Skip to main content
Erschienen in: Journal of Assisted Reproduction and Genetics 10/2020

21.08.2020 | Gamete Biology

EGF, GDNF, and IGF-1 influence the proliferation and stemness of ovine spermatogonial stem cells in vitro

verfasst von: B. K. Binsila, S. Selvaraju, S. K. Ghosh, L. Ramya, A. Arangasamy, R. Ranjithkumaran, R. Bhatta

Erschienen in: Journal of Assisted Reproduction and Genetics | Ausgabe 10/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The objective of the present study was to purify sheep spermatogonial stem cells (SSCs) from testicular isolate using combined enrichment methods and to study the effect of growth factors on SSC stemness during culture.

Methods

The testicular cells from prepubertal male sheep were isolated, and SSCs were purified using Ficoll gradients (10 and 12%) followed by differential plating (laminin with BSA). SSCs were cultured with StemPro®-34 SFM, additives, and FBS for 7 days. The various doses (ng/ml) of growth factors, EGF at 10, 15, and 20, GDNF at 40, 70, and 100 and IGF-1 at 50, 100, and 150 were tested for the proliferation and stemness of SSCs in vitro. The stemness in cultured cells was assessed using SSC markers PLZF, ITGA6, and GFRα1.

Results

Ficoll density gradient separation significantly (p < 0.05) increased the percentage of SSCs in 12% fraction (35.1 ± 3.8 vs 11.2 ± 3.7). Subsequently, purification using laminin with BSA plating further enriched SSCs to 61.7 ± 4.7%. GDNF at 40 ng/ml, EGF at 15 and 20 ng/ml and IGF1 at 100 and 150 ng/ml significantly (p < 0.05) improved proliferation and stemness of SSCs up to 7 days in culture. GDNF at 40 ng/ml outperformed other growth factors tested and could maintain the ovine SSCs proliferation and stemness for 36 days.

