Skip to main content
Erschienen in: Insights into Imaging 1/2019

Open Access 01.12.2019 | Educational Review

Emergency imaging in paediatric oncology: a pictorial review

verfasst von: Trevor Gaunt, Felice D’Arco, Anne M. Smets, Kieran McHugh, Susan C. Shelmerdine

Erschienen in: Insights into Imaging | Ausgabe 1/2019

Abstract

Despite the decline in mortality rates over the last 20 years, cancer remains one of the leading causes of death in children worldwide. Early recognition and treatment for acute oncological emergencies are vital in preventing mortality and poor outcomes, such as irreversible end-organ damage and a compromised quality of life.
Imaging plays a pivotal and adjunctive role to clinical examination, and a high level of interpretative acumen by the radiologist can make the difference between life and death. In contrast to adults, the most accessible cross-sectional imaging tool in children typically involves ultrasound. The excellent soft tissue differentiation allows for careful delineation of malignant masses and along with colour Doppler imaging, thromboses and large haematomas can be easily identified. Neurological imaging, particularly in older children is an exception. Here, computed tomography (CT) is required for acute intracranial pathologies, with magnetic resonance imaging (MRI) providing more definitive results later.
This review is divided into a ‘body systems’ format covering a range of pathologies including neurological complications (brainstem herniation, hydrocephalus, spinal cord compression), thoracic complications (airway obstruction, superior vena cava syndrome, cardiac tamponade), intra-abdominal complications (bowel obstruction and perforation, hydronephrosis, abdominal compartment syndrome) and haematological-related emergencies (thrombosis, infection, massive haemorrhage). Within each subsection, we highlight pertinent clinical and imaging considerations.
The overall objective of this pictorial review is to illustrate how primary childhood malignancies may present with life-threatening complications, and emphasise the need for imminent patient management.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
3D
three dimensional
ALL
Acute lymphoid leukaemia
AML
Acute myeloid leukaemia
CSF
Cerebrospinal fluid
CT
Computed tomography
CVST
Cerebral venous sinus thrombosis
DIC
Disseminated intravascular coagulopathy
ETMR
Embryonal tumours with multi-layered rosettes
ICP
Intracranial pressure
MIP
Maximum intensity projection
MPNST
Malignant peripheral nerve sheath tumour
MRCP
Magnetic resonance cholangiopancreatography
MRI
Magnetic resonance imaging
MRT
Malignant rhabdoid tumour
SVC
Superior vena cava

Key points

  • Paediatric cancers differ from adult malignancies in their type, prevalence and location and therefore knowledge of tumour behaviours is crucial in predicting acute complications.
  • Conventional radiography can be helpful in suspected bowel perforation, bowel obstruction or airway obstruction from mediastinal masses; however, ultrasound and CT are frequently more informative.
  • MR imaging, whilst excellent for characterising and staging a primary malignancy, has less of a role in the emergency scenario apart from in neurological emergencies, such as suspected spinal cord compression.

Background

Cancer remains one of the leading causes of death in children, after 1 year of age [1], despite the vast improvement in cancer treatment. Over the last 20 years, the overall 5-year survival rates now reach approximately 80% [24]. Nevertheless, increased awareness and rapid assessment of acute oncological-related emergencies could further reduce poor outcomes. Whilst paediatric malignancies are comparatively rarer than in the adult population, they are biologically very different and consist of differing tumour types which predispose to differing types of emergency presentation [5]. Many emergency physicians have little experience of paediatric oncological emergencies and may feel ill-equipped in such complex scenarios to understand the extent of the underlying medical and mechanical issues faced [6]. Given that imaging plays a pivotal role in these scenarios, the radiologist is in a privileged position whereby a high level of interpretative acumen can make the difference between life and death.
This pictorial review serves to illustrate the many facets and scenarios seen during emergency presentations of paediatric cancers. We outline the abnormalities and best imaging modalities for each scenario by body systems and include cases seen at presenting diagnosis, prior to curative surgical resection and unrelated to chemotoxic agents. Acute presentations relating to complications of treatment and infective diseases are not included, given their substantial coverage elsewhere in the literature [710].

