Skip to main content
Erschienen in: Cancer Microenvironment 3/2011

01.12.2011 | Original Paper

Effects of Lysophospholipids on Tumor Microenvironment

verfasst von: Johannes Rolin, Azzam A. Maghazachi

Erschienen in: Cancer Microenvironment | Ausgabe 3/2011

Einloggen, um Zugang zu erhalten

Abstract

The effects of lysophospholipids (LPLs) on cancer microenvironment is a vast and growing field. These lipids are secreted physiologically by various cell types. They play highly important roles in the development, activation and regulation of the immune system. They are also secreted by cancerous cells and there is a strong association between LPLs and cancer. It is clear that these lipids and in particular sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) play major roles in regulating the growth of tumor cells, and in manipulating the immune system. These activities can be divided into two parts; the first involves the ability of S1P and LPA to either directly or through some of the enzymes that generate them such as sphingosine kinases or phospholipases, induce the motility and invasiveness of tumor cells. The second mechanism involves the recently discovered effects of these lipids on the anti-tumor effector natural killer (NK) cells. Whereas S1P and LPA induce the recruitment of these effector cells, they also inhibit their cytolysis of tumor cells. This may support the environment of cancer and the ability of cancer cells to grow, spread and metastasize. Consequently, LPLs or their receptors may be attractive targets for developing drugs in the treatment of cancer where LPLs or their receptors are up-regulated.
Literatur
1.
Zurück zum Zitat Chun J, Goetzl EJ, Hla T et al (2008) International union of pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol Rev 54:265–269CrossRef Chun J, Goetzl EJ, Hla T et al (2008) International union of pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol Rev 54:265–269CrossRef
2.
Zurück zum Zitat Rivera R, Chun J (2008) Biological effects of lysophospholipids. Rev Physiol Biochem Pharmacol 160:25–46CrossRefPubMed Rivera R, Chun J (2008) Biological effects of lysophospholipids. Rev Physiol Biochem Pharmacol 160:25–46CrossRefPubMed
3.
Zurück zum Zitat Choi JW, Herr DR, Noguchi K et al (2010) LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 50:157–186CrossRefPubMed Choi JW, Herr DR, Noguchi K et al (2010) LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 50:157–186CrossRefPubMed
4.
Zurück zum Zitat Maghazachi AA (2005) Insights into seven and single transmembrane-spanning domain receptors and their signaling pathways in human natural killer cells. Pharmacol Rev 57:339–357CrossRefPubMed Maghazachi AA (2005) Insights into seven and single transmembrane-spanning domain receptors and their signaling pathways in human natural killer cells. Pharmacol Rev 57:339–357CrossRefPubMed
5.
Zurück zum Zitat Cinque B, Di ML, Centi C et al (2003) Sphingolipids and the immune system. Pharmacol Res 47:421–437CrossRefPubMed Cinque B, Di ML, Centi C et al (2003) Sphingolipids and the immune system. Pharmacol Res 47:421–437CrossRefPubMed
6.
Zurück zum Zitat Mills GB, Moolenaar WH (2003) The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3:582–591CrossRefPubMed Mills GB, Moolenaar WH (2003) The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3:582–591CrossRefPubMed
7.
Zurück zum Zitat Tigyi G, Dyer DL, Miledi R (1994) Lysophosphatidic acid possesses dual action in cell proliferation. Proc Natl Acad Sci USA 91:1908–1912CrossRefPubMed Tigyi G, Dyer DL, Miledi R (1994) Lysophosphatidic acid possesses dual action in cell proliferation. Proc Natl Acad Sci USA 91:1908–1912CrossRefPubMed
8.
Zurück zum Zitat Sengupta S, Xiao YJ, Xu Y (2003) A novel laminin-induced LPA autocrine loop in the migration of ovarian cancer cells. FASEB J 17:1570–1572PubMed Sengupta S, Xiao YJ, Xu Y (2003) A novel laminin-induced LPA autocrine loop in the migration of ovarian cancer cells. FASEB J 17:1570–1572PubMed
9.
Zurück zum Zitat Sengupta S, Kim KS, Berk MP et al (2007) Lysophosphatidic acid downregulates tissue inhibitor of metalloproteinases, which are negatively involved in lysophosphatidic acid-induced cell invasion. Oncogene 26:2894–2901CrossRefPubMed Sengupta S, Kim KS, Berk MP et al (2007) Lysophosphatidic acid downregulates tissue inhibitor of metalloproteinases, which are negatively involved in lysophosphatidic acid-induced cell invasion. Oncogene 26:2894–2901CrossRefPubMed
10.
Zurück zum Zitat Kim KS, Sengupta S, Berk M et al (2006) Hypoxia enhances lysophosphatidic acid responsiveness in ovarian cancer cells and lysophosphatidic acid induces ovarian tumor metastasis in vivo. Cancer Res 66:7983–7990CrossRefPubMed Kim KS, Sengupta S, Berk M et al (2006) Hypoxia enhances lysophosphatidic acid responsiveness in ovarian cancer cells and lysophosphatidic acid induces ovarian tumor metastasis in vivo. Cancer Res 66:7983–7990CrossRefPubMed
11.
Zurück zum Zitat Xu Y, Shen Z, Wiper DW et al (1998) Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA 280:719–723CrossRefPubMed Xu Y, Shen Z, Wiper DW et al (1998) Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA 280:719–723CrossRefPubMed
12.
