Skip to main content
Erschienen in: European Radiology 9/2019

06.03.2019 | Head and Neck

Effects of thalamic infarction on the structural and functional connectivity of the ipsilesional primary somatosensory cortex

verfasst von: Li Chen, Tianyou Luo, Kangcheng Wang, Yong Zhang, Dandan Shi, Fajin Lv, Yang Li, Yongmei Li, Qi Li, Weidong Fang, Zhiwei Zhang, Juan Peng, Hanfeng Yang

Erschienen in: European Radiology | Ausgabe 9/2019

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To identify regions causally influenced by thalamic stroke by measuring white matter integrity, cortical volume, and functional connectivity (FC) among patients with thalamic infarction (TI) and to determine the association between structural/functional alteration and somatosensory dysfunction.

Methods

Thirty-one cases with TI-induced somatosensory dysfunction and 32 healthy controls underwent magnetic resonance imaging scanning. We reconstructed the ipsilesional central thalamic radiation (CTR) and assessed its integrity using fractional anisotropy (FA), assessed S1 ipsilesional changes with cortical volume, and identified brain regions functionally connected to TI locations and regions without TI to examine the potential effects on somatosensory symptoms.

Results

Compared with controls, TI patients showed decreased FA (F = 17.626, p < 0.001) in the ipsilesional CTR. TI patients exhibited significantly decreased cortical volume in the ipsilesional top S1. Both affected CTR (r = 0.460, p = 0.012) and S1 volume (r = 0.375, p = 0.049) were positively correlated with somatosensory impairment in TI patients. In controls, the TI region was highly functionally connected to atrophic top S1 and less connected to the adjacent middle S1 region in FC mapping. However, T1 patients demonstrated significantly increased FC between the ipsilesional thalamus and middle S1 area, which was adjacent to the atrophic S1 region.

Conclusions

TI induces remote changes in the S1, and this network of abnormality underlies the cause of the sensory deficits. However, our other finding that there is stronger connectivity in pathways adjacent to the damaged ones is likely responsible for at least some of the recovery of function.