Neurological emergencies

Raised intracranial pressure

Tumours of the central nervous system are the leading cause of cancer-related deaths in children [11], with the majority located in the infratentorium [12]. Both low- and high-grade tumours may cause acute hydrocephalus either from extrinsic compression or intraventricular extension of the tumour adjacent to the foramen of Monroe, cerebral aqueduct, fourth ventricle and outlet foramina [13]. The commonest low-grade tumour in the posterior fossa includes pilocytic astrocytomas whilst high-grade tumours are divided into ependymomas and embryonal tumours (such as medulloblastomas, atypical terato-rabdoid tumours (ATRT) and embryonal tumours with multi-layered rosettes (ETMR)) [12]. (Fig. 1a, b) In the emergency setting however, determining the tumour subtype is not the main goal, which should be directed towards identification and localisation of the mass, any adverse complications (e.g. hydrocephalus or haemorrhage) and aiding the neurologists and neurosurgeons in planning subsequent clinical interventions. This may include the insertion of an extraventricular drain (EVD) in the first instance, to help relieve the hydrocephalus, occasionally to drain haemorrhage and provide ongoing intracranial pressure (ICP) monitoring [14]. One large case series of approximately 180 children found that an underlying cerebral neoplasm was the primary indication for an EVD in almost a third (32.2%) of cases, with astrocytomas accounting for 43.1% of all responsible tumours [13].
Presenting symptoms can be variable depending on age and commonly non-specific in nature. On the whole, intracranial malignancies have a subacute onset and commonly present with changes in mood, headache or intermittent seizures [15]. In rare instances, such as during a neurological emergency, a primary tumour or intracranial metastasis may present with symptoms of raised ICP and hydrocephalus due to obstruction (such as from a posterior fossa mass [12]) or overproduction (e.g. from choroid plexus papilloma) of cerebrospinal fluid (CSF). In certain cases, the interval increase in perilesional oedema or intra-tumoural haemorrhage may be the precipitating event leading to the acute emergency [15]. Late clinical signs of a raised intracranial pressure may lead to the Cushing’s triad (reduced respiratory rate, bradycardia, systolic hypertension) as well as seizures.
Focal neurology and stroke-like symptoms are more likely from tumour haemorrhage or venous infarction from cerebral venous sinus thrombosis (CVST) which although rare, has been associated with childhood intracranial malignancies [17]. In one review by Sebire et al., 4% of children presenting with CVST had an underlying brain tumour at presentation, with the sagittal and transverse sinuses most commonly involved [18].
Imaging protocols for acute intracranial oncological pathologies are similar to those in children without suspected malignancies. Cranial ultrasound is a quick and accessible screening test in patients with patent fontanelles. Ventricular dilatation, a mass lesion or focally abnormal parenchymal echotexture in the context of stroke or haemorrhage, can be easily and quickly demonstrated. Colour Doppler can easily assess the superior sagittal sinus for thrombosis. Unenhanced computed tomography (CT) allows for rapid identification of intracranial shift, haemorrhage, oedema and hydrocephalus, and enhanced CT (in the form of CT venography) can be used to demonstrate deep sinus thrombosis or arterial compromise. Ultimately, neurosurgical consultation should be obtained, with magnetic resonance imaging (MRI) used for further lesion characterisation [19], particularly of posterior fossa masses which are better depicted with MR. Fortunately, brainstem herniation is a rare occurrence, but children presenting with these features should be imaged with the most definitive modality available, which in most cases will be MRI.

Cord compression and cauda equina syndrome

Acute spinal cord compression occurs in 3–5% of children with cancer at diagnosis [20], usually from external compression by a paravertebral tumour (Fig. 2), commonly presenting with back pain [21]. Prolonged compression can progress to irreversible neurological damage within hours [22].
Potential causative lesions commonly include neuroblastomas (with 5–15% of such cases having spinal canal involvement [23] at diagnosis) and less frequently soft tissue sarcomas (Ewing’s sarcoma or rhabdomyosarcoma), Hodgkin’s lymphoma and primary spinal cord tumours (such as ependymomas, astrocytomas and intraspinal chloromas in acute myeloid leukaemia).
Rarely, metastatic disease affecting the leptomeninges of the spine can occur. Whilst this heralds a poor outcome in adults, the prognosis in children is better, and early identification can allow for a more considerate and careful planning of chemotherapy and, rarely, adjuvant radiotherapy treatments. In recent years, improvements in survival have been shown with proton beam therapy [24] (Fig. 3).
In the above scenarios, plain radiographs of the spine are generally unhelpful. MRI imaging is the ideal modality and should include the entire neuraxis (the brain and whole spine), with sedation and analgesia occasionally required to allow for adequate patient positioning. Following the initial imaging of the brain, an additional dose of gadolinium contrast agent is not required—the dose provided for post-contrast brain imaging is normally sufficient for the spine given that both body areas are usually imaged within the same sitting, lasting less than 1hour in length [25].