Zurück zum Zitat Sedláková I, Vávrová J, Tošner J, Hanousek L (2010) Lysophosphatidic acid in patients with ovarian cancer. Clin Ovarian Cancer 3:41–46CrossRef Sedláková I, Vávrová J, Tošner J, Hanousek L (2010) Lysophosphatidic acid in patients with ovarian cancer. Clin Ovarian Cancer 3:41–46CrossRef
13.
Zurück zum Zitat Masuda A, Nakamura K, Izutsu K et al (2008) Serum autotaxin measurement in haematological malignancies: a promising marker for follicular lymphoma. Br J Haematol 143:60–70CrossRefPubMed Masuda A, Nakamura K, Izutsu K et al (2008) Serum autotaxin measurement in haematological malignancies: a promising marker for follicular lymphoma. Br J Haematol 143:60–70CrossRefPubMed
14.
Zurück zum Zitat Sano T, Baker D, Virag T, Wada A et al (2002) Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. J Biol Chem 277:21197–21206CrossRefPubMed Sano T, Baker D, Virag T, Wada A et al (2002) Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. J Biol Chem 277:21197–21206CrossRefPubMed
15.
Zurück zum Zitat Yatomi Y, Ohmori T, Rile G et al (2009) Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood 96:3431–3438 Yatomi Y, Ohmori T, Rile G et al (2009) Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood 96:3431–3438
16.
Zurück zum Zitat Yatomi Y, Ozaki Y, Ohmori T, Igarashi Y (2001) Sphingosine 1-phosphate: synthesis and release. Prostaglandins 64:107–122PubMed Yatomi Y, Ozaki Y, Ohmori T, Igarashi Y (2001) Sphingosine 1-phosphate: synthesis and release. Prostaglandins 64:107–122PubMed
17.
Zurück zum Zitat Yang L, Yatomi Y, Miura Y et al (1999) Metabolism and functional effects of sphingolipids in blood cells. Br J Haematol 107:282–293CrossRefPubMed Yang L, Yatomi Y, Miura Y et al (1999) Metabolism and functional effects of sphingolipids in blood cells. Br J Haematol 107:282–293CrossRefPubMed
18.
Zurück zum Zitat Kim RH, Takabe K, Milstien S, Spiegel S (2009) Export and functions of sphingosine-1-phosphate. Biochim Biophys Acta 1791:692–696PubMed Kim RH, Takabe K, Milstien S, Spiegel S (2009) Export and functions of sphingosine-1-phosphate. Biochim Biophys Acta 1791:692–696PubMed
19.
Zurück zum Zitat Xu Y, Fang XJ, Casey G, Mills GB (1995) Lysophospholipids activate ovarian and breast cancer cells. Biochem J 309:933–940PubMed Xu Y, Fang XJ, Casey G, Mills GB (1995) Lysophospholipids activate ovarian and breast cancer cells. Biochem J 309:933–940PubMed
20.
Zurück zum Zitat Spiegel S, Milstien S (2004) Sphingosine-1-phosphate: signaling inside and out. FEBS Lett 476:55–57CrossRef Spiegel S, Milstien S (2004) Sphingosine-1-phosphate: signaling inside and out. FEBS Lett 476:55–57CrossRef
21.
Zurück zum Zitat Rivera J, Proia RL, Olivera A (2008) The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 8:753–763CrossRefPubMed Rivera J, Proia RL, Olivera A (2008) The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 8:753–763CrossRefPubMed
22.
Zurück zum Zitat Pyne S, Pyne NJ (2000) Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 349:385–402CrossRefPubMed Pyne S, Pyne NJ (2000) Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 349:385–402CrossRefPubMed
23.
Zurück zum Zitat Okazaki T, Bell RM, Hannun YA (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem 264:19076–19080PubMed Okazaki T, Bell RM, Hannun YA (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem 264:19076–19080PubMed
24.
Zurück zum Zitat Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150CrossRefPubMed Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150CrossRefPubMed
25.
Zurück zum Zitat Mechtcheriakova D, Wlachos A, Sobanov J et al (2007) Sphingosine 1-phosphate phosphatase 2 is induced during inflammatory responses. Cell Signal 19:748–760CrossRefPubMed Mechtcheriakova D, Wlachos A, Sobanov J et al (2007) Sphingosine 1-phosphate phosphatase 2 is induced during inflammatory responses. Cell Signal 19:748–760CrossRefPubMed
26.
Zurück zum Zitat Peest U, Sensken SC, Andreani P et al (2008) S1P-lyase independent clearance of extracellular sphingosine 1-phosphate after dephosphorylation and cellular uptake. J Cell Biochem 104:756–772CrossRefPubMed Peest U, Sensken SC, Andreani P et al (2008) S1P-lyase independent clearance of extracellular sphingosine 1-phosphate after dephosphorylation and cellular uptake. J Cell Biochem 104:756–772CrossRefPubMed
27.
Zurück zum Zitat Zhao Y, Kalari SK, Usatyuk PV et al (2007) Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: role of lipid phosphate phosphatase-1 and sphingosine kinase 1. J Biol Chem 282:14165–14177CrossRefPubMed Zhao Y, Kalari SK, Usatyuk PV et al (2007) Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: role of lipid phosphate phosphatase-1 and sphingosine kinase 1. J Biol Chem 282:14165–14177CrossRefPubMed
28.
Zurück zum Zitat Schwab SR, Pereira JP, Matloubian M et al (2005) Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309:1735–1739CrossRefPubMed Schwab SR, Pereira JP, Matloubian M et al (2005) Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309:1735–1739CrossRefPubMed
29.
Zurück zum Zitat Venkataraman K, Lee YM, Michaud J et al (2008) Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res 102:669–676CrossRefPubMed Venkataraman K, Lee YM, Michaud J et al (2008) Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res 102:669–676CrossRefPubMed
30.