Conclusions

The combined enrichment method employing density gradient centrifugation and laminin with BSA plating improves the purification efficiency of ovine SSCs. GDNF at 40 ng/ml is essential for optimal proliferation and sustenance of stemness of ovine SSCs in vitro.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zheng Y, Zhang Y, Qu R, He Y, Tian X, Zeng W. Spermatogonial stem cells from domestic animals: progress and prospects. Reproduction. 2014;147(3):R65–74.PubMed Zheng Y, Zhang Y, Qu R, He Y, Tian X, Zeng W. Spermatogonial stem cells from domestic animals: progress and prospects. Reproduction. 2014;147(3):R65–74.PubMed
2.
Zurück zum Zitat Brinster RL, Nagano M. Spermatogonial stem cell transplantation, cryopreservation and culture. Semin Cell Dev Biol. 1998;9(4):401–9.PubMed Brinster RL, Nagano M. Spermatogonial stem cell transplantation, cryopreservation and culture. Semin Cell Dev Biol. 1998;9(4):401–9.PubMed
3.
Zurück zum Zitat Goodyear S, Brinster R. Culture and expansion of primary undifferentiated spermatogonial stem cells. Cold Spring Harb Protoc. 2017;2017(4):pdb-rot094193. Goodyear S, Brinster R. Culture and expansion of primary undifferentiated spermatogonial stem cells. Cold Spring Harb Protoc. 2017;2017(4):pdb-rot094193.
4.
Zurück zum Zitat Oatley JM, Brinster RL. Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol. 2008;24:263–86.PubMedPubMedCentral Oatley JM, Brinster RL. Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol. 2008;24:263–86.PubMedPubMedCentral
5.
Zurück zum Zitat Fayomi AP, Peters K, Sukhwani M, Valli-Pulaski H, Shetty G, Meistrich ML, et al. Autologous grafting of cryopreserved prepubertal rhesus testis produces sperm and offspring. AAAS. 2019;363(6433):1314–9. Fayomi AP, Peters K, Sukhwani M, Valli-Pulaski H, Shetty G, Meistrich ML, et al. Autologous grafting of cryopreserved prepubertal rhesus testis produces sperm and offspring. AAAS. 2019;363(6433):1314–9.
6.
Zurück zum Zitat Binsila KB, Selvaraju S, Ghosh SK, Parthipan S, Archana SS, Arangasamy A, et al. Isolation and enrichment of putative spermatogonial stem cells from ram (Ovis aries) testis. Anim Reprod Sci. 2018;196:9–18.PubMed Binsila KB, Selvaraju S, Ghosh SK, Parthipan S, Archana SS, Arangasamy A, et al. Isolation and enrichment of putative spermatogonial stem cells from ram (Ovis aries) testis. Anim Reprod Sci. 2018;196:9–18.PubMed
7.
Zurück zum Zitat Wang X, Chen T, Zhang Y, Li B, Xu Q, Song C. Isolation and culture of pig spermatogonial stem cells and their in vitro differentiation into neuron-like cells and adipocytes. Int J Mol Sci. 2015;16(11):26333–46.PubMedPubMedCentral Wang X, Chen T, Zhang Y, Li B, Xu Q, Song C. Isolation and culture of pig spermatogonial stem cells and their in vitro differentiation into neuron-like cells and adipocytes. Int J Mol Sci. 2015;16(11):26333–46.PubMedPubMedCentral
8.
Zurück zum Zitat Li CH, Yan LZ, Ban WZ, Tu Q, Wu Y, Wang L, et al. Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. Cell Res. 2017;27(2):241–52.PubMed Li CH, Yan LZ, Ban WZ, Tu Q, Wu Y, Wang L, et al. Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. Cell Res. 2017;27(2):241–52.PubMed
9.
Zurück zum Zitat Aponte PM, Van Bragt MP, De Rooij DG, Van Pelt AM. Spermatogonial stem cells: characteristics and experimental possibilities. Apmis. 2005;113(11–12):727–42.PubMed Aponte PM, Van Bragt MP, De Rooij DG, Van Pelt AM. Spermatogonial stem cells: characteristics and experimental possibilities. Apmis. 2005;113(11–12):727–42.PubMed
10.
Zurück zum Zitat Tagelenbosch RA, de Rooij DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res. 1993;290(2):193–200. Tagelenbosch RA, de Rooij DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res. 1993;290(2):193–200.
11.