Key Points

• TI led to secondary impairment in the CTR and cortical atrophy in the ipsilesional top of S1.
• TI patients exhibited significantly higher functional connectivity with the ipsilateral middle S1 which was mainly located within the non-atrophic area of S1.
• Our results provide neuroimaging markers for non-invasive treatment and predict somatosensory recovery.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kessner SS, Bingel U, Thomalla G (2016) Somatosensory deficits after stroke: a scoping review. Top Stroke Rehabil 23:136–146CrossRefPubMed Kessner SS, Bingel U, Thomalla G (2016) Somatosensory deficits after stroke: a scoping review. Top Stroke Rehabil 23:136–146CrossRefPubMed
2.
Zurück zum Zitat Leoni RF, Paiva FF, Kang BT et al (2012) Arterial spin labeling measurements of cerebral perfusion territories in experimental ischemic stroke. Transl Stroke Res 3:44–55CrossRefPubMed Leoni RF, Paiva FF, Kang BT et al (2012) Arterial spin labeling measurements of cerebral perfusion territories in experimental ischemic stroke. Transl Stroke Res 3:44–55CrossRefPubMed
3.
Zurück zum Zitat Feigenson JS, McCarthy ML, Greenberg SD, Feigenson WD (1977) Factors influencing outcome and length of stay in a stroke rehabilitation unit. Part 2. Comparison of 318 screened and 248 unscreened patients. Stroke 8:657–662CrossRefPubMed Feigenson JS, McCarthy ML, Greenberg SD, Feigenson WD (1977) Factors influencing outcome and length of stay in a stroke rehabilitation unit. Part 2. Comparison of 318 screened and 248 unscreened patients. Stroke 8:657–662CrossRefPubMed
4.
Zurück zum Zitat Meyer S, Kessner SS, Cheng B et al (2016) Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits. Neuroimage Clin 10:257–266 Meyer S, Kessner SS, Cheng B et al (2016) Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits. Neuroimage Clin 10:257–266
5.
Zurück zum Zitat Preusser S, Thiel SD, Rook C et al (2015) The perception of touch and the ventral somatosensory pathway. Brain 138:540–548 Preusser S, Thiel SD, Rook C et al (2015) The perception of touch and the ventral somatosensory pathway. Brain 138:540–548
6.
Zurück zum Zitat Kim JH, Greenspan JD, Coghill RC, Ohara S, Lenz FA (2007) Lesions limited to the human thalamic principal somatosensory nucleus (ventral caudal) are associated with loss of cold sensations and central pain. J Neurosci 27:4995–5004CrossRefPubMed Kim JH, Greenspan JD, Coghill RC, Ohara S, Lenz FA (2007) Lesions limited to the human thalamic principal somatosensory nucleus (ventral caudal) are associated with loss of cold sensations and central pain. J Neurosci 27:4995–5004CrossRefPubMed
7.
Zurück zum Zitat Kishi M, Sakakibara R, Nagao T, Terada H, Ogawa E (2009) Thalamic infarction disrupts spinothalamocortical projection to the mid-cingulate cortex and supplementary motor area. J Neurol Sci 281:104–107CrossRefPubMed Kishi M, Sakakibara R, Nagao T, Terada H, Ogawa E (2009) Thalamic infarction disrupts spinothalamocortical projection to the mid-cingulate cortex and supplementary motor area. J Neurol Sci 281:104–107CrossRefPubMed
8.
Zurück zum Zitat Ohara S, Lenz FA (2001) Reorganization of somatic sensory function in the human thalamus after stroke. Ann Neurol 50:800–803CrossRefPubMed Ohara S, Lenz FA (2001) Reorganization of somatic sensory function in the human thalamus after stroke. Ann Neurol 50:800–803CrossRefPubMed
9.
Zurück zum Zitat Staines WR, Black SE, Graham SJ, McIlroy WE (2002) Somatosensory gating and recovery from stroke involving the thalamus. Stroke 33:2642–2651CrossRefPubMed Staines WR, Black SE, Graham SJ, McIlroy WE (2002) Somatosensory gating and recovery from stroke involving the thalamus. Stroke 33:2642–2651CrossRefPubMed
10.
Zurück zum Zitat Lee MY, Kim SH, Choi BY, Chang CH, Ahn SH, Jang SH (2012) Functional MRI finding by proprioceptive input in patients with thalamic hemorrhage. NeuroRehabilitation 30:131–136PubMed Lee MY, Kim SH, Choi BY, Chang CH, Ahn SH, Jang SH (2012) Functional MRI finding by proprioceptive input in patients with thalamic hemorrhage. NeuroRehabilitation 30:131–136PubMed
11.
Zurück zum Zitat Kunimatsu A, Aoki S, Masutani Y, Abe O, Mori H, Ohtomo K (2003) Three-dimensional white matter tractography by diffusion tensor imaging in ischaemic stroke involving the corticospinal tract. Neuroradiology 45:532–535CrossRefPubMed Kunimatsu A, Aoki S, Masutani Y, Abe O, Mori H, Ohtomo K (2003) Three-dimensional white matter tractography by diffusion tensor imaging in ischaemic stroke involving the corticospinal tract. Neuroradiology 45:532–535CrossRefPubMed
12.
Zurück zum Zitat Lee JS, Han MK, Kim SH, Kwon OK, Kim JH (2005) Fiber tracking by diffusion tensor imaging in corticospinal tract stroke: topographical correlation with clinical symptoms. Neuroimage 26:771–776CrossRefPubMed Lee JS, Han MK, Kim SH, Kwon OK, Kim JH (2005) Fiber tracking by diffusion tensor imaging in corticospinal tract stroke: topographical correlation with clinical symptoms. Neuroimage 26:771–776CrossRefPubMed
13.
