl of hydrogen peroxide and the value is directly proportional to the concentration, according to Lambert-Beer's law.
Redox potential, including glutathione peroxidase and superoxide dismutase, were determined using the FRAS4 BAP test [13]. Described briefly, the samples to be tested were dissolved in a colored solution containing a source of ferric ions and a chromogenic substance (a sulfur-derived compound). After a 5-minute incubation period, the degree of discoloration and intensity of the change were directly proportional to the ability of the plasma to reduce ferric ions. The amount of reduced ferric ions was calculated using a photometer to assess the intensity of discoloration; BAP results were expressed as µmol/l of reduced Fe/l.
Blood chemistry tests for aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transpeptidase (γ-GTP), and total cholesterol, as well as blood hematology tests for red blood cell count, white blood cell count, and platelet count were conducted at week 0 and week 6 using standard assays in an accredited hospital laboratory.

Assessment of response

Patients underwent dynamic CT scans 1-2 months after completion of radiation treatment and tumor response was checked at 2-3 month intervals thereafter. Treatment response and local recurrence were evaluated using follow-up dynamic CT scans and serum tests for alpha-fetoprotein (AFP) and prothrombin, which is induced by vitamin K absence or antagonist-II (PIVKA-II). Tumor response was determined by the criteria established by Kwon et al. [14]. Described briefly, complete response (CR) was defined as the disappearance of any intratumoral arterial enhancement in all target lesions. Partial response (PR) was defined as at least a 30% decrease in the sum of the diameters of viable target lesions. Progressive disease (PD) was defined as an at least 20% increase in the sum of the diameters of viable target lesions or the appearance of a new lesion. Stable disease (SD) was defined as a tumor status that did not meet any of the above criteria.

Statistical analysis

Unpaired t tests were used to compare numerical data and the Yates 2 x 2 chi-square test or Fisher exact probability test was used to compare categorical data. Statistical analyses were performed using SAS 6.13 software (SAS Institute Inc., Cary, NC). The sample size of 49 patients was sufficient to detect a change in mean scores of RORTC QLQ-C30.

Results

Hydrogen water improved the QOL of patients receiving radiotherapy

The QOL of the patients who were given placebo water deteriorated significantly within the first month of radiotherapy (Figure 1A). There were no differences between the groups in the QOL subscales for fatigue, depression, or sleep. Gastrointestinal (GI) symptoms are one of the most common complaints of patients undergoing radiotherapy and are considered to have a high impact on the patient's QOL after 6 weeks of radiotherapy. The patients consuming hydrogen water experienced significantly less appetite loss and fewer tasting disorders compared to the patients consuming placebo water. No significant difference was seen in the mean scores for vomiting or diarrhea (Figure 1B).

Hydrogen water mitigated oxidative stress marker during radiotherapy

Before treatment, there were no differences in total hydroperoxide levels, representative of total dROM levels, between the treatment groups. Radiotherapy markedly increased total hydroperoxide levels in the patients consuming placebo water. However, drinking hydrogen water prevented this increase in total serum hydroperoxide, as determined by the dROM test (Figure 2A), indicating decreased oxidative stress during radiotherapy in the patients who consumed hydrogen water. Similarly, endogenous serum antioxidant activity significantly deteriorated during radiotherapy in the patients consuming placebo water, and biologic antioxidant activity was maintained in patients who consumed hydrogen-rich water, even after 6 weeks of radiotherapy (Figure 2B).

Hydrogen water did not compromise the radiation treatment efficacies

Tumor response to radiotherapy was similar between the treatment groups, and 12 of 24 (50.0%) patients in the placebo group and 12 of 25 (48%) patients in hydrogen water group exhibited either a completed response (CR) or a partial response (PR). There were no patients in either group with progressive disease (PD) during the follow-up period (3 months). Thus, drinking hydrogen water did not compromise the anti-tumor effects of radiotherapy.