Proptosis

Causes of proptosis include benign and malignant pathologies. Orbital cellulitis is often clinically apparent with CT being used to confirm post-septal extension. MRI examination through the orbits is often definitive for benign aetiologies, with orbital haemangiomas and pseudotumour having characteristic MR appearances [26]. The most common primary malignancy to present with proptosis is orbital rhabdomyosarcoma (RMS) and confers a high risk of blindness if diagnosis is delayed (Fig. 4) [27]. RMS accounts for 4% of all paediatric malignancies, with 10% occurring in the orbit, most frequently within the first decade. If the primary lesion is less than 5 cm and embryonal-type histologically, local staging with MRI is often sufficient. If larger than 5 cm or alveolar-type, full-body PET-CT should be performed [28]. Causes of orbital metastases include malignant rhabdoid tumour (MRT) (Fig. 5) which typically presents with rapidly progressive proptosis in infants [29, 30]. As such, MR imaging should include the orbits and neuraxis, as synchronous primary and secondary intracranial neoplasms are seen in 15% of cases [31]. In malignant rhaboid tumours, the kidney is the most frequent site of origin with metastases to the lungs being common. Therefore further work-up should also include imaging of these body systems.

Intra-thoracic emergencies

Airway compression and SVC syndrome

The smaller diameter and compressible nature of the trachea in children places them at increased risk of airway obstruction with anterior mediastinal masses. Common aetiologies include lymphoma, leukaemia and germ cell tumours. These tumours may also cause vessel compression [32] resulting in superior vena cava (SVC) syndrome. Thyroid tumours may also cause airway compression but they are rare in children (Fig. 6).
Common symptoms of airway obstruction include cough, stridor and dyspnoea [33], with poor correlation between the severity of symptoms and degree of airway obstruction [34]. Where SVC syndrome is present, children may present with cardiogenic shock from reduced venous return [35].
Plain chest radiographs identify mediastinal masses in 97% of cases, if present [36] and aid assessment of tracheal narrowing. CT or MR imaging will further characterise the mass but may not be practical where there is positional compromise to breathing. In such cases, imaging may need to be obtained with the patient in a semi-upright or prone position (Figs. 7 and 8).
Maintaining a calm presence, minimal child handling and obtaining a tissue diagnosis via the least invasive method possible is recommended [37]. General anaesthesia should only be used if absolutely necessary, with one study finding that those with a tracheal cross-sectional area of < 30% of normal (‘normal’ defined as widest tracheal diameter at the thoracic inlet, with lung apices visible on axial slice) or with the addition of bronchial compression being associated with a greater risk of intra and post-operative complications [3841].
In the antenatal period, obstetric sonography may identify a potentially fatal airway obstruction from a large neck mass, commonly a cervical teratoma [42] (Fig. 9). Although this is unlikely to present as an acute emergency, careful planning and identification of the relationship between the tumour and adjacent airway and vascular anatomy is crucial. Antenatal MRI has recently been hailed as the most definitive imaging tool for these cases [43], allowing for surgical planning of an ‘ex-utero intrapartum treatment’ (‘EXIT’) of the baby, followed by definitive surgery to remove the tumour. Given the location and potential airway complications in such cases, successful long-term outcomes are usually achieved in just over half of cases [44].

Pleural effusion

Although malignancy is a rare cause, pleural effusion may be seen at diagnosis in 15% of children with non-Hodgkin lymphoma and is a marker for poor therapeutic response and relapse. Suggested causes include venous obstruction from bulky disease, leading to a decreased venous return to the heart and reduced lymphatic drainage of the thoracic duct if the left brachiocephalic vein is involved [45]. Pleural effusions are readily demonstrated on chest radiography and pleural ultrasound, with the latter able to assess the complexity, and approximate size of the effusion. Furthermore, ultrasound may be used to identify an appropriate site for surgical drain placement or in image-guided percutaneous drainage [46].

Pericardial effusion and tamponade

Causes of pericardial effusion in paediatric oncology patients are myriad ranging from general medical causes of cardiac failure, side effects of chemotherapy, radiotherapy or haematopoietic stem-cell transplantation [47] to malignant pericardial effusions. The latter is a rare complication associated with pericardial infiltration from leukaemia and lymphoma [48, 49], intrapericardial [50] or primary cardiac tumours [51] (Fig. 10). Urgent cardiology consultation with echocardiography and a view to proceeding to pericardiocentesis is essential.

Diaphragmatic splinting

Mass effect on the diaphragm from an intra-abdominal mass may cause splinting of the diaphragms, restricted self-ventilation and poor gaseous exchange. Causes can include gross hepatomegaly from primary hepatoblastoma or metastases in stage MS neuroblastomas which may require urgent intubation and ventilatory support (Fig. 11). Ascites associated with primary, typically non-capsulated masses is often a contributing factor, with some relief provided by immediate percutaneous drainage.