Zurück zum Zitat Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130:170–180CrossRefPubMed Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130:170–180CrossRefPubMed
14.
Zurück zum Zitat Maguire EA, Gadian DG, Johnsrude IS, et al (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 97:4398–4403 Maguire EA, Gadian DG, Johnsrude IS, et al (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 97:4398–4403
15.
Zurück zum Zitat Seghier ML, Ramsden S, Lim L, Leff AP, Price CJ (2014) Gradual lesion expansion and brain shrinkage years after stroke. Stroke 45:877–879CrossRefPubMed Seghier ML, Ramsden S, Lim L, Leff AP, Price CJ (2014) Gradual lesion expansion and brain shrinkage years after stroke. Stroke 45:877–879CrossRefPubMed
16.
Zurück zum Zitat Barkhof F, Haller S, Rombouts SA (2014) Resting-state functional MR imaging: a new window to the brain. Radiology 272:29–49CrossRef Barkhof F, Haller S, Rombouts SA (2014) Resting-state functional MR imaging: a new window to the brain. Radiology 272:29–49CrossRef
17.
Zurück zum Zitat Liu J, Qin W, Zhang J, Zhang X, Yu C (2015) Enhanced interhemispheric functional connectivity compensates for anatomical connection damages in subcortical stroke. Stroke 46:1045–1051CrossRefPubMed Liu J, Qin W, Zhang J, Zhang X, Yu C (2015) Enhanced interhemispheric functional connectivity compensates for anatomical connection damages in subcortical stroke. Stroke 46:1045–1051CrossRefPubMed
18.
Zurück zum Zitat Dijkhuizen RM, Zaharchuk G, Otte WM (2014) Assessment and modulation of resting-state neural networks after stroke. Curr Opin Neurol 27:637–643CrossRefPubMed Dijkhuizen RM, Zaharchuk G, Otte WM (2014) Assessment and modulation of resting-state neural networks after stroke. Curr Opin Neurol 27:637–643CrossRefPubMed
19.
Zurück zum Zitat Lindmark B, Hamrin E (1988) Evaluation of functional capacity after stroke as a basis for active intervention. Presentation of a modified chart for motor capacity assessment and its reliability. Scand J Rehabil Med 20:103–109PubMed Lindmark B, Hamrin E (1988) Evaluation of functional capacity after stroke as a basis for active intervention. Presentation of a modified chart for motor capacity assessment and its reliability. Scand J Rehabil Med 20:103–109PubMed
20.
Zurück zum Zitat Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7:13–31 Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7:13–31
21.
Zurück zum Zitat Chen L, Luo T, Lv F et al (2016) Relationship between hippocampal subfield volumes and memory deficits in patients with thalamus infarction. Eur Arch Psychiatry Clin Neurosci 266:543–555CrossRefPubMed Chen L, Luo T, Lv F et al (2016) Relationship between hippocampal subfield volumes and memory deficits in patients with thalamus infarction. Eur Arch Psychiatry Clin Neurosci 266:543–555CrossRefPubMed
22.
Zurück zum Zitat Wilkinson M, Kane T, Wang R, Takahashi E (2016) Migration pathways of thalamic neurons and development of thalamocortical connections in humans revealed by diffusion MR tractography. Cereb Cortex 27:5683–5695 Wilkinson M, Kane T, Wang R, Takahashi E (2016) Migration pathways of thalamic neurons and development of thalamocortical connections in humans revealed by diffusion MR tractography. Cereb Cortex 27:5683–5695
23.
Zurück zum Zitat Wang D, Buckner RL, Liu H (2014) Functional specialization in the human brain estimated by intrinsic hemispheric interaction. J Neurosci 34:12341–12352CrossRefPubMedPubMedCentral Wang D, Buckner RL, Liu H (2014) Functional specialization in the human brain estimated by intrinsic hemispheric interaction. J Neurosci 34:12341–12352CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Preacher KJ, Hayes AF (2008) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 40:879–891CrossRefPubMed Preacher KJ, Hayes AF (2008) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 40:879–891CrossRefPubMed
25.
Zurück zum Zitat Behrens TE, Johansen-Berg H, Woolrich MW et al (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757 Behrens TE, Johansen-Berg H, Woolrich MW et al (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757
26.
Zurück zum Zitat Silasi G, Murphy TH (2014) Stroke and the connectome: how connectivity guides therapeutic intervention. Neuron 83:1354–1368CrossRefPubMed Silasi G, Murphy TH (2014) Stroke and the connectome: how connectivity guides therapeutic intervention. Neuron 83:1354–1368CrossRefPubMed
27.
Zurück zum Zitat Yoon H, Kim J, Moon WJ et al (2017) Characterization of chronic axonal degeneration using diffusion tensor imaging in canine spinal cord injury: a quantitative analysis of diffusion tensor imaging parameters according to histopathological differences. J Neurotrauma 34:3041–3050 Yoon H, Kim J, Moon WJ et al (2017) Characterization of chronic axonal degeneration using diffusion tensor imaging in canine spinal cord injury: a quantitative analysis of diffusion tensor imaging parameters according to histopathological differences. J Neurotrauma 34:3041–3050
28.