Zurück zum Zitat Pappu R, Schwab SR, Cornelissen I et al (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316:295–298CrossRefPubMed Pappu R, Schwab SR, Cornelissen I et al (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316:295–298CrossRefPubMed
31.
Zurück zum Zitat Hanel P, Andreani P, Graler MH (2007) Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J 21:1202–1209CrossRefPubMed Hanel P, Andreani P, Graler MH (2007) Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J 21:1202–1209CrossRefPubMed
32.
Zurück zum Zitat Hla T (2004) Physiological and pathological actions of sphingosine 1-phosphate. Semin Cell Dev Biol 15:513–520CrossRefPubMed Hla T (2004) Physiological and pathological actions of sphingosine 1-phosphate. Semin Cell Dev Biol 15:513–520CrossRefPubMed
33.
Zurück zum Zitat Taha TA, Hannun YA, Obeid LM (2006) Sphingosine kinase: biochemical and cellular regulation and role in disease. J Biochem Mol Biol 39:113–131CrossRefPubMed Taha TA, Hannun YA, Obeid LM (2006) Sphingosine kinase: biochemical and cellular regulation and role in disease. J Biochem Mol Biol 39:113–131CrossRefPubMed
34.
Zurück zum Zitat Goetzl EJ, Kong Y, Mei B (1999) Lysophosphatidic acid and sphingosine 1-phosphate protection of T cells from apoptosis in association with suppression of Bax. J Immunol 162:2049–2056PubMed Goetzl EJ, Kong Y, Mei B (1999) Lysophosphatidic acid and sphingosine 1-phosphate protection of T cells from apoptosis in association with suppression of Bax. J Immunol 162:2049–2056PubMed
35.
Zurück zum Zitat Xia P, Gamble JR, Wang L et al (2000) An oncogenic role of sphingosine kinase. Curr Biol 10:1527–1530CrossRefPubMed Xia P, Gamble JR, Wang L et al (2000) An oncogenic role of sphingosine kinase. Curr Biol 10:1527–1530CrossRefPubMed
36.
Zurück zum Zitat Taha TA, Kitatani K, El-Alwani M et al (2006) Loss of sphingosine kinase-1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis. FASEB J 20:482–484PubMed Taha TA, Kitatani K, El-Alwani M et al (2006) Loss of sphingosine kinase-1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis. FASEB J 20:482–484PubMed
37.
Zurück zum Zitat Kawamori T, Osta W, Johnson KR et al (2006) Sphingosine kinase 1 is up-regulated in colon carcinogenesis. FASEB J 20:386–388PubMed Kawamori T, Osta W, Johnson KR et al (2006) Sphingosine kinase 1 is up-regulated in colon carcinogenesis. FASEB J 20:386–388PubMed
38.
Zurück zum Zitat French KJ, Upson JJ, Keller SN et al (2006) Antitumor activity of sphingosine kinase inhibitors. J Pharmacol Exp Ther 318:596–603CrossRefPubMed French KJ, Upson JJ, Keller SN et al (2006) Antitumor activity of sphingosine kinase inhibitors. J Pharmacol Exp Ther 318:596–603CrossRefPubMed
39.
Zurück zum Zitat French KJ, Schrecengost RS, Lee BD et al (2003) Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 63:5962–5969PubMed French KJ, Schrecengost RS, Lee BD et al (2003) Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 63:5962–5969PubMed
40.
Zurück zum Zitat Sankala HM, Hait NC, Paugh SW et al (2007) Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Res 67:10466–10474CrossRefPubMed Sankala HM, Hait NC, Paugh SW et al (2007) Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Res 67:10466–10474CrossRefPubMed
41.
Zurück zum Zitat Van Brocklyn JR, Jackson CA, Pearl DK et al (2005) Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol 64:695–705CrossRefPubMed Van Brocklyn JR, Jackson CA, Pearl DK et al (2005) Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol 64:695–705CrossRefPubMed
42.
Zurück zum Zitat Van Brocklyn JR, Young N, Roof R (2003) Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells. Cancer Lett 199:53–60CrossRefPubMed Van Brocklyn JR, Young N, Roof R (2003) Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells. Cancer Lett 199:53–60CrossRefPubMed
43.
Zurück zum Zitat Yoshida Y, Nakada M, Sugimoto N et al (2010) Sphingosine-1-phosphate receptor type 1 regulates glioma cell proliferation and correlates with patient survival. Int J Cancer 126:2341–2352PubMed Yoshida Y, Nakada M, Sugimoto N et al (2010) Sphingosine-1-phosphate receptor type 1 regulates glioma cell proliferation and correlates with patient survival. Int J Cancer 126:2341–2352PubMed
44.
Zurück zum Zitat Jaillard C, Harrison S, Stankoff B et al (2005) Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci 25:1459–1469CrossRefPubMed Jaillard C, Harrison S, Stankoff B et al (2005) Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci 25:1459–1469CrossRefPubMed
45.
Zurück zum Zitat Young N, Van Brocklyn JR (2007) Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness. Exp Cell Res 313:1615–1627CrossRefPubMed Young N, Van Brocklyn JR (2007) Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness. Exp Cell Res 313:1615–1627CrossRefPubMed
46.