Zurück zum Zitat Hamra FK, Chapman KM, Nguyen DM, Williams-Stephens AA, Hammer RE, Garbers DL. Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc Natl Acad Sci U S A. 2005;102(48):17430–5.PubMedPubMedCentral Hamra FK, Chapman KM, Nguyen DM, Williams-Stephens AA, Hammer RE, Garbers DL. Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc Natl Acad Sci U S A. 2005;102(48):17430–5.PubMedPubMedCentral
12.
Zurück zum Zitat Goel S, Reddy N, Mandal S, Fujihara M, Kim SM, Imai H. Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilization for isolation and in vitro cultivation of spermatogonia. Theriogenology. 2010;74(7):1221–32.PubMed Goel S, Reddy N, Mandal S, Fujihara M, Kim SM, Imai H. Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilization for isolation and in vitro cultivation of spermatogonia. Theriogenology. 2010;74(7):1221–32.PubMed
13.
Zurück zum Zitat Tiptanavattana N, Techakumphu M, Tharasanit T. Simplified isolation and enrichment of spermatogonial stem-like cells from pubertal domestic cats (Felis catus). J Vet Med Sci. 2015:15–0207. Tiptanavattana N, Techakumphu M, Tharasanit T. Simplified isolation and enrichment of spermatogonial stem-like cells from pubertal domestic cats (Felis catus). J Vet Med Sci. 2015:15–0207.
14.
Zurück zum Zitat Feng W, Chen S, Do D, Liu Q, Deng Y, Lei X, et al. Isolation and identification of prepubertal buffalo (Bubalus bubalis) spermatogonial stem cells. Asian Australas J Anim Sci. 2016;29(10):1407.PubMed Feng W, Chen S, Do D, Liu Q, Deng Y, Lei X, et al. Isolation and identification of prepubertal buffalo (Bubalus bubalis) spermatogonial stem cells. Asian Australas J Anim Sci. 2016;29(10):1407.PubMed
15.
Zurück zum Zitat Hill JR, Dobrinski I. Male germ cell transplantation in livestock. Reprod Fertil Dev. 2005;18(2):13–8. Hill JR, Dobrinski I. Male germ cell transplantation in livestock. Reprod Fertil Dev. 2005;18(2):13–8.
16.
Zurück zum Zitat Sahare MG, Imai H. Recent advances of in vitro culture systems for spermatogonial stem cells in mammals. Reprod Med Biol. 2018;17(2):134–42.PubMedPubMedCentral Sahare MG, Imai H. Recent advances of in vitro culture systems for spermatogonial stem cells in mammals. Reprod Med Biol. 2018;17(2):134–42.PubMedPubMedCentral
17.
Zurück zum Zitat Sharma A, Lagah SV, Nagoorvali D, Kumar BB, Singh MK, Singla SK, et al. Supplementation of glial cell line-derived neurotrophic factor, fibroblast growth factor 2, and epidermal growth factor promotes self-renewal of putative buffalo (Bubalus bubalis) spermatogonial stem cells by upregulating the expression of miR-20b, miR-21, and miR-106a. Cell Rep. 2019;21(1):11–7. Sharma A, Lagah SV, Nagoorvali D, Kumar BB, Singh MK, Singla SK, et al. Supplementation of glial cell line-derived neurotrophic factor, fibroblast growth factor 2, and epidermal growth factor promotes self-renewal of putative buffalo (Bubalus bubalis) spermatogonial stem cells by upregulating the expression of miR-20b, miR-21, and miR-106a. Cell Rep. 2019;21(1):11–7.
18.
Zurück zum Zitat Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A, et al. Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod. 2005;72(4):985–91.PubMed Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A, et al. Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod. 2005;72(4):985–91.PubMed
19.
Zurück zum Zitat Kuo YC, Au HK, Hsu JL, Wang HF, Lee CJ, Peng SW, et al. IGF-1R promotes symmetric self-renewal and migration of alkaline phosphatase+ germ stem cells through HIF-2α-OCT4/CXCR4 loop under hypoxia. Stem Cell Rep. 2018;10(2):524–37. Kuo YC, Au HK, Hsu JL, Wang HF, Lee CJ, Peng SW, et al. IGF-1R promotes symmetric self-renewal and migration of alkaline phosphatase+ germ stem cells through HIF-2α-OCT4/CXCR4 loop under hypoxia. Stem Cell Rep. 2018;10(2):524–37.
20.