Hydrogen treatment did not alter liver function or blood composition during radiotherapy

There were no significant differences in aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transpeptidase (γ-GTP) and total cholesterol levels at week 0 and week 6, regardless of the type of water consumed (Table 2), indicating that hydrogen water consumption did not alter liver function. Similarly, there were no significant differences in red blood cell count, white blood cell count, or platelet count between patients consuming hydrogen water and patients consuming placebo water (Table 3).
Table 2
Changes in liver function tests
 
Placebo
Hydrogen water
 
all (n = 25)
male (n = 17)
female (n = 8)
all (n = 25)
male (n = 16)
female (n = 9)
AST(IU/L)
      
   Week 0
24.8 ± 9.1
25.6 ± 5.7
23.1 ± 10.4
25.3 ± 6.7
25.9 ± 5.3
23.9 ± 8.3
   Week 6
26.3 ± 6.7
26.9 ± 7.1
25.4 ± 6.8
26.8 ± 8.2
27.2 ± 9.9
26.4 ± 5.1
ALT(IU/L)
      
Week 0
27.4 ± 15
28.1 ± 11
26.5 ± 17
26.9 ± 8.7
27.1 ± 6.7
26.7 ± 10.3
Week 6
28.8 ± 14
28.7 ± 16
27.6 ± 12
28.1 ± 6.5
28.8 ± 7.3
27.6 ± 9.9
γ-GPT(IU/L)
      
Week 0
61.9 ± 54.3
62.3 ± 35.6
60.5 ± 64.7
62.3 ± 26.2
62.1 ± 34.8
62.4 ± 47.9
Week 6
62.8 ± 22.8
63.2 ± 16.5
62.7 ± 25.9
63.6 ± 36.2
63.9 ± 54.2
63.2 ± 27.4
AST(IU/L)
      
Week 0
24.8 ± 9.1
25.6 ± 5.7
23.1 ± 10.4
25.3 ± 6.7
25.9 ± 5.3
23.9 ± 8.3
Week 6
26.3 ± 6.7
26.9 ± 7.1
25.4 ± 6.8
26.8 ± 8.2
27.2 ± 9.9
26.4 ± 5.1
Table 3
Peripheral blood cell counts
 
Placebo
Hydrogen water
 
all (n = 25)
male (n = 17)
female (n = 8)
all (n = 25)
male (n = 16)
female (n = 9)
The number of leukocytes (× 102 /μL)
      
Week 0
55.8 ± 15.6
58.5 ± 12.7
52.8 ± 16.4
56.2 ± 16.7
57.3 ± 17.2
55.4 ± 15.1
Week 6
53.9 ± 21.4
54.1 ± 22.7
53.7 ± 19.8
54.7 ± 28.7
55.1 ± 31.2
53.8 ± 19.4
The number of erythrocytes (× 104 /μL)
      
Week 0
474.2 ± 38.3
492.3 ± 45.8
460.8 ± 30.5
482.5 ± 42.1
496.6 ± 50.7
472.9 ± 36.4
Week 6
462.1 ± 52.4
473.8 ± 42.1
456.4 ± 62.2
479.5 ± 36.5
486.4 ± 29.4
470.7 ± 40.5
The number of thrombocytes (×104 /μL)
      
Week 0
25.7 ± 6.5
26.4 ± 4.7
24.7 ± 5.9
26.4 ± 7.1
26.9 ± 5.5
26.1 ± 4.8
Week 6
24.5 ± 4.7
25.9 ± 2.8
23.4 ± 6.4
25.7 ± 4.8
26.1 ± 4.7
25.3 ± 3.9