Zurück zum Zitat Van Brocklyn JR, Letterle C, Snyder P, Prior T (2002) Sphingosine-1-phosphate stimulates human glioma cell proliferation through Gi-coupled receptors: role of ERK MAP kinase and phosphatidylinositol 3-kinase beta. Cancer Lett 181:195–204CrossRefPubMed Van Brocklyn JR, Letterle C, Snyder P, Prior T (2002) Sphingosine-1-phosphate stimulates human glioma cell proliferation through Gi-coupled receptors: role of ERK MAP kinase and phosphatidylinositol 3-kinase beta. Cancer Lett 181:195–204CrossRefPubMed
47.
Zurück zum Zitat Morris AJ, Panchatcharam M, Cheng HY et al (2009) Regulation of blood and vascular cell function by bioactive lysophospholipids. J Thrombosis and Haemostasis 7(Suppl):43 Morris AJ, Panchatcharam M, Cheng HY et al (2009) Regulation of blood and vascular cell function by bioactive lysophospholipids. J Thrombosis and Haemostasis 7(Suppl):43
48.
Zurück zum Zitat Lee OH, Kim YM, Lee YM et al (1999) Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun 264:743–750CrossRefPubMed Lee OH, Kim YM, Lee YM et al (1999) Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun 264:743–750CrossRefPubMed
49.
Zurück zum Zitat Paik JH, Skoura A (2004) Chae SS et al Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev 18:2392–2403CrossRefPubMed Paik JH, Skoura A (2004) Chae SS et al Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev 18:2392–2403CrossRefPubMed
50.
Zurück zum Zitat Chae SS, Paik JH, Furneaux H, Hla T (2004) Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J Clin Invest 114:1082–1089PubMed Chae SS, Paik JH, Furneaux H, Hla T (2004) Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J Clin Invest 114:1082–1089PubMed
51.
Zurück zum Zitat Kono M, Mi Y, Liu Y, Sasaki T et al (2004) The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279:29367–29373CrossRefPubMed Kono M, Mi Y, Liu Y, Sasaki T et al (2004) The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279:29367–29373CrossRefPubMed
52.
Zurück zum Zitat Brinkmann V (2007) Sphingosine 1-phosphate receptors in health and disease: Mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther 115:84–105CrossRefPubMed Brinkmann V (2007) Sphingosine 1-phosphate receptors in health and disease: Mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther 115:84–105CrossRefPubMed
53.
Zurück zum Zitat Mandala S, Hajdu R, Bergstrom J et al (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296:346–349CrossRefPubMed Mandala S, Hajdu R, Bergstrom J et al (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296:346–349CrossRefPubMed
54.
Zurück zum Zitat LaMontagne K, Littlewood-Evans A, Schnell C et al (2006) Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Res 66:221–231CrossRefPubMed LaMontagne K, Littlewood-Evans A, Schnell C et al (2006) Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Res 66:221–231CrossRefPubMed
55.
Zurück zum Zitat Theilmeier G, Schmidt C, Herrmann J et al (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114:1403–1409CrossRefPubMed Theilmeier G, Schmidt C, Herrmann J et al (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114:1403–1409CrossRefPubMed
56.
Zurück zum Zitat Visentin B, Vekich JA, Sibbald BJ et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238CrossRefPubMed Visentin B, Vekich JA, Sibbald BJ et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238CrossRefPubMed
57.
Zurück zum Zitat Yamaguchi H, Kitayama J, Takuwa N et al (2003) Sphingosine-1-phosphate receptor subtype-specific positive and negative regulation of Rac and haematogenous metastasis of melanoma cells. Biochem J 374:715–722CrossRefPubMed Yamaguchi H, Kitayama J, Takuwa N et al (2003) Sphingosine-1-phosphate receptor subtype-specific positive and negative regulation of Rac and haematogenous metastasis of melanoma cells. Biochem J 374:715–722CrossRefPubMed
58.
Zurück zum Zitat Arikawa K, Takuwa N, Yamaguchi H et al (2003) Ligand-dependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor. Requirement of inhibition of cellular RAC activity. J Biol Chem 278:32841–32851CrossRefPubMed Arikawa K, Takuwa N, Yamaguchi H et al (2003) Ligand-dependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor. Requirement of inhibition of cellular RAC activity. J Biol Chem 278:32841–32851CrossRefPubMed
59.
Zurück zum Zitat Matloubian M, Lo CG, Cinamon G et al (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360CrossRefPubMed Matloubian M, Lo CG, Cinamon G et al (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360CrossRefPubMed
60.
Zurück zum Zitat Dorsam G, Graeler MH, Seroogy C et al (2003) Transduction of multiple effects of sphingosine 1-phosphate (S1P) on T cell functions by the S1P1 G protein-coupled receptor. J Immunol 171:3500–3507PubMed Dorsam G, Graeler MH, Seroogy C et al (2003) Transduction of multiple effects of sphingosine 1-phosphate (S1P) on T cell functions by the S1P1 G protein-coupled receptor. J Immunol 171:3500–3507PubMed
61.
Zurück zum Zitat English D, Kovala AT, Welch Z et al (1999) Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of hematopoietic angiogenesis. J Hematother Stem Cell Res 8:627–634CrossRefPubMed English D, Kovala AT, Welch Z et al (1999) Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of hematopoietic angiogenesis. J Hematother Stem Cell Res 8:627–634CrossRefPubMed
62.
Zurück zum Zitat Kveberg L, Bryceson Y, Inngjerdingen M et al (2003) Sphingosine 1 phosphate induces the chemotaxis of human natural killer cells. Role for heterotrimeric G proteins and phosphoinositide 3 kinases. Eur J Immunol 32:1856–1864CrossRef Kveberg L, Bryceson Y, Inngjerdingen M et al (2003) Sphingosine 1 phosphate induces the chemotaxis of human natural killer cells. Role for heterotrimeric G proteins and phosphoinositide 3 kinases. Eur J Immunol 32:1856–1864CrossRef
63.