Zurück zum Zitat Lim JJ, Sung SY, Kim HJ, Song SH, Hong JY, Yoon TK, et al. Long-term proliferation and characterization of human spermatogonial stem cells obtained from obstructive and non-obstructive azoospermia under exogenous feeder-free culture conditions. Cell Prolif. 2010;43(4):405–17.PubMedPubMedCentral Lim JJ, Sung SY, Kim HJ, Song SH, Hong JY, Yoon TK, et al. Long-term proliferation and characterization of human spermatogonial stem cells obtained from obstructive and non-obstructive azoospermia under exogenous feeder-free culture conditions. Cell Prolif. 2010;43(4):405–17.PubMedPubMedCentral
21.
Zurück zum Zitat Takashima S, Kanatsu-Shinohara M, Tanaka T, Morimoto H, Inoue K, Ogonuki N, et al. Functional differences between GDNF-dependent and FGF2-dependent mouse spermatogonial stem cell self-renewal. Stem Cell Rep. 2015;4(3):489–502. Takashima S, Kanatsu-Shinohara M, Tanaka T, Morimoto H, Inoue K, Ogonuki N, et al. Functional differences between GDNF-dependent and FGF2-dependent mouse spermatogonial stem cell self-renewal. Stem Cell Rep. 2015;4(3):489–502.
22.
Zurück zum Zitat Parekh P, Garcia TX, Hofmann MC. Regulation of GDNF expression in Sertoli cells. Reproduction. 2019;157(3):R95–R107.PubMed Parekh P, Garcia TX, Hofmann MC. Regulation of GDNF expression in Sertoli cells. Reproduction. 2019;157(3):R95–R107.PubMed
23.
Zurück zum Zitat Hofmann MC. Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Mol Cell Endocrinol. 2008;288(1–2):95–103.PubMedPubMedCentral Hofmann MC. Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Mol Cell Endocrinol. 2008;288(1–2):95–103.PubMedPubMedCentral
24.
Zurück zum Zitat Sabri A, Ziaee AA, Ostad SN, Alimoghadam K, Ghahremani MH. Crosstalk of EGF-directed MAPK signalling pathways and its potential role on EGF-induced cell proliferation and COX-2 expression in human mesenchymal stem cells. Cell Biochem Funct. 2011;29(1):64–70.PubMed Sabri A, Ziaee AA, Ostad SN, Alimoghadam K, Ghahremani MH. Crosstalk of EGF-directed MAPK signalling pathways and its potential role on EGF-induced cell proliferation and COX-2 expression in human mesenchymal stem cells. Cell Biochem Funct. 2011;29(1):64–70.PubMed
25.
Zurück zum Zitat Yu M, Wei Y, Xu K, Liu S, Ma L, Pei Y, et al. EGFR deficiency leads to impaired self-renewal and pluripotency of mouse embryonic stem cells. Peer J. 2019;7:e6314.PubMed Yu M, Wei Y, Xu K, Liu S, Ma L, Pei Y, et al. EGFR deficiency leads to impaired self-renewal and pluripotency of mouse embryonic stem cells. Peer J. 2019;7:e6314.PubMed
26.
Zurück zum Zitat Paul RK, Bahire SV, Davendra K. Isolation and biochemical characterization of ovine spermatogonial stem cells. Indian J Small Ruminants. 2017;23(2):186–0189. Paul RK, Bahire SV, Davendra K. Isolation and biochemical characterization of ovine spermatogonial stem cells. Indian J Small Ruminants. 2017;23(2):186–0189.
27.
Zurück zum Zitat Binsila BK, Selvaraju S, Ghosh SK, Prasad JK, Ramya L, Ravindra JP, et al. Purification of spermatogonial stem cells from ram testicular isolate using ficoll density gradient separation. Indian J Anim Reprod. 2019;40(1):7–11. Binsila BK, Selvaraju S, Ghosh SK, Prasad JK, Ramya L, Ravindra JP, et al. Purification of spermatogonial stem cells from ram testicular isolate using ficoll density gradient separation. Indian J Anim Reprod. 2019;40(1):7–11.
28.
Zurück zum Zitat Parthipan S, Selvaraju S, Somashekar L, Kolte AP, Arangasamy A, Ravindra JP. Spermatozoa input concentrations and RNA isolation methods on RNA yield and quality in bull (Bos taurus). Anal Biochem. 2015;482:32–9.PubMed Parthipan S, Selvaraju S, Somashekar L, Kolte AP, Arangasamy A, Ravindra JP. Spermatozoa input concentrations and RNA isolation methods on RNA yield and quality in bull (Bos taurus). Anal Biochem. 2015;482:32–9.PubMed
29.
Zurück zum Zitat Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.
30.