Abdominal emergencies

Abdominal compartment syndrome

Abdominal compartment syndrome is a potentially life-threatening complication carrying a mortality rate of up to 60% [52, 53]. The underlying mechanism is one where an increase in abdominal compartment volume exceeds the relative expansion capacity of the abdominal wall. This leads to inadequate end-organ perfusion, organ dysfunction and in extremis, organ failure. Splinting of the diaphragm and pulmonary atelectasis are often concomitant findings.
The diagnosis is clinical; however, by identifying venous compression, particularly IVC obstruction on either an abdominal ultrasound or portal venous phase, post-contrast CT study, the radiologist can help raise awareness [54]. Surgical referral is essential and emergency decompressive laparotomy may be required. Possible aetiologies include any cause of a rapid increase in abdominal contents such as large (bilateral) Wilms tumours [55], rapidly proliferating acute lymphoblastic leukaemic infiltrates [56], giant ovarian masses [57] (Fig. 12) and ascites [58].

Bowel obstruction

Bowel obstruction is frequently caused by intussusception. Whilst relatively common in healthy children with median age at presentation of 8 months [59], occurrence in children over 2 years of age should raise concerns for an underlying neoplastic lead point such as Burkitt’s lymphoma (where intussusception is the primary presentation in 18% of cases) [60] (Fig. 13). Ultrasound is the primary modality for identifying an intussusception and it may also demonstrate the lead point such as diffuse asymmetric bowel wall thickening, a tumour or lymphadenopathy. In such cases, hydrostatic or air enema reduction should be avoided as this is frequently unsuccessful and may have a higher likelihood of complication, such as bowel perforation.

Bowel perforation

Bowel perforation may occur secondary to bowel obstruction, intestinal tumour infiltration (Burkitt’s lymphoma commonly (Fig. 14) [61]) or after intensive radiation and chemotherapy. Imaging with an erect or cross table lateral chest or abdominal radiograph or abdominal ultrasound may reveal pneumoperitoneum.

Obstructive jaundice

Biliary rhabdomyosarcoma (RMS) is a rare primary malignancy, but the most likely primary tumour to cause biliary tract obstruction, and can be accompanied by abdominal distension and hepatomegaly [62, 63]. Occasionally, it may be misinterpreted as a hepatic mass such as a hepatoblastoma, which can also present with jaundice [64] or as an undifferentiated embryonal sarcoma due to the shared histopathological similarities (although embryonal sarcomas rarely cause biliary obstruction [65]). Lymphadenopathy at the porta hepatis or a pancreatic head mass due to pancreatoblastoma may be large but, again, seldom cause biliary dilatation (Figs. 15 and 16).
The diagnosis of biliary RMS remains challenging and first-line imaging is primarily focussed on ultrasound identification of biliary dilatation, with location of a soft tissue mass, frequently within the common bile duct [66]. Further imaging with MRI and MRCP sequences help to identify the primary mass and potential hepatic metastases [67]. The majority of such lesions are initially treated with chemotherapy (given their chemosensitivity), surgical interventions may be required in cases of relapse or where hepatic transplantation is considered [68, 69].

Urinary tract obstruction

Pelvic masses such as rhabdomyosarcomas, neuroblastomas, sacrococcygeal teratomas and germ cell ovarian tumours in girls may present with distal ureteric obstruction and subsequent upper urinary tract dilatation (Fig. 17). Mass affect from enlarged lymph nodes in lymphoma may be seen in up to in 20% of cases. Finally, any large intra-renal mass may obstruct the urinary collecting system via invasion or mass effect. In the majority of cases, urinary tract obstruction resolves after treatment, with only a minority (13% [54]) requiring intervention. Ureteric stenting is preferred over percutaneous nephrostomy, due to the inherent lower risk of infection. Ultrasound is a reliable first-line modality for assessment of the urinary tract and pelvic masses, which can ultimately be further characterised with MRI.

Haematological and vascular emergencies

Venothromboembolism

Whilst a rare complication (with respect to adults), the incidence of thromboembolism (both deep venous thromboembolism and pulmonary emboli) in children with cancer is still higher than that seen within their healthy counterparts. One British study estimated the thrombosis risk at 1.52 per 1000 person-years for children with cancer (95% CI = 0.57–4.06) versus 0.06 per 1000 person-years (95% CI = 0.02–0.15) in children without cancer [hazard ratio of 28.3 (95% CI = 7.0–114.5)] [70]. Overall, it is more commonly associated with complications from therapy (i.e., indwelling central venous line, steroid or L-asparaginase treatment [71]). Primary malignancies causing increased hyperleucocytosis (e.g. in ALL), reduced mobility (e.g. soft tissue and bone sarcomas [72]) or associated with tumour thrombosis (4–8% of patients with Wilms tumours [34] (Fig. 18)) account for the remainder of cases.
Doppler ultrasound imaging of the extremities, including venous compression techniques should be adopted to identify suspected limb thromboembolism, whilst CT pulmonary angiography (CTPA) is suitable for suspected pulmonary emboli. Contrast-enhanced CT head for venous sinus thromboses have been discussed earlier in this article. At present, there are no specific guidelines for thromboprophylaxis treatment in children with cancer. It is therefore even more important for radiologists to be astute to the presence of potential thromboembolism in children.