Zurück zum Zitat Annabi B, Lachambre MP, Plouffe K et al (2009) Modulation of invasive properties of CD133 (+) glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling. Mol Carcinogenesis 48:910–919CrossRef Annabi B, Lachambre MP, Plouffe K et al (2009) Modulation of invasive properties of CD133 (+) glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling. Mol Carcinogenesis 48:910–919CrossRef
64.
Zurück zum Zitat Park KS, Kim MK, Lee HY et al (2007) S1P stimulates chemotactic migration and invasion in OVCAR3 ovarian cancer cells. Biochem Biophys Res Commun 356:239–244CrossRefPubMed Park KS, Kim MK, Lee HY et al (2007) S1P stimulates chemotactic migration and invasion in OVCAR3 ovarian cancer cells. Biochem Biophys Res Commun 356:239–244CrossRefPubMed
65.
Zurück zum Zitat Okamoto H, Takuwa N, Yokomizo T et al (2000) Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Mol Cell Biol 20:9247–9261CrossRefPubMed Okamoto H, Takuwa N, Yokomizo T et al (2000) Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Mol Cell Biol 20:9247–9261CrossRefPubMed
66.
67.
Zurück zum Zitat Tigyi G (2010) Aiming drug discovery at lysophosphatidic acid targets. Br J Pharmacol 161:241–270CrossRefPubMed Tigyi G (2010) Aiming drug discovery at lysophosphatidic acid targets. Br J Pharmacol 161:241–270CrossRefPubMed
68.
Zurück zum Zitat Radeff-Huang J, Seasholtz TM, Matteo RG, Brown JH (2004) G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem 92:949–966CrossRefPubMed Radeff-Huang J, Seasholtz TM, Matteo RG, Brown JH (2004) G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem 92:949–966CrossRefPubMed
69.
Zurück zum Zitat Liu S, Umezu-Goto M, Murph M et al (2009) Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 15:539–550CrossRefPubMed Liu S, Umezu-Goto M, Murph M et al (2009) Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 15:539–550CrossRefPubMed
70.
Zurück zum Zitat Li H, Wang D, Zhang H, Kirmani K et al (2009) Lysophosphatidic acid stimulates cell migration, invasion, and colony formation as well as tumorigenesis/metastasis of mouse ovarian cancer in immunocompetent mice. Mol Cancer Ther 8:1692–1701CrossRefPubMed Li H, Wang D, Zhang H, Kirmani K et al (2009) Lysophosphatidic acid stimulates cell migration, invasion, and colony formation as well as tumorigenesis/metastasis of mouse ovarian cancer in immunocompetent mice. Mol Cancer Ther 8:1692–1701CrossRefPubMed
71.
Zurück zum Zitat Hu YL, Tee MK, Goetzl EJ et al (2001) Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J Natl Cancer Inst 93:762–768CrossRefPubMed Hu YL, Tee MK, Goetzl EJ et al (2001) Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J Natl Cancer Inst 93:762–768CrossRefPubMed
72.
Zurück zum Zitat Xu X, Prestwich GD (2010) Inhibition of tumor growth and angiogenesis by a lysophosphatidic acid antagonist in an engineered three-dimensional lung cancer xenograft model. Cancer 116:1739–1750CrossRefPubMed Xu X, Prestwich GD (2010) Inhibition of tumor growth and angiogenesis by a lysophosphatidic acid antagonist in an engineered three-dimensional lung cancer xenograft model. Cancer 116:1739–1750CrossRefPubMed
73.
Zurück zum Zitat Shin KJ, Kim YL, Lee S, Kim D et al (2009) Lysophosphatidic acid signaling through LPA receptor subtype 1 induces colony scattering of gastrointestinal cancer cells. J Cancer Res Clin Oncol 135:45–52CrossRefPubMed Shin KJ, Kim YL, Lee S, Kim D et al (2009) Lysophosphatidic acid signaling through LPA receptor subtype 1 induces colony scattering of gastrointestinal cancer cells. J Cancer Res Clin Oncol 135:45–52CrossRefPubMed
74.
Zurück zum Zitat Zeng Y, Kakehi Y, Nouh MA et al (2009) Gene expression profiles of lysophosphatidic acid-related molecules in the prostate: relevance to prostate cancer and benign hyperplasia. Prostate 69:283–292CrossRefPubMed Zeng Y, Kakehi Y, Nouh MA et al (2009) Gene expression profiles of lysophosphatidic acid-related molecules in the prostate: relevance to prostate cancer and benign hyperplasia. Prostate 69:283–292CrossRefPubMed
75.
Zurück zum Zitat Lin S, Wang D, Iyer S, Ghaleb AM et al (2009) The absence of LPA2 attenuates tumor formation in an experimental model of colitis-associated cancer. Gastroenterology 136:1711CrossRefPubMed Lin S, Wang D, Iyer S, Ghaleb AM et al (2009) The absence of LPA2 attenuates tumor formation in an experimental model of colitis-associated cancer. Gastroenterology 136:1711CrossRefPubMed
76.
Zurück zum Zitat Shida D, Kitayama J, Yamaguchi H et al (2003) Lysophosphatidic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1. Cancer Res 63:1706–1711PubMed Shida D, Kitayama J, Yamaguchi H et al (2003) Lysophosphatidic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1. Cancer Res 63:1706–1711PubMed
77.
Zurück zum Zitat Fang X, Schummer M, Mao M et al (2002) Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim Biophys Acta 1582:257–264PubMed Fang X, Schummer M, Mao M et al (2002) Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim Biophys Acta 1582:257–264PubMed
78.