Zurück zum Zitat Giassetti MI, Goissis MD, Moreira PV, de Barros FR, Assumpção ME, Visintin JA. Effect of age on expression of spermatogonial markers in bovine testis and isolated cells. Anim Reprod Sci. 2016;170:68–74.PubMed Giassetti MI, Goissis MD, Moreira PV, de Barros FR, Assumpção ME, Visintin JA. Effect of age on expression of spermatogonial markers in bovine testis and isolated cells. Anim Reprod Sci. 2016;170:68–74.PubMed
31.
Zurück zum Zitat Shinohara T, Avarbock MR, Brinster RL. β1-and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A. 1999;96(10):5504–9.PubMedPubMedCentral Shinohara T, Avarbock MR, Brinster RL. β1-and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A. 1999;96(10):5504–9.PubMedPubMedCentral
32.
Zurück zum Zitat Panahi BQ, Tajik P, Movahedin M, Moghaddam G, Geranmayeh MH. Study of insulin-like growth factor 1 effects on bovine type A spermatogonia proliferation and viability. Turk J Vet Anim Sci. 2014;38(6):693–8. Panahi BQ, Tajik P, Movahedin M, Moghaddam G, Geranmayeh MH. Study of insulin-like growth factor 1 effects on bovine type A spermatogonia proliferation and viability. Turk J Vet Anim Sci. 2014;38(6):693–8.
33.
Zurück zum Zitat Zheng Y, He Y, An J, Qin J, Wang Y, Zhang Y, et al. THY1 is a surface marker of porcine gonocytes. Reprod Fertil Dev. 2014;26(4):533–9.PubMed Zheng Y, He Y, An J, Qin J, Wang Y, Zhang Y, et al. THY1 is a surface marker of porcine gonocytes. Reprod Fertil Dev. 2014;26(4):533–9.PubMed
34.
Zurück zum Zitat Hofmann MC, Braydich-Stolle L, Dettin L, Johnson E, Dym M. Immortalization of mouse germ line stem cells. Stem Cells. 2005;23(2):200–10.PubMedPubMedCentral Hofmann MC, Braydich-Stolle L, Dettin L, Johnson E, Dym M. Immortalization of mouse germ line stem cells. Stem Cells. 2005;23(2):200–10.PubMedPubMedCentral
35.
Zurück zum Zitat Sahare M, Kim SM, Otomo A, Komatsu K, Minami N, Yamada M, et al. Factors supporting long-term culture of bovine male germ cells. Reprod Fertil Dev. 2016;28(12):2039–50.PubMed Sahare M, Kim SM, Otomo A, Komatsu K, Minami N, Yamada M, et al. Factors supporting long-term culture of bovine male germ cells. Reprod Fertil Dev. 2016;28(12):2039–50.PubMed
36.
Zurück zum Zitat Herrid M, Davey RJ, Hutton K, Colditz IG, Hill JR. A comparison of methods for preparing enriched populations of bovine spermatogonia. Reprod Fertil Dev. 2009;21(3):393–9.PubMed Herrid M, Davey RJ, Hutton K, Colditz IG, Hill JR. A comparison of methods for preparing enriched populations of bovine spermatogonia. Reprod Fertil Dev. 2009;21(3):393–9.PubMed
37.
Zurück zum Zitat Borjigin U, Davey R, Hutton K, Herrid M. Expression of promyelocytic leukaemia zinc-finger in ovine testis and its application in evaluating the enrichment efficiency of differential plating. Reprod Fertil Dev. 2010;22(5):733–42.PubMed Borjigin U, Davey R, Hutton K, Herrid M. Expression of promyelocytic leukaemia zinc-finger in ovine testis and its application in evaluating the enrichment efficiency of differential plating. Reprod Fertil Dev. 2010;22(5):733–42.PubMed
38.
Zurück zum Zitat Zhu H, Liu C, Li M, Sun J, Song W, Hua J. Optimization of the conditions of isolation and culture of dairy goat male germline stem cells (mGSC). Anim Reprod Sci. 2013;137(1–2):45–52.PubMed Zhu H, Liu C, Li M, Sun J, Song W, Hua J. Optimization of the conditions of isolation and culture of dairy goat male germline stem cells (mGSC). Anim Reprod Sci. 2013;137(1–2):45–52.PubMed
39.
Zurück zum Zitat Gat I, Maghen L, Filice M, Kenigsberg S, Wyse B, Zohni K, et al. Initial germ cell to somatic cell ratio impacts the efficiency of SSC expansion in vitro. Syst Biol Reprod Med. 2018;64(1):39–50.PubMed Gat I, Maghen L, Filice M, Kenigsberg S, Wyse B, Zohni K, et al. Initial germ cell to somatic cell ratio impacts the efficiency of SSC expansion in vitro. Syst Biol Reprod Med. 2018;64(1):39–50.PubMed
40.