Haemorrhage and disseminated intravascular coagulopathy

Disseminated intravascular coagulopathy (DIC) is characterised by excessive activation of blood coagulation and consumption of clotting factors. It is found in children with disseminated metastases or secondary to AML [73], where it can cause early death [74]. DIC may also result from a consumptive coagulopathy (Kasabach-Merritt syndrome [75]) associated with vascular tumours such as Kaposiform haemangioendothelioma. Multiphase, intravenous contrast-enhanced CT imaging in the acute scenario can help to confirm the location of the acute haemorrhage for embolization, although treatment is largely supportive (Figs. 19 and 20).
Whilst a pre-contrast CT of the affected body part may be routinely acquired in adult radiology, this is generally avoided in paediatric imaging with only the arterial and portal venous phase imaging being sufficient [76].

Hypertension

End-organ damage or haemorrhagic stroke secondary to refractory hypertension may be the presenting feature of some paediatric malignancies. These can be biochemical in nature (such as from excessive catecholamine production in neuroblastomas or phaeochromocytomas) or from mass effect on the aorta or renal arteries (Fig. 21).
Whilst vascular compression from a mass may be investigated with ultrasound examination and spectral Doppler analysis, definitive characterisation with cross-sectional imaging and angiography should be performed for surgical planning and/or endovascular intervention.

Conclusions

Familiarity with life-threatening oncological emergencies is essential in contributing to the continued low rates of mortality and morbidity in children. Given that most children suffering from an acute complication may not initially present to a specialist centre, it is the responsibility for all general radiologists to have a basic awareness of such cases. In this article, we have provided an overview of the various ways in which oncological complications manifest and the main imaging considerations. Ultimately a multidisciplinary approach with good team communication and prompt action are all required to ensure the best imaging and treatment strategies going forward.
Not applicable
Not applicable