Discussion

To our knowledge, this is the first report demonstrating the benefits of drinking hydrogen water in patients receiving radiation therapy for malignant tumors. This finding may provide the foundation for a clinically applicable, effective, and safe strategy for the delivery of hydrogen gas to mitigate radiation-induced cellular injury. Patients experience GI symptoms and decreased QOL during radiotherapy. These symptoms usually occur as a result of the body repairing damage to healthy cells, are particularly common towards the end of a course of radiation treatment, and can last for some time. The symptoms and their impact on QOL can be worsened by having to travel to the hospital each day. Drinking hydrogen-rich water improved the QOL of the patients receiving radiotherapy and did not require additional hospital visits. Although overall survival of patients with malignant tumors should remain oncologists' primary concern, survival should also be interpreted in light of symptom palliation and overall QOL, because the side effects of radiotherapy may negate the putative benefit of improved survival. Oral intake of daily hydrogen-supplemented water might be a prophylactic strategy to improve QOL of the patients receiving radiotherapy.
Although the mechanisms underlying the beneficial effects of hydrogen-rich water during radiotherapy have not been clearly elucidated, drinking hydrogen-supplemented water reduced dROM levels and maintained BAP levels in the serum, suggesting hydrogen-rich water exhibits potent systemic antioxidant activity. Previous experimental studies have linked daily consumption of hydrogen-rich water with improvement of a number of conditions in rodent models, including reducing atherosclerosis in apolipoprotein E knockout mice [10], alleviating cisplatin-induced nephrotoxicity [15], reducing vitamin C deficiency-induced brain injury [16], preventing chronic allograft nephropathy after renal transplantation [17], and ameliorating cognitive defects in senescence-accelerated mice [9] and a Parkinson's disease model [7]. In human studies, consumption of hydrogen-rich water prevented adult-onset diabetes and insulin resistance [11], as well as oxidative stress in potential metabolic syndrome [8].
Radiotherapy is associated with an increase in ROS, followed by damage to DNA, lipids, and proteins, and activation of transcription factors and signal transduction pathways. It has been estimated that 60-70% of the ionizing radiation-induced cellular damage is caused by hydroxyl radicals [18]. Therefore, a number of trials with the goal of reducing adverse effects due to excess ROS production have been performed with antioxidants delivered during the course of radiotherapy. Supplementation with α-tocopherol improves the salivary flow rate and maintains salivary parameters [19]. Treatment with the antioxidant enzyme superoxide dismutase prevented radiotherapy-induced cystitis and rectitis in bladder cancer patients receiving radiotherapy [20]. In addition, the combined use of pentoxifylline and vitamin E reduced radiation-induced lung fibrosis in patients with lung cancer receiving radiotherapy [21]. Thus, in general, supplementation with antioxidants is likely to offer overall benefits in the treatment of adverse effects of radiotherapy. However, not all antioxidants can afford radioprotection [2224]. Furthermore, of significant concern is the finding that high doses of antioxidants administered as adjuvant therapy might compromise the efficacy of radiation treatment and increase of the risk of local recurrence of cancer [25, 26]. Hence, the relatively lower toxicity associated with the use of these antioxidant agents is appealing, but not at the cost of poor tumor control. In contrast, in this study, drinking hydrogen-rich water did not affect radiotherapy's anti-tumor effects. Our results may suggest that hydrogen water functions not only as an antioxidant, but also plays a protective role by inducing radioprotective hormones or enzymes. Although further studies are warranted to elucidate the safety of hydrogen-rich water and determine the optimal concentration of hydrogen in drinking water, as well as involved mechanisms, daily intake of hydrogen-rich water may be a promising approach for counteracting radiation-induced impairments to QOL. This therapeutic use of hydrogen is also supported by the work of Qian et al., who demonstrated that treating human lymphocyte AHH-1 cells with hydrogen before irradiation significantly inhibited ionizing irradiation-induced apoptosis and increased cell viability in vitro. They also showed that injection of hydrogen-rich saline could protect the gastrointestinal endothelia from radiation-induced injury, decrease plasma malondialdehyde and intestinal 8-hydroxydeoxyguanosine levels, and increase plasma endogenous antioxidants in vivo [27].

Conclusions

In conclusion, our study demonstrated that drinking hydrogen-rich water improved QOL and reduced oxidative markers in patients receiving radiotherapy for liver tumors. This novel approach of oral intake of hydrogen-rich water may be applicable to a wide range of radiation-related adverse symptoms.