Zurück zum Zitat Luo J, Megee S, Rathi R, Dobrinski I. Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev. 2006;73(12):1531–40.PubMed Luo J, Megee S, Rathi R, Dobrinski I. Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev. 2006;73(12):1531–40.PubMed
41.
Zurück zum Zitat Zhang P, Chen X, Zheng Y, Zhu J, Qin Y, Lv Y, et al. Long-term propagation of porcine undifferentiated spermatogonia. Stem Cells Dev. 2017;26(15):1121–31.PubMedPubMedCentral Zhang P, Chen X, Zheng Y, Zhu J, Qin Y, Lv Y, et al. Long-term propagation of porcine undifferentiated spermatogonia. Stem Cells Dev. 2017;26(15):1121–31.PubMedPubMedCentral
42.
Zurück zum Zitat Aponte PM, Soda T, Van De Kant HJ, de Rooij DG. Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor. Theriogenology. 2006;65(9):1828–47.PubMed Aponte PM, Soda T, Van De Kant HJ, de Rooij DG. Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor. Theriogenology. 2006;65(9):1828–47.PubMed
43.
Zurück zum Zitat Pramod RK, Mitra A. In vitro culture and characterization of spermatogonial stem cells on Sertoli cell feeder layer in goat (Capra hircus). J Assist Reprod Genet. 2014;31(8):993–1001.PubMedPubMedCentral Pramod RK, Mitra A. In vitro culture and characterization of spermatogonial stem cells on Sertoli cell feeder layer in goat (Capra hircus). J Assist Reprod Genet. 2014;31(8):993–1001.PubMedPubMedCentral
44.
Zurück zum Zitat Piravar Z, Jeddi-Tehrani M, Sadeghi MR, Mohazzab A, Eidi A, Akhondi MM. In vitro culture of human testicular stem cells on feeder-free condition. J Reprod Infertil. 2013;14(1):17–22.PubMedPubMedCentral Piravar Z, Jeddi-Tehrani M, Sadeghi MR, Mohazzab A, Eidi A, Akhondi MM. In vitro culture of human testicular stem cells on feeder-free condition. J Reprod Infertil. 2013;14(1):17–22.PubMedPubMedCentral
45.
Zurück zum Zitat Oatley MJ, Kaucher AV, Yang QE, Waqas MS, Oatley JM. Conditions for long-term culture of cattle undifferentiated spermatogonia. Biol Reprod. 2016;95(1):14–1.PubMed Oatley MJ, Kaucher AV, Yang QE, Waqas MS, Oatley JM. Conditions for long-term culture of cattle undifferentiated spermatogonia. Biol Reprod. 2016;95(1):14–1.PubMed
46.
Zurück zum Zitat Yu RJ, Xu SF. Mechanism of epidermal growth factor effects on spermatogonial stem cells. Life Sci Res. 2010;14(1):6–9. Yu RJ, Xu SF. Mechanism of epidermal growth factor effects on spermatogonial stem cells. Life Sci Res. 2010;14(1):6–9.
47.
Zurück zum Zitat Oatley JM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem. 2007;282(35):25842–51.PubMedPubMedCentral Oatley JM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem. 2007;282(35):25842–51.PubMedPubMedCentral
48.
Zurück zum Zitat Bahadorani M, Hosseini SM, Abedi P, Abbasi H, Nasr-Esfahani MH. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells. Growth Factors. 2015;33(3):181–91.PubMed Bahadorani M, Hosseini SM, Abedi P, Abbasi H, Nasr-Esfahani MH. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells. Growth Factors. 2015;33(3):181–91.PubMed
49.
Zurück zum Zitat Heidari B, Rahmati-Ahmadabadi M, Akhondi MM, Zarnani AH, Jeddi-Tehrani M, Shirazi A, et al. Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9. 5 markers. J Assist Reprod Genet. 2012;29(10):1029–38.PubMedPubMedCentral Heidari B, Rahmati-Ahmadabadi M, Akhondi MM, Zarnani AH, Jeddi-Tehrani M, Shirazi A, et al. Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9. 5 markers. J Assist Reprod Genet. 2012;29(10):1029–38.PubMedPubMedCentral
50.
Zurück zum Zitat Helsel AR, Oatley MJ, Oatley JM. Glycolysis-optimized conditions enhance maintenance of regenerative integrity in mouse spermatogonial stem cells during long-term culture. Stem Cell Rep. 2017;8(5):1430–41. Helsel AR, Oatley MJ, Oatley JM. Glycolysis-optimized conditions enhance maintenance of regenerative integrity in mouse spermatogonial stem cells during long-term culture. Stem Cell Rep. 2017;8(5):1430–41.
51.