Zurück zum Zitat Goetzl EJ, Dolezalova H, Kong Y et al (1999) Distinctive expression and functions of the type 4 endothelial differentiation gene-encoded G protein-coupled receptor for lysophosphatidic acid in ovarian cancer. Cancer Res 59:5370–5375PubMed Goetzl EJ, Dolezalova H, Kong Y et al (1999) Distinctive expression and functions of the type 4 endothelial differentiation gene-encoded G protein-coupled receptor for lysophosphatidic acid in ovarian cancer. Cancer Res 59:5370–5375PubMed
79.
Zurück zum Zitat Ye X, Hama K, Contos JJ et al (2005) LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435:104–108CrossRefPubMed Ye X, Hama K, Contos JJ et al (2005) LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435:104–108CrossRefPubMed
80.
Zurück zum Zitat van Meeteren LA, Ruurs P et al (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26:5015–5022CrossRefPubMed van Meeteren LA, Ruurs P et al (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26:5015–5022CrossRefPubMed
81.
Zurück zum Zitat Yu S, Murph MM, Lu Y et al (2008) Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst 100:1630–1642CrossRefPubMed Yu S, Murph MM, Lu Y et al (2008) Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst 100:1630–1642CrossRefPubMed
82.
Zurück zum Zitat Jeon ES, Heo SC, Lee IH et al (2010) Ovarian cancer-derived lysophosphatidic acid stimulates secretion of VEGF and stromal cell-derived factor-1 from human mesenchymal stem cells. Exp Mol Med 42:280–293CrossRefPubMed Jeon ES, Heo SC, Lee IH et al (2010) Ovarian cancer-derived lysophosphatidic acid stimulates secretion of VEGF and stromal cell-derived factor-1 from human mesenchymal stem cells. Exp Mol Med 42:280–293CrossRefPubMed
83.
Zurück zum Zitat Ptaszynska MM, Pendrak ML, Stracke ML, Roberts DD (2010) Autotaxin signaling via lysophosphatidic acid receptors contributes to vascular endothelial growth factor-induced endothelial cell migration. Mol Cancer Res 8:309–321CrossRefPubMed Ptaszynska MM, Pendrak ML, Stracke ML, Roberts DD (2010) Autotaxin signaling via lysophosphatidic acid receptors contributes to vascular endothelial growth factor-induced endothelial cell migration. Mol Cancer Res 8:309–321CrossRefPubMed
84.
Zurück zum Zitat Lin CI, Chen CN, Huang MT et al (2008) Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation- and EGFR transactivation-dependent mechanisms. Cell Signal 20:1804–1814CrossRefPubMed Lin CI, Chen CN, Huang MT et al (2008) Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation- and EGFR transactivation-dependent mechanisms. Cell Signal 20:1804–1814CrossRefPubMed
85.
Zurück zum Zitat Boucharaba A, Guillet B, Menaa F et al (2009) Bioactive lipids lysophosphatidic acid and sphingosine 1-phosphate mediate breast cancer cell biological functions through distinct mechanisms. Oncol Res 18:173–184CrossRefPubMed Boucharaba A, Guillet B, Menaa F et al (2009) Bioactive lipids lysophosphatidic acid and sphingosine 1-phosphate mediate breast cancer cell biological functions through distinct mechanisms. Oncol Res 18:173–184CrossRefPubMed
86.
Zurück zum Zitat Fang X, Yu S, Bast RC et al (2004) Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J Biol Chem 279:9653–9661CrossRefPubMed Fang X, Yu S, Bast RC et al (2004) Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J Biol Chem 279:9653–9661CrossRefPubMed
87.
Zurück zum Zitat Wang FQ, Ariztia EV, Boyd LR et al (2010) Lysophosphatidic acid (LPA) effects on endometrial carcinoma in vitro proliferation, invasion, and matrix metalloproteinase activity. Gynecol Oncol 117:88–95CrossRefPubMed Wang FQ, Ariztia EV, Boyd LR et al (2010) Lysophosphatidic acid (LPA) effects on endometrial carcinoma in vitro proliferation, invasion, and matrix metalloproteinase activity. Gynecol Oncol 117:88–95CrossRefPubMed
88.
Zurück zum Zitat Degousee N, Stefanski E, Lindsay TF et al (2001) p38 MAPK regulates group IIa phospholipase A2 expression in interleukin-1beta -stimulated rat neonatal cardiomyocytes. J Biol Chem 276:43842–43849CrossRefPubMed Degousee N, Stefanski E, Lindsay TF et al (2001) p38 MAPK regulates group IIa phospholipase A2 expression in interleukin-1beta -stimulated rat neonatal cardiomyocytes. J Biol Chem 276:43842–43849CrossRefPubMed
89.
Zurück zum Zitat Goetzl EJ, Graeler M, Huang MC, Shankar G (2002) Lysophospholipid growth factors and their G protein-coupled receptors in immunity, coronary artery disease, and cancer. ScientificWorldJournal 2:324–338CrossRefPubMed Goetzl EJ, Graeler M, Huang MC, Shankar G (2002) Lysophospholipid growth factors and their G protein-coupled receptors in immunity, coronary artery disease, and cancer. ScientificWorldJournal 2:324–338CrossRefPubMed
90.
Zurück zum Zitat Stam JC, Michiels F, van der Kammen RA et al (1998) Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J 17:4066–4074CrossRefPubMed Stam JC, Michiels F, van der Kammen RA et al (1998) Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J 17:4066–4074CrossRefPubMed
91.