Acknowledgements

This research was supported by a Daimaru Research Foundation grant awarded to YG.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

KMK, YNK and IBC participated in the radiation therapy and the data accumulation. YG participated in the design of the study and performed the statistical analysis. TK and YT and participated in its design and coordination. AN conceived of the study, and drafted the manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Ringborg U, Bergqvist D, Brorsson B, Cavallin-Stahl E, Ceberg J, Einhorn N, Frodin JE, Jarhult J, Lamnevik G, Lindholm C, Littbrand B, Norlund A, Nylen U, Rosen M, Svensson H, Moller TR: The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001--summary and conclusions. Acta Oncol. 2003, 42 (5-6): 357-65. 10.1080/02841860310010826.CrossRefPubMed Ringborg U, Bergqvist D, Brorsson B, Cavallin-Stahl E, Ceberg J, Einhorn N, Frodin JE, Jarhult J, Lamnevik G, Lindholm C, Littbrand B, Norlund A, Nylen U, Rosen M, Svensson H, Moller TR: The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001--summary and conclusions. Acta Oncol. 2003, 42 (5-6): 357-65. 10.1080/02841860310010826.CrossRefPubMed
2.
Zurück zum Zitat Zhao W, Robbins ME: Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem. 2009, 16 (2): 130-43. 10.2174/092986709787002790.CrossRefPubMed Zhao W, Robbins ME: Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem. 2009, 16 (2): 130-43. 10.2174/092986709787002790.CrossRefPubMed
3.
Zurück zum Zitat Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB: Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist. 2010, 15 (4): 360-71. 10.1634/theoncologist.2009-S104.PubMedCentralCrossRefPubMed Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB: Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist. 2010, 15 (4): 360-71. 10.1634/theoncologist.2009-S104.PubMedCentralCrossRefPubMed
4.
Zurück zum Zitat Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S: Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007, 13 (6): 688-94. 10.1038/nm1577.CrossRefPubMed Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S: Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007, 13 (6): 688-94. 10.1038/nm1577.CrossRefPubMed
5.
Zurück zum Zitat Buchholz BM, Kaczorowski DJ, Sugimoto R, Yang R, Wang Y, Billiar TR, McCurry KR, Bauer AJ, Nakao A: Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant. 2008, 8 (10): 2015-24. 10.1111/j.1600-6143.2008.02359.x.CrossRefPubMed Buchholz BM, Kaczorowski DJ, Sugimoto R, Yang R, Wang Y, Billiar TR, McCurry KR, Bauer AJ, Nakao A: Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant. 2008, 8 (10): 2015-24. 10.1111/j.1600-6143.2008.02359.x.CrossRefPubMed
6.
Zurück zum Zitat Huang C, Kawamura T, Toyoda Y, Nakao A: Recent Advances in Hydrogen Research as a Therapeutic Medical Gas. Free Rad Res. 2010, 44 (9): 971-82. 10.3109/10715762.2010.500328.CrossRef Huang C, Kawamura T, Toyoda Y, Nakao A: Recent Advances in Hydrogen Research as a Therapeutic Medical Gas. Free Rad Res. 2010, 44 (9): 971-82. 10.3109/10715762.2010.500328.CrossRef
7.
Zurück zum Zitat Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, Sakumi K, Yamakawa Y, Kido MA, Takaki A, Katafuchi T, Tanaka Y, Nakabeppu Y, Noda M: Hydrogen in Drinking Water Reduces Dopaminergic Neuronal Loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Parkinson's Disease. PLoS One. 2009, 4 (9): e7247-10.1371/journal.pone.0007247.PubMedCentralCrossRefPubMed Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, Sakumi K, Yamakawa Y, Kido MA, Takaki A, Katafuchi T, Tanaka Y, Nakabeppu Y, Noda M: Hydrogen in Drinking Water Reduces Dopaminergic Neuronal Loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Parkinson's Disease. PLoS One. 2009, 4 (9): e7247-10.1371/journal.pone.0007247.PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N: Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome-an open label pilot study. J Clin Biochem Nutr. 2010, 46 (2): 140-9. 