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Diamond CA (1998) Rudolph's fundamentals of pediatrics. In: Rudolph AM, Kamei RK (eds) Rudolph’s fundamentals of pediatrics. Appleton & Lange, Stanford, pp 491–510 Diamond CA (1998) Rudolph's fundamentals of pediatrics. In: Rudolph AM, Kamei RK (eds) Rudolph’s fundamentals of pediatrics. Appleton & Lange, Stanford, pp 491–510
2.
Zurück zum Zitat Pritchard-Jones K, Hargrave D (2014) Declining childhood and adolescent cancer mortality: great progress but still much to be done. Cancer 120:2388–2391PubMedCrossRef Pritchard-Jones K, Hargrave D (2014) Declining childhood and adolescent cancer mortality: great progress but still much to be done. Cancer 120:2388–2391PubMedCrossRef
4.
Zurück zum Zitat Nakata K, Ito Y, Magadi W et al (2018) Childhood cancer incidence and survival in Japan and England: a population-based study (1993-2010). Cancer Sci 109:422–434PubMedCrossRef Nakata K, Ito Y, Magadi W et al (2018) Childhood cancer incidence and survival in Japan and England: a population-based study (1993-2010). Cancer Sci 109:422–434PubMedCrossRef
5.
Zurück zum Zitat Pritchard-Jones K, Pieters R, Reaman GH et al (2013) Sustaining innovation and improvement in the treatment of childhood cancer: lessons from high-income countries. Lancet Oncol 14:e95–e103PubMedCrossRef Pritchard-Jones K, Pieters R, Reaman GH et al (2013) Sustaining innovation and improvement in the treatment of childhood cancer: lessons from high-income countries. Lancet Oncol 14:e95–e103PubMedCrossRef
6.
Zurück zum Zitat Kaufmann J, Laschat M (2019) Challenges of being prepared for pediatric emergencies. Prehosp Emerg Care Jun 19:1–2 [Epub ahead of print] Kaufmann J, Laschat M (2019) Challenges of being prepared for pediatric emergencies. Prehosp Emerg Care Jun 19:1–2 [Epub ahead of print]
7.
Zurück zum Zitat Chavhan GB, Babyn PS, Nathan PC, Kaste SC (2016) Imaging of acute and subacute toxicities of cancer therapy in children. Pediatr Radiol 46:9–20 quiz 26-28PubMedCrossRef Chavhan GB, Babyn PS, Nathan PC, Kaste SC (2016) Imaging of acute and subacute toxicities of cancer therapy in children. Pediatr Radiol 46:9–20 quiz 26-28PubMedCrossRef
8.
Zurück zum Zitat Shelmerdine SC, Chavhan GB, Babyn PS, Nathan PC, Kaste SC (2017) Imaging of late complications of cancer therapy in children. Pediatr Radiol 47:254–266PubMedCrossRef Shelmerdine SC, Chavhan GB, Babyn PS, Nathan PC, Kaste SC (2017) Imaging of late complications of cancer therapy in children. Pediatr Radiol 47:254–266PubMedCrossRef
9.
Zurück zum Zitat Hudson MM, Ehrhardt MJ, Bhakta N et al (2017) Approach for classification and severity grading of long-term and late-onset health events among childhood Cancer survivors in the St. Jude Lifetime Cohort. Cancer Epidemiol Biomarkers Prev 26:666–674PubMedCrossRef Hudson MM, Ehrhardt MJ, Bhakta N et al (2017) Approach for classification and severity grading of long-term and late-onset health events among childhood Cancer survivors in the St. Jude Lifetime Cohort. Cancer Epidemiol Biomarkers Prev 26:666–674PubMedCrossRef
10.
Zurück zum Zitat Broglie L, Fretham C, Al-Seraihy A et al (2019) Pulmonary Complications in Pediatric and Adolescent Patients Following Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant. 25(10):2024–2030PubMedCrossRefPubMedCentral Broglie L, Fretham C, Al-Seraihy A et al (2019) Pulmonary Complications in Pediatric and Adolescent Patients Following Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant. 25(10):2024–2030PubMedCrossRefPubMedCentral
11.
Zurück zum Zitat Qaddoumi I, Sultan I, Gajjar A (2009) Outcome and prognostic features in pediatric gliomas: a review of 6212 cases from the surveillance, epidemiology, and end results database. Cancer 115:5761–5770PubMedCrossRef Qaddoumi I, Sultan I, Gajjar A (2009) Outcome and prognostic features in pediatric gliomas: a review of 6212 cases from the surveillance, epidemiology, and end results database. Cancer 115:5761–5770PubMedCrossRef
12.
Zurück zum Zitat D'Arco F, Khan F, Mankad K, Ganau M, Caro-Dominguez P, Bisdas S (2018) Differential diagnosis of posterior fossa tumours in children: new insights. Pediatr Radiol 48:1955–1963PubMedCrossRef D'Arco F, Khan F, Mankad K, Ganau M, Caro-Dominguez P, Bisdas S (2018) Differential diagnosis of posterior fossa tumours in children: new insights. Pediatr Radiol 48:1955–1963PubMedCrossRef
13.
Zurück zum Zitat Neilsen N, Pearce K, Limbacher E, Wallace DC (2007) Hydrocephalus. In: Cartwright C, Wallace D (eds) Nursing care of the pediatric neurosurgery patient. Springer, Berlin Neilsen N, Pearce K, Limbacher E, Wallace DC (2007) Hydrocephalus. In: Cartwright C, Wallace D (eds) Nursing care of the pediatric neurosurgery patient. Springer, Berlin