Zurück zum Zitat Kadam PH, Kala S, Agrawal H, Singh KP, Singh MK, Chauhan MS, et al. Effects of glial cell line-derived neurotrophic factor, fibroblast growth factor 2 and epidermal growth factor on proliferation and the expression of some genes in buffalo (Bubalus bubalis) spermatogonial cells. Reprod Fertil Dev. 2013;25(8):1149–57.PubMed Kadam PH, Kala S, Agrawal H, Singh KP, Singh MK, Chauhan MS, et al. Effects of glial cell line-derived neurotrophic factor, fibroblast growth factor 2 and epidermal growth factor on proliferation and the expression of some genes in buffalo (Bubalus bubalis) spermatogonial cells. Reprod Fertil Dev. 2013;25(8):1149–57.PubMed
52.
Zurück zum Zitat Aponte PM. Spermatogonial stem cells: current biotechnological advances in reproduction and regenerative medicine. World J Stem Cells. 2015;7(4):669–80.PubMedPubMedCentral Aponte PM. Spermatogonial stem cells: current biotechnological advances in reproduction and regenerative medicine. World J Stem Cells. 2015;7(4):669–80.PubMedPubMedCentral
53.
Zurück zum Zitat Lee J, Kanatsu-Shinohara M, Morimoto H, Kazuki Y, Takashima S, Oshimura M, et al. Genetic reconstruction of mouse spermatogonial stem cell self-renewal in vitro by Ras-cyclin D2 activation. Cell Stem Cell. 2009;5(1):76–86.PubMed Lee J, Kanatsu-Shinohara M, Morimoto H, Kazuki Y, Takashima S, Oshimura M, et al. Genetic reconstruction of mouse spermatogonial stem cell self-renewal in vitro by Ras-cyclin D2 activation. Cell Stem Cell. 2009;5(1):76–86.PubMed
54.
Zurück zum Zitat Han SY, Gupta MK, Uhm SJ, Lee HT. Isolation and in vitro culture of pig spermatogonial stem cell. Asian Australas J Anim Sci. 2009;22(2):187–93. Han SY, Gupta MK, Uhm SJ, Lee HT. Isolation and in vitro culture of pig spermatogonial stem cell. Asian Australas J Anim Sci. 2009;22(2):187–93.
55.
Zurück zum Zitat Lee WY, Park HJ, Lee R, Lee KH, Kim YH, Ryu BY, et al. Establishment and in vitro culture of porcine spermatogonial germ cells in low temperature culture conditions. Stem Cell Res. 2013;11(3):1234–49.PubMed Lee WY, Park HJ, Lee R, Lee KH, Kim YH, Ryu BY, et al. Establishment and in vitro culture of porcine spermatogonial germ cells in low temperature culture conditions. Stem Cell Res. 2013;11(3):1234–49.PubMed
56.
Zurück zum Zitat Aponte PM, Soda T, Teerds KJ, Mizrak SC, van de Kant HJ, de Rooij DG. Propagation of bovine spermatogonial stem cells in vitro. Reproduction. 2008;136(5):543–57.PubMed Aponte PM, Soda T, Teerds KJ, Mizrak SC, van de Kant HJ, de Rooij DG. Propagation of bovine spermatogonial stem cells in vitro. Reproduction. 2008;136(5):543–57.PubMed
57.
Zurück zum Zitat Kala S, Kaushik R, Singh KP, Kadam PH, Singh MK, Manik RS, et al. In vitro culture and morphological characterization of prepubertal buffalo (Bubalus bubalis) putative spermatogonial stem cell. J Assist Reprod Genet. 2012;29(12):1335–42.PubMedPubMedCentral Kala S, Kaushik R, Singh KP, Kadam PH, Singh MK, Manik RS, et al. In vitro culture and morphological characterization of prepubertal buffalo (Bubalus bubalis) putative spermatogonial stem cell. J Assist Reprod Genet. 2012;29(12):1335–42.PubMedPubMedCentral
58.
Zurück zum Zitat Kim Y, Turner D, Nelson J, Dobrinski I, McEntee M, Travis AJ. Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction. 2008;136(6):823–31.PubMedPubMedCentral Kim Y, Turner D, Nelson J, Dobrinski I, McEntee M, Travis AJ. Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction. 2008;136(6):823–31.PubMedPubMedCentral
59.
Zurück zum Zitat Wang S, Wang X, Wu Y, Han C. IGF-1R signaling is essential for the proliferation of cultured mouse spermatogonial stem cells by promoting the G2/M progression of the cell cycle. Stem Cells Dev. 2014;24(4):471–83.PubMedPubMedCentral Wang S, Wang X, Wu Y, Han C. IGF-1R signaling is essential for the proliferation of cultured mouse spermatogonial stem cells by promoting the G2/M progression of the cell cycle. Stem Cells Dev. 2014;24(4):471–83.PubMedPubMedCentral