10.3164/jcbn.09-100.PubMedCentralCrossRefPubMed Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N: Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome-an open label pilot study. J Clin Biochem Nutr. 2010, 46 (2): 140-9. 10.3164/jcbn.09-100.PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Gu Y, Huang CS, Inoue T, Yamashita T, Ishida T, Kang KM, Nakao A: Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice. J Clin Biochem Nutr. 2010, 46 (3): 269-76. 10.3164/jcbn.10-19.PubMedCentralCrossRefPubMed Gu Y, Huang CS, Inoue T, Yamashita T, Ishida T, Kang KM, Nakao A: Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice. J Clin Biochem Nutr. 2010, 46 (3): 269-76. 10.3164/jcbn.10-19.PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Ohsawa I, Nishimaki K, Yamagata K, Ishikawa M, Ohta S: Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice. Biochem Biophys Res Commun. 2008, 377 (4): 1195-8. 10.1016/j.bbrc.2008.10.156.CrossRefPubMed Ohsawa I, Nishimaki K, Yamagata K, Ishikawa M, Ohta S: Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice. Biochem Biophys Res Commun. 2008, 377 (4): 1195-8. 10.1016/j.bbrc.2008.10.156.CrossRefPubMed
11.
Zurück zum Zitat Kajiyama S, Hasegawa G, Asano M, Hosoda H, Fukui M, Nakamura N, Kitawaki J, Imai S, Nakano K, Ohta M, Adachi T, Obayashi H, Yoshikawa T: Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res. 2008, 28 (3): 137-43. 10.1016/j.nutres.2008.01.008.CrossRefPubMed Kajiyama S, Hasegawa G, Asano M, Hosoda H, Fukui M, Nakamura N, Kitawaki J, Imai S, Nakano K, Ohta M, Adachi T, Obayashi H, Yoshikawa T: Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res. 2008, 28 (3): 137-43. 10.1016/j.nutres.2008.01.008.CrossRefPubMed
12.
Zurück zum Zitat Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, Filiberti A, Flechtner H, Fleishman SB, de Haes JC, et al: The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst. 1993, 85 (5): 365-76. 10.1093/jnci/85.5.365.CrossRefPubMed Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, Filiberti A, Flechtner H, Fleishman SB, de Haes JC, et al: The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst. 1993, 85 (5): 365-76. 10.1093/jnci/85.5.365.CrossRefPubMed
13.
Zurück zum Zitat Ezaki S, Suzuki K, Kurishima C, Miura M, Weilin W, Hoshi R, Tanitsu S, Tomita Y, Takayama C, Wada M, Kondo T, Tamura M: Resuscitation of preterm infants with reduced oxygen results in less oxidative stress than resuscitation with 100% oxygen. J Clin Biochem Nutr. 2009, 44 (1): 111-8. 10.3164/jcbn.08-221.PubMedCentralCrossRefPubMed Ezaki S, Suzuki K, Kurishima C, Miura M, Weilin W, Hoshi R, Tanitsu S, Tomita Y, Takayama C, Wada M, Kondo T, Tamura M: Resuscitation of preterm infants with reduced oxygen results in less oxidative stress than resuscitation with 100% oxygen. J Clin Biochem Nutr. 2009, 44 (1): 111-8. 10.3164/jcbn.08-221.PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Kwon JH, Bae SH, Kim JY, Choi BO, Jang HS, Jang JW, Choi JY, Yoon SK, Chung KW: Long-term effect of stereotactic body radiation therapy for primary hepatocellular carcinoma ineligible for local ablation therapy or surgical resection. Stereotactic radiotherapy for liver cancer. BMC Cancer. 