Zurück zum Zitat Cheng B, Schulz R, Bönstrup M et al (2015) Structural plasticity of remote cortical brain regions is determined by connectivity to the primary lesion in subcortical stroke. J Cereb Blood Flow Metab 35:1507–1514 Cheng B, Schulz R, Bönstrup M et al (2015) Structural plasticity of remote cortical brain regions is determined by connectivity to the primary lesion in subcortical stroke. J Cereb Blood Flow Metab 35:1507–1514
29.
Zurück zum Zitat Duering M, Righart R, Csanadi E et al (2012) Incident subcortical infarcts induce focal thinning in connected cortical regions. Neurology 79:2025–2028 Duering M, Righart R, Csanadi E et al (2012) Incident subcortical infarcts induce focal thinning in connected cortical regions. Neurology 79:2025–2028
30.
Zurück zum Zitat Duering M, Righart R, Wollenweber FA, Zietemann V, Gesierich B, Dichgans M (2015) Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology 84:1685–1692CrossRefPubMedPubMedCentral Duering M, Righart R, Wollenweber FA, Zietemann V, Gesierich B, Dichgans M (2015) Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology 84:1685–1692CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Zhang J, Meng L, Qin W, Liu N, Shi FD, Yu C (2014) Structural damage and functional reorganization in ipsilesional m1 in well-recovered patients with subcortical stroke. Stroke 45:788–793CrossRefPubMed Zhang J, Meng L, Qin W, Liu N, Shi FD, Yu C (2014) Structural damage and functional reorganization in ipsilesional m1 in well-recovered patients with subcortical stroke. Stroke 45:788–793CrossRefPubMed
32.
Zurück zum Zitat Carter AR, Astafiev SV, Lang CE et al (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67:365–375 Carter AR, Astafiev SV, Lang CE et al (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67:365–375
33.
Zurück zum Zitat Park CH, Chang WH, Ohn SH et al (2011) Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 42:1357–1362 Park CH, Chang WH, Ohn SH et al (2011) Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 42:1357–1362
34.
Zurück zum Zitat Hartwigsen G, Saur D (2017) Neuroimaging of stroke recovery from aphasia - insights into plasticity of the human language network. Neuroimage S1053–8119:31000–31005 Hartwigsen G, Saur D (2017) Neuroimaging of stroke recovery from aphasia - insights into plasticity of the human language network. Neuroimage S1053–8119:31000–31005
35.
Zurück zum Zitat Grefkes C, Fink GR (2014) Connectivity-based approaches in stroke and recovery of function. Lancet Neurol 13:206–216CrossRefPubMed Grefkes C, Fink GR (2014) Connectivity-based approaches in stroke and recovery of function. Lancet Neurol 13:206–216CrossRefPubMed
36.
Zurück zum Zitat Grefkes C, Ward NS (2014) Cortical reorganization after stroke: how much and how functional. Neuroscientist 20:56–70CrossRefPubMed Grefkes C, Ward NS (2014) Cortical reorganization after stroke: how much and how functional. Neuroscientist 20:56–70CrossRefPubMed
37.
Zurück zum Zitat Thiel A, Vahdat S (2015) Structural and resting-state brain connectivity of motor networks after stroke. Stroke 46:296–301CrossRefPubMed Thiel A, Vahdat S (2015) Structural and resting-state brain connectivity of motor networks after stroke. Stroke 46:296–301CrossRefPubMed
38.
Zurück zum Zitat Weder B, Knorr U, Herzog H et al (1994) Tactile exploration of shape after subcortical ischaemic infarction studied with PET. Brain 117(Pt 3):593–605 Weder B, Knorr U, Herzog H et al (1994) Tactile exploration of shape after subcortical ischaemic infarction studied with PET. Brain 117(Pt 3):593–605
39.
Zurück zum Zitat Carmichael ST (2006) Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol 59:735–742CrossRefPubMed Carmichael ST (2006) Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol 59:735–742CrossRefPubMed
40.
41.
42.
Zurück zum Zitat Zhang D, Snyder AZ, Shimony JS, Fox MD, Raichle ME (2010) Noninvasive functional and structural connectivity mapping of the human thalamocortical system. Cereb Cortex 20:1187–1194CrossRefPubMed Zhang D, Snyder AZ, Shimony JS, Fox MD, Raichle ME (2010) Noninvasive functional and structural connectivity mapping of the human thalamocortical system. Cereb Cortex 20:1187–1194CrossRefPubMed
43.
44.
Zurück zum Zitat Lam TK, Dawson DR, Honjo K et al (2018) Neural coupling between contralesional motor and frontoparietal networks correlates with motor ability in individuals with chronic stroke. J Neurol Sci 384:21–29CrossRefPubMed Lam TK, Dawson DR, Honjo K et al (2018) Neural coupling between contralesional motor and frontoparietal networks correlates with motor ability in individuals with chronic stroke. J Neurol Sci 384:21–29CrossRefPubMed
Metadaten
Titel
Effects of thalamic infarction on the structural and functional connectivity of the ipsilesional primary somatosensory cortex
verfasst von
Li Chen
Tianyou Luo
Kangcheng Wang
Yong Zhang
Dandan Shi
Fajin Lv
Yang Li
Yongmei Li
Qi Li
Weidong Fang
Zhiwei Zhang
Juan Peng
Hanfeng Yang
Publikationsdatum
06.03.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 9/2019
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-019-06068-0

Weitere Artikel der Ausgabe 9/2019

European Radiology 9/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.