60.
Zurück zum Zitat Sharma V, Saini S, Aneja B, Kumar A, Thakur A, Bajwa KK, et al. 180 increasing GfrA1-positive Spermatogonial stem cell population of goat. Reprod Fertil Dev. 2018;30(1):230. Sharma V, Saini S, Aneja B, Kumar A, Thakur A, Bajwa KK, et al. 180 increasing GfrA1-positive Spermatogonial stem cell population of goat. Reprod Fertil Dev. 2018;30(1):230.
61.
Zurück zum Zitat Lee KH, Lee WY, Kim DH, Lee SH, Do JT, Park C, et al. Vitrified canine testicular cells allow the formation of spermatogonial stem cells and seminiferous tubules following their xenotransplantation into nude mice. Sci Rep. 2016;6:21919.PubMedPubMedCentral Lee KH, Lee WY, Kim DH, Lee SH, Do JT, Park C, et al. Vitrified canine testicular cells allow the formation of spermatogonial stem cells and seminiferous tubules following their xenotransplantation into nude mice. Sci Rep. 2016;6:21919.PubMedPubMedCentral
62.
Zurück zum Zitat Huang YH, Chin CC, Ho HN, Chou CK, Shen CN, Kuo HC, et al. Pluripotency of mouse spermatogonial stem cells maintained by IGF-1-dependent pathway. FASEB J. 2009;23(7):2076–87.PubMed Huang YH, Chin CC, Ho HN, Chou CK, Shen CN, Kuo HC, et al. Pluripotency of mouse spermatogonial stem cells maintained by IGF-1-dependent pathway. FASEB J. 2009;23(7):2076–87.PubMed
63.
Zurück zum Zitat Jeong D, McLean DJ, Griswold MD. Long-term culture and transplantation of murine testicular germ cells. J Androl. 2003;24(5):661–9.PubMed Jeong D, McLean DJ, Griswold MD. Long-term culture and transplantation of murine testicular germ cells. J Androl. 2003;24(5):661–9.PubMed
64.
Zurück zum Zitat Yao J, Zuo H, Gao J, Wang M, Wang D, Li X. The effects of IGF-1 on mouse spermatogenesis using an organ culture method. Biochem Biophys Res Commun. 2017;491(3):840–7.PubMed Yao J, Zuo H, Gao J, Wang M, Wang D, Li X. The effects of IGF-1 on mouse spermatogenesis using an organ culture method. Biochem Biophys Res Commun. 2017;491(3):840–7.PubMed
65.
Zurück zum Zitat Tokuda M, Kadokawa Y, Kurahashi H, Marunouchi T. CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes. Biol Reprod. 2007;76(1):130–41.PubMed Tokuda M, Kadokawa Y, Kurahashi H, Marunouchi T. CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes. Biol Reprod. 2007;76(1):130–41.PubMed
66.
Metadaten
Titel
EGF, GDNF, and IGF-1 influence the proliferation and stemness of ovine spermatogonial stem cells in vitro
verfasst von
B. K. Binsila
S. Selvaraju
S. K. Ghosh
L. Ramya
A. Arangasamy
R. Ranjithkumaran
R. Bhatta
Publikationsdatum
21.08.2020
Verlag
Springer US
Erschienen in
Journal of Assisted Reproduction and Genetics / Ausgabe 10/2020
Print ISSN: 1058-0468
Elektronische ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-020-01912-5

Weitere Artikel der Ausgabe 10/2020

Journal of Assisted Reproduction and Genetics 10/2020 Zur Ausgabe

Hirsutismus bei PCOS: Laser- und Lichttherapien helfen

26.04.2024 Hirsutismus Nachrichten

Laser- und Lichtbehandlungen können bei Frauen mit polyzystischem Ovarialsyndrom (PCOS) den übermäßigen Haarwuchs verringern und das Wohlbefinden verbessern – bei alleiniger Anwendung oder in Kombination mit Medikamenten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Weniger postpartale Depressionen nach Esketamin-Einmalgabe

Bislang gibt es kein Medikament zur Prävention von Wochenbettdepressionen. Das Injektionsanästhetikum Esketamin könnte womöglich diese Lücke füllen.

Bei RSV-Impfung vor 60. Lebensjahr über Off-Label-Gebrauch aufklären!

22.04.2024 DGIM 2024 Kongressbericht

Durch die Häufung nach der COVID-19-Pandemie sind Infektionen mit dem Respiratorischen Synzytial-Virus (RSV) in den Fokus gerückt. Fachgesellschaften empfehlen eine Impfung inzwischen nicht nur für Säuglinge und Kleinkinder.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.