2010, 10: 475-10.1186/1471-2407-10-475.PubMedCentralCrossRefPubMed Kwon JH, Bae SH, Kim JY, Choi BO, Jang HS, Jang JW, Choi JY, Yoon SK, Chung KW: Long-term effect of stereotactic body radiation therapy for primary hepatocellular carcinoma ineligible for local ablation therapy or surgical resection. Stereotactic radiotherapy for liver cancer. BMC Cancer. 2010, 10: 475-10.1186/1471-2407-10-475.PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Nakashima-Kamimura N, Mori T, Ohsawa I, Asoh S, Ohta S: Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice. Cancer Chemother Pharmacol. 2009, 64 (4): 753-61. 10.1007/s00280-008-0924-2.CrossRefPubMed Nakashima-Kamimura N, Mori T, Ohsawa I, Asoh S, Ohta S: Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice. Cancer Chemother Pharmacol. 2009, 64 (4): 753-61. 10.1007/s00280-008-0924-2.CrossRefPubMed
16.
Zurück zum Zitat Sato Y, Kajiyama S, Amano A, Kondo Y, Sasaki T, Handa S, Takahashi R, Fukui M, Hasegawa G, Nakamura N, Fujinawa H, Mori T, Ohta M, Obayashi H, Maruyama N, Ishigami A: Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem Biophys Res Commun. 2008, 375 (3): 346-50. 10.1016/j.bbrc.2008.08.020.CrossRefPubMed Sato Y, Kajiyama S, Amano A, Kondo Y, Sasaki T, Handa S, Takahashi R, Fukui M, Hasegawa G, Nakamura N, Fujinawa H, Mori T, Ohta M, Obayashi H, Maruyama N, Ishigami A: Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem Biophys Res Commun. 2008, 375 (3): 346-50. 10.1016/j.bbrc.2008.08.020.CrossRefPubMed
17.
Zurück zum Zitat Cardinal JS, Zhan J, Wang Y, Sugimoto R, Tsung A, McCurry KR, Billiar TR, Nakao A: Oral Administration Of Hydrogen Water Prevents Chronic Allograft Nephropathy In Rat Renal Transplantation. Kidney Int. 2009, 77 (2): 101-9.CrossRefPubMed Cardinal JS, Zhan J, Wang Y, Sugimoto R, Tsung A, McCurry KR, Billiar TR, Nakao A: Oral Administration Of Hydrogen Water Prevents Chronic Allograft Nephropathy In Rat Renal Transplantation. Kidney Int. 2009, 77 (2): 101-9.CrossRefPubMed
18.
Zurück zum Zitat Vijayalaxmi , Reiter RJ, Tan DX, Herman TS, Thomas CR: Melatonin as a radioprotective agent: a review. Int J Radiat Oncol Biol Phys. 2004, 59 (3): 639-53. 10.1016/j.ijrobp.2004.02.006.CrossRefPubMed Vijayalaxmi , Reiter RJ, Tan DX, Herman TS, Thomas CR: Melatonin as a radioprotective agent: a review. Int J Radiat Oncol Biol Phys. 2004, 59 (3): 639-53. 10.1016/j.ijrobp.2004.02.006.CrossRefPubMed
19.
Zurück zum Zitat Chitra S, Shyamala Devi CS: Effects of radiation and alpha-tocopherol on saliva flow rate, amylase activity, total protein and electrolyte levels in oral cavity cancer. Indian J Dent Res. 2008, 19 (3): 213-8. 10.4103/0970-9290.42953.CrossRefPubMed Chitra S, Shyamala Devi CS: Effects of radiation and alpha-tocopherol on saliva flow rate, amylase activity, total protein and electrolyte levels in oral cavity cancer. Indian J Dent Res. 2008, 19 (3): 213-8. 10.4103/0970-9290.42953.CrossRefPubMed
20.
Zurück zum Zitat Sanchiz F, Milla A, Artola N, Julia JC, Moya LM, Pedro A, Vila A: Prevention of radioinduced cystitis by orgotein: a randomized study. Anticancer Res. 1996, 16 (4A): 2025-8.PubMed Sanchiz F, Milla A, Artola N, Julia JC, Moya LM, Pedro A, Vila A: Prevention of radioinduced cystitis by orgotein: a randomized study. Anticancer Res. 1996, 16 (4A): 2025-8.PubMed
21.
Zurück zum Zitat Misirlioglu CH, Demirkasimoglu T, Kucukplakci B, Sanri E, Altundag K: Pentoxifylline and alpha-tocopherol in prevention of radiation-induced lung toxicity in patients with lung cancer. Med Oncol. 2007, 24 (3): 308-11. 10.1007/s12032-007-0006-z.CrossRefPubMed Misirlioglu CH, Demirkasimoglu T, Kucukplakci B, Sanri E, Altundag K: Pentoxifylline and alpha-tocopherol in prevention of radiation-induced lung toxicity in patients with lung cancer. Med Oncol. 2007, 24 (3): 308-11. 10.1007/s12032-007-0006-z.CrossRefPubMed