Zurück zum Zitat Schwab SR, Cyster JG (2007) Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol 8:1295–1301CrossRefPubMed Schwab SR, Cyster JG (2007) Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol 8:1295–1301CrossRefPubMed
92.
Zurück zum Zitat Graeler M, Goetzl EJ (2002) Activation-regulated expression and chemotactic function of sphingosine 1-phosphate receptors in mouse splenic T cells. FASEB J 16:1874–1878CrossRefPubMed Graeler M, Goetzl EJ (2002) Activation-regulated expression and chemotactic function of sphingosine 1-phosphate receptors in mouse splenic T cells. FASEB J 16:1874–1878CrossRefPubMed
93.
Zurück zum Zitat Chi H, Flavell RA (2005) Regulation of T cell trafficking and primary immune responses by sphingosine 1-phosphate receptor 1. J Immunol 174:2485–2488PubMed Chi H, Flavell RA (2005) Regulation of T cell trafficking and primary immune responses by sphingosine 1-phosphate receptor 1. J Immunol 174:2485–2488PubMed
94.
Zurück zum Zitat Morris MA, Gibb DR, Picard F et al (2005) Transient T cell accumulation in lymph nodes and sustained lymphopenia in mice treated with FTY720. Eur J Immunol 35:3570–3580CrossRefPubMed Morris MA, Gibb DR, Picard F et al (2005) Transient T cell accumulation in lymph nodes and sustained lymphopenia in mice treated with FTY720. Eur J Immunol 35:3570–3580CrossRefPubMed
95.
Zurück zum Zitat Rosen H, Sanna MG, Cahalan SM, Gonzalez-Cabrera PJ (2007) Tipping the gatekeeper: S1P regulation of endothelial barrier function. Trends Immunol 28:102–107CrossRefPubMed Rosen H, Sanna MG, Cahalan SM, Gonzalez-Cabrera PJ (2007) Tipping the gatekeeper: S1P regulation of endothelial barrier function. Trends Immunol 28:102–107CrossRefPubMed
96.
Zurück zum Zitat Allende ML, Dreier JL, Mandala S, Proia RL (2004) Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J Biol Chem 279:15396–15401CrossRefPubMed Allende ML, Dreier JL, Mandala S, Proia RL (2004) Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J Biol Chem 279:15396–15401CrossRefPubMed
97.
Zurück zum Zitat Wei SH, Rosen H, Matheu MP et al (2005) Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat Immunol 6:1228–1235CrossRefPubMed Wei SH, Rosen H, Matheu MP et al (2005) Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat Immunol 6:1228–1235CrossRefPubMed
98.
Zurück zum Zitat Sanna MG, Wang SK, Gonzalez-Cabrera PJ et al (2006) Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nat Chem Biol 2:434–441CrossRefPubMed Sanna MG, Wang SK, Gonzalez-Cabrera PJ et al (2006) Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nat Chem Biol 2:434–441CrossRefPubMed
99.
Zurück zum Zitat Sawicka E, Zuany-Amorim C, Manlius C et al (2003) Inhibition of Th1- and Th2-mediated airway inflammation by the sphingosine 1-phosphate receptor agonist FTY720. J Immunol 171:6206–6214PubMed Sawicka E, Zuany-Amorim C, Manlius C et al (2003) Inhibition of Th1- and Th2-mediated airway inflammation by the sphingosine 1-phosphate receptor agonist FTY720. J Immunol 171:6206–6214PubMed
100.
Zurück zum Zitat Jin Y, Knudsen E, Wang L, Bryceson Y et al (2003) Sphingosine 1-phosphate is a novel inhibitor of T-cell proliferation. Blood 101:4909–4915CrossRefPubMed Jin Y, Knudsen E, Wang L, Bryceson Y et al (2003) Sphingosine 1-phosphate is a novel inhibitor of T-cell proliferation. Blood 101:4909–4915CrossRefPubMed
101.
Zurück zum Zitat Wang L, Knudsen E, Jin Y, Gessani S, Maghazachi AA (2004) Lysophospholipids and chemokines activate distinct signal transduction pathways in T helper 1 and T helper 2 cells. Cell Signal 16:991–1000PubMed Wang L, Knudsen E, Jin Y, Gessani S, Maghazachi AA (2004) Lysophospholipids and chemokines activate distinct signal transduction pathways in T helper 1 and T helper 2 cells. Cell Signal 16:991–1000PubMed
102.
Zurück zum Zitat Wolf AM, Eller K, Zeiser R et al (2009) The sphingosine 1-phosphate agonist FTY720 potently inhibits regulatory T cell proliferation in vitro and in vivo. J Immunol 183:3751–3760CrossRefPubMed Wolf AM, Eller K, Zeiser R et al (2009) The sphingosine 1-phosphate agonist FTY720 potently inhibits regulatory T cell proliferation in vitro and in vivo. J Immunol 183:3751–3760CrossRefPubMed
103.
Zurück zum Zitat Idzko M, Panther E, Corinti S et al (2002) Sphingosine 1-phosphate induces chemotaxis of immature and modulates cytokine-release in mature human dendritic cells for emergence of Th2 immune responses. FASEB J 16:625–627PubMed Idzko M, Panther E, Corinti S et al (2002) Sphingosine 1-phosphate induces chemotaxis of immature and modulates cytokine-release in mature human dendritic cells for emergence of Th2 immune responses. FASEB J 16:625–627PubMed
104.