14.
Zurück zum Zitat Walker CT, Stone JJ, Jacobson M, Phillips V, Silberstein HJ (2012) Indications for pediatric external ventricular drain palcement and risk factors for conversion to a ventriculoperitoneal shunt. Pediatr Neurosurg 48(6):342–347PubMedCrossRef Walker CT, Stone JJ, Jacobson M, Phillips V, Silberstein HJ (2012) Indications for pediatric external ventricular drain palcement and risk factors for conversion to a ventriculoperitoneal shunt. Pediatr Neurosurg 48(6):342–347PubMedCrossRef
15.
Zurück zum Zitat Prabhu SP, Young-Poussaint T (2010) Pediatric central nervous system emergencies. Neuroimaging Clin N Am 20:663–683PubMedCrossRef Prabhu SP, Young-Poussaint T (2010) Pediatric central nervous system emergencies. Neuroimaging Clin N Am 20:663–683PubMedCrossRef
16.
Zurück zum Zitat Saigal G, Ezuddin NS, Vega G (2018) Neurologic emergencies in pediatric patients including accidental and nonaccidental trauma. Neuroimaging Clin N Am 28:453–470.PubMedCrossRef Saigal G, Ezuddin NS, Vega G (2018) Neurologic emergencies in pediatric patients including accidental and nonaccidental trauma. Neuroimaging Clin N Am 28:453–470.PubMedCrossRef
17.
Zurück zum Zitat Okabe T, Nozaki T, Aida N et al (2018) MR imaging findings in some rare neurological complications of paediatric cancer. Insights Imaging 9:313–324PubMedPubMedCentralCrossRef Okabe T, Nozaki T, Aida N et al (2018) MR imaging findings in some rare neurological complications of paediatric cancer. Insights Imaging 9:313–324PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Sebire G, Tabarki B, Saunders DE et al (2005) Cerebral venous sinus thrombosis in children: risk factors, presentation, diagnosis and outcome. Brain. 128:477–489PubMedCrossRef Sebire G, Tabarki B, Saunders DE et al (2005) Cerebral venous sinus thrombosis in children: risk factors, presentation, diagnosis and outcome. Brain. 128:477–489PubMedCrossRef
19.
Zurück zum Zitat Wilne S, Collier J, Kennedy C, Koller K, Grundy R, Walker D (2007) Presentation of childhood CNS tumours: a systematic review and meta-analysis. Lancet Oncol 8:685–695PubMedCrossRef Wilne S, Collier J, Kennedy C, Koller K, Grundy R, Walker D (2007) Presentation of childhood CNS tumours: a systematic review and meta-analysis. Lancet Oncol 8:685–695PubMedCrossRef
20.
Zurück zum Zitat Prusakowski MK, Cannone D (2014) Pediatric oncologic emergencies. Emerg Med Clin North Am 32:527–548PubMedCrossRef Prusakowski MK, Cannone D (2014) Pediatric oncologic emergencies. Emerg Med Clin North Am 32:527–548PubMedCrossRef
21.
Zurück zum Zitat Traylor KS, Kralik SF, Radhakrishnan R (2018) Pediatric spine emergencies. Semin Ultrasound CT MR 39:605–617PubMedCrossRef Traylor KS, Kralik SF, Radhakrishnan R (2018) Pediatric spine emergencies. Semin Ultrasound CT MR 39:605–617PubMedCrossRef
22.
Zurück zum Zitat Higdon ML, Higdon JA (2006) Treatment of oncologic emergencies. Am Fam Physician 74:1873–1880PubMed Higdon ML, Higdon JA (2006) Treatment of oncologic emergencies. Am Fam Physician 74:1873–1880PubMed
23.
Zurück zum Zitat Trahair T, Sorrentino S, Russell SJ et al (2017) Spinal canal involvement in neuroblastoma. J Pediatr 188:294–298PubMedCrossRef Trahair T, Sorrentino S, Russell SJ et al (2017) Spinal canal involvement in neuroblastoma. J Pediatr 188:294–298PubMedCrossRef
24.
Zurück zum Zitat Ray GL, Buchsbaum JC, McMullen KP et al (2013) Definitive treatment of leptomeningeal spinal metastases in children. Pediatr Blood Cancer 60:1839–1841PubMedCrossRef Ray GL, Buchsbaum JC, McMullen KP et al (2013) Definitive treatment of leptomeningeal spinal metastases in children. Pediatr Blood Cancer 60:1839–1841PubMedCrossRef
25.
Zurück zum Zitat Warren KE, Vezina G, Poussaint TY et al (2018) Response assessment in medulloblastoma and leptomeningeal seeding tumors: recommendations from the response assessment in pediatric Neuro-oncology committee. Neuro Oncol 20:13–23 Warren KE, Vezina G, Poussaint TY et al (2018) Response assessment in medulloblastoma and leptomeningeal seeding tumors: recommendations from the response assessment in pediatric Neuro-oncology committee. Neuro Oncol 20:13–23
26.
Zurück zum Zitat Kralik SF, Haider KM, Lobo RR et al (2018) Orbital infantile hemangioma and rhabdomyosarcoma in children: differentiation using diffusion-weighted magnetic resonance imaging. J AAPOS 22:27–31PubMedCrossRef Kralik SF, Haider KM, Lobo RR et al (2018) Orbital infantile hemangioma and rhabdomyosarcoma in children: differentiation using diffusion-weighted magnetic resonance imaging. J AAPOS 22:27–31PubMedCrossRef
27.