22.
Zurück zum Zitat Xavier S, Yamada K, Samuni AM, Samuni A, DeGraff W, Krishna MC, Mitchell JB: Differential protection by nitroxides and hydroxylamines to radiation-induced and metal ion-catalyzed oxidative damage. Biochim Biophys Acta. 2002, 1573 (2): 109-20.CrossRefPubMed Xavier S, Yamada K, Samuni AM, Samuni A, DeGraff W, Krishna MC, Mitchell JB: Differential protection by nitroxides and hydroxylamines to radiation-induced and metal ion-catalyzed oxidative damage. Biochim Biophys Acta. 2002, 1573 (2): 109-20.CrossRefPubMed
23.
Zurück zum Zitat Prasad KN, Cole WC, Kumar B, Che Prasad K: Pros and cons of antioxidant use during radiation therapy. Cancer Treat Rev. 2002, 28 (2): 79-91. 10.1053/ctrv.2002.0260.CrossRefPubMed Prasad KN, Cole WC, Kumar B, Che Prasad K: Pros and cons of antioxidant use during radiation therapy. Cancer Treat Rev. 2002, 28 (2): 79-91. 10.1053/ctrv.2002.0260.CrossRefPubMed
24.
Zurück zum Zitat Ladas EJ, Jacobson JS, Kennedy DD, Teel K, Fleischauer A, Kelly KM: Antioxidants and cancer therapy: a systematic review. J Clin Oncol. 2004, 22 (3): 517-28.CrossRefPubMed Ladas EJ, Jacobson JS, Kennedy DD, Teel K, Fleischauer A, Kelly KM: Antioxidants and cancer therapy: a systematic review. J Clin Oncol. 2004, 22 (3): 517-28.CrossRefPubMed
25.
Zurück zum Zitat Bairati I, Meyer F, Gelinas M, Fortin A, Nabid A, Brochet F, Mercier JP, Tetu B, Harel F, Abdous B, Vigneault E, Vass S, Del Vecchio P, Roy J: Randomized trial of antioxidant vitamins to prevent acute adverse effects of radiation therapy in head and neck cancer patients. J Clin Oncol. 2005, 23 (24): 5805-13. 10.1200/JCO.2005.05.514.CrossRefPubMed Bairati I, Meyer F, Gelinas M, Fortin A, Nabid A, Brochet F, Mercier JP, Tetu B, Harel F, Abdous B, Vigneault E, Vass S, Del Vecchio P, Roy J: Randomized trial of antioxidant vitamins to prevent acute adverse effects of radiation therapy in head and neck cancer patients. J Clin Oncol. 2005, 23 (24): 5805-13. 10.1200/JCO.2005.05.514.CrossRefPubMed
26.
Zurück zum Zitat Meyer F, Bairati I, Fortin A, Gelinas M, Nabid A, Brochet F, Tetu B: Interaction between antioxidant vitamin supplementation and cigarette smoking during radiation therapy in relation to long-term effects on recurrence and mortality: a randomized trial among head and neck cancer patients. Int J Cancer. 2008, 122 (7): 1679-83.CrossRefPubMed Meyer F, Bairati I, Fortin A, Gelinas M, Nabid A, Brochet F, Tetu B: Interaction between antioxidant vitamin supplementation and cigarette smoking during radiation therapy in relation to long-term effects on recurrence and mortality: a randomized trial among head and neck cancer patients. Int J Cancer. 2008, 122 (7): 1679-83.CrossRefPubMed
27.
Zurück zum Zitat Qian L, Cao F, Cui J, Huang Y, Zhou X, Liu S, Cai J: Radioprotective effect of hydrogen in cultured cells and mice. Free Radic Res. 2010, 44 (3): 275-82. 10.3109/10715760903468758.CrossRefPubMed Qian L, Cao F, Cui J, Huang Y, Zhou X, Liu S, Cai J: Radioprotective effect of hydrogen in cultured cells and mice. Free Radic Res. 2010, 44 (3): 275-82. 10.3109/10715760903468758.CrossRefPubMed
Metadaten
Titel
Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors
verfasst von
Ki-Mun Kang
Young-Nam Kang
Ihil-Bong Choi
Yeunhwa Gu
Tomohiro Kawamura
Yoshiya Toyoda
Atsunori Nakao
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Medical Gas Research / Ausgabe 1/2011
Elektronische ISSN: 2045-9912
DOI
https://doi.org/10.1186/2045-9912-1-11

Weitere Artikel der Ausgabe 1/2011

Medical Gas Research 1/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.