Zurück zum Zitat Eigenbrod S, Derwand R, Jakl V et al (2006) Sphingosine kinase and sphingosine-1-phosphate regulate migration, endocytosis and apoptosis of dendritic cells. Immunol Invest 35:149–165CrossRefPubMed Eigenbrod S, Derwand R, Jakl V et al (2006) Sphingosine kinase and sphingosine-1-phosphate regulate migration, endocytosis and apoptosis of dendritic cells. Immunol Invest 35:149–165CrossRefPubMed
105.
Zurück zum Zitat Panther E, Idzko M, Corinti S et al (2002) The influence of lysophosphatidic acid on the functions of human dendritic cells. J Immunol 169:4129–4135PubMed Panther E, Idzko M, Corinti S et al (2002) The influence of lysophosphatidic acid on the functions of human dendritic cells. J Immunol 169:4129–4135PubMed
106.
Zurück zum Zitat Oz-Arslan D, Ruscher W, Myrtek D et al (2006) IL-6 and IL-8 release is mediated via multiple signaling pathways after stimulating dendritic cells with lysophospholipids. J Leukoc Biol 80:287–297CrossRefPubMed Oz-Arslan D, Ruscher W, Myrtek D et al (2006) IL-6 and IL-8 release is mediated via multiple signaling pathways after stimulating dendritic cells with lysophospholipids. J Leukoc Biol 80:287–297CrossRefPubMed
107.
Zurück zum Zitat Albertsson PA, Basse PH, Hokland M et al (2003) NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity. Trends Immunol 24:603–609CrossRefPubMed Albertsson PA, Basse PH, Hokland M et al (2003) NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity. Trends Immunol 24:603–609CrossRefPubMed
108.
Zurück zum Zitat Maghazachi AA, Al-Aoukaty A (1998) Chemokines activate natural killer cells through heterotrimeric G-proteins: implications for the treatment of AIDS and cancer. FASEB J 12:913–924PubMed Maghazachi AA, Al-Aoukaty A (1998) Chemokines activate natural killer cells through heterotrimeric G-proteins: implications for the treatment of AIDS and cancer. FASEB J 12:913–924PubMed
109.
Zurück zum Zitat Maghazachi AA (2010) Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol 341:37–58CrossRefPubMed Maghazachi AA (2010) Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol 341:37–58CrossRefPubMed
110.
Zurück zum Zitat Lagadari M, Lehmann K, Ziemer M et al (2009) Sphingosine-1-phosphate inhibits the cytotoxic activity of NK cells via Gs protein-mediated signalling. Int J Oncol 34:287–294PubMed Lagadari M, Lehmann K, Ziemer M et al (2009) Sphingosine-1-phosphate inhibits the cytotoxic activity of NK cells via Gs protein-mediated signalling. Int J Oncol 34:287–294PubMed
111.
Zurück zum Zitat Rolin J, Sand KL, Knudsen E, Maghazachi AA (2010) FTY720 and SEW2871 reverse the inhibitory effect of S1P on natural killer cell mediated lysis of K562 tumor cells and dendritic cells but not on cytokine release. Cancer Immunol Immunother 59:575–586CrossRefPubMed Rolin J, Sand KL, Knudsen E, Maghazachi AA (2010) FTY720 and SEW2871 reverse the inhibitory effect of S1P on natural killer cell mediated lysis of K562 tumor cells and dendritic cells but not on cytokine release. Cancer Immunol Immunother 59:575–586CrossRefPubMed
112.
Zurück zum Zitat Jin Y, Knudsen E, Wang L, Maghazachi AA (2003) Lysophosphatidic acid induces human natural killer cell chemotaxis and intracellular calcium mobilization. Eur J Immunol 33:2083–2089CrossRefPubMed Jin Y, Knudsen E, Wang L, Maghazachi AA (2003) Lysophosphatidic acid induces human natural killer cell chemotaxis and intracellular calcium mobilization. Eur J Immunol 33:2083–2089CrossRefPubMed
113.
Zurück zum Zitat Lagadari M, Truta-Feles K, Lehmann K et al (2009) Lysophosphatidic acid inhibits the cytotoxic activity of NK cells: involvement of Gs protein-mediated signaling. Int Immunol 21:667–677CrossRefPubMed Lagadari M, Truta-Feles K, Lehmann K et al (2009) Lysophosphatidic acid inhibits the cytotoxic activity of NK cells: involvement of Gs protein-mediated signaling. Int Immunol 21:667–677CrossRefPubMed
114.
Zurück zum Zitat Shankaran V, Ikeda H, Bruce AT et al (2001) IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1071–111CrossRef Shankaran V, Ikeda H, Bruce AT et al (2001) IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1071–111CrossRef
115.
Zurück zum Zitat Sand KL, Knudsen E, Rolin J et al (2009) Modulation of natural killer cell cytotoxicity and cytokine release by the drug glatiramer acetate. Cell Mol Life Sci 66:1446–1456CrossRefPubMed Sand KL, Knudsen E, Rolin J et al (2009) Modulation of natural killer cell cytotoxicity and cytokine release by the drug glatiramer acetate. Cell Mol Life Sci 66:1446–1456CrossRefPubMed
Metadaten
Titel
Effects of Lysophospholipids on Tumor Microenvironment
verfasst von
Johannes Rolin
Azzam A. Maghazachi
Publikationsdatum
01.12.2011
Verlag
Springer Netherlands
Erschienen in
Cancer Microenvironment / Ausgabe 3/2011
Print ISSN: 1875-2292
Elektronische ISSN: 1875-2284
DOI
https://doi.org/10.1007/s12307-011-0088-1

Weitere Artikel der Ausgabe 3/2011

Cancer Microenvironment 3/2011 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.