Zurück zum Zitat Tu Y, Jakobiec FA, Leung K, Freitag SK (2018) Distinguishing benign from malignant circumscribed orbital tumors in children. Semin Opthalmol 33:116–125CrossRef Tu Y, Jakobiec FA, Leung K, Freitag SK (2018) Distinguishing benign from malignant circumscribed orbital tumors in children. Semin Opthalmol 33:116–125CrossRef
28.
Zurück zum Zitat Karcioglu ZA, Hadjistilianou D, Rozans M, DeFrancesco S (2004) Orbital rhabdomyosarcoma. Cancer Control 11:328–333PubMedCrossRef Karcioglu ZA, Hadjistilianou D, Rozans M, DeFrancesco S (2004) Orbital rhabdomyosarcoma. Cancer Control 11:328–333PubMedCrossRef
29.
Zurück zum Zitat Mulay K, Honavar SG (2014) Primary, orbital, malignant extra-renal, non-cerebral rhabdoid tumour. Orbit 33:292–294PubMedCrossRef Mulay K, Honavar SG (2014) Primary, orbital, malignant extra-renal, non-cerebral rhabdoid tumour. Orbit 33:292–294PubMedCrossRef
31.
Zurück zum Zitat Husain AN, Pysher TJ (2011) The kidney and lower urinary tract. In: Stocker JT, Dehner LP, Husain AN (eds) Stocker and Dehner's pediatric pathology. Lippincott, Philadelphia, pp 779–836 Husain AN, Pysher TJ (2011) The kidney and lower urinary tract. In: Stocker JT, Dehner LP, Husain AN (eds) Stocker and Dehner's pediatric pathology. Lippincott, Philadelphia, pp 779–836
32.
Zurück zum Zitat King RM, Telander RL, Smithson WA et al (1982) Primary mediastinal tumors in children. J Pediatr Surg 17:512–520PubMedCrossRef King RM, Telander RL, Smithson WA et al (1982) Primary mediastinal tumors in children. J Pediatr Surg 17:512–520PubMedCrossRef
33.
Zurück zum Zitat Seth R, Bhat AS (2011) Management of common oncologic emergencies. Indian J Pediatr 78:709–717PubMedCrossRef Seth R, Bhat AS (2011) Management of common oncologic emergencies. Indian J Pediatr 78:709–717PubMedCrossRef
34.
Zurück zum Zitat Garey CL, Laituri CA, Valusek PA, St Peter SD, Snyder CL (2011) Management of anterior mediastinal masses in children. Eur J Pediatr Surg 21(5):310–313PubMedCrossRef Garey CL, Laituri CA, Valusek PA, St Peter SD, Snyder CL (2011) Management of anterior mediastinal masses in children. Eur J Pediatr Surg 21(5):310–313PubMedCrossRef
35.
Zurück zum Zitat Parish JM, Marschke RF Jr, Dines DE, Lee RE (1981) Etiologic considerations in superior vena cava syndrome. Mayo Clin Proc 56:407–413 Parish JM, Marschke RF Jr, Dines DE, Lee RE (1981) Etiologic considerations in superior vena cava syndrome. Mayo Clin Proc 56:407–413
36.
Zurück zum Zitat Harris GJ, Harman PK, Trinkle JK, Grover FL (1987) Standard biplane roentgenography is highly sensitive in documenting mediastinal masses. Ann Thorac Surg 44:238–241PubMedCrossRef Harris GJ, Harman PK, Trinkle JK, Grover FL (1987) Standard biplane roentgenography is highly sensitive in documenting mediastinal masses. Ann Thorac Surg 44:238–241PubMedCrossRef
37.
Zurück zum Zitat Sola C, Choquet O, Prodhomme O et al (2014) Management of mediastinal syndromes in pediatrics: a new challenge of ultrasound guidance to avoid high-risk general anesthesia. Paediatr Anaesth 24:534–537PubMedCrossRef Sola C, Choquet O, Prodhomme O et al (2014) Management of mediastinal syndromes in pediatrics: a new challenge of ultrasound guidance to avoid high-risk general anesthesia. Paediatr Anaesth 24:534–537PubMedCrossRef
38.
Zurück zum Zitat Shamberger RC, Holzman RS, Griscom NT et al (1991) CT quantitation of tracheal cross-sectional area as a guide to the surgical and anesthetic management of children with anterior mediastinal masses. J Pediatr Surg 26:138–142PubMedCrossRef Shamberger RC, Holzman RS, Griscom NT et al (1991) CT quantitation of tracheal cross-sectional area as a guide to the surgical and anesthetic management of children with anterior mediastinal masses. J Pediatr Surg 26:138–142PubMedCrossRef
39.
Zurück zum Zitat Hack HA, Wright NB, Wynn RF (2008) The anaesthetic management of children with anterior mediastinal masses. Anaesthesia 63:837–846PubMedCrossRef Hack HA, Wright NB, Wynn RF (2008) The anaesthetic management of children with anterior mediastinal masses. Anaesthesia 63:837–846PubMedCrossRef
40.
Zurück zum Zitat Rath L, Gullahorn G, Connolly N et al (2012) Anterior mediastinal mass biopsy and resection: anesthetic techniques and perioperative concerns. Semin Cardiothorac Vasc Anesth 16(4):235–242PubMedCrossRef Rath L, Gullahorn G, Connolly N et al (2012) Anterior mediastinal mass biopsy and resection: anesthetic techniques and perioperative concerns. Semin Cardiothorac Vasc Anesth 16(4):235–242PubMedCrossRef
41.
Zurück zum Zitat Pearson JK, Tan GM (2015) Pediatric anterior mediastinal mass: a review article. Semin Cardiothorac Vasc Anesth 19(3):248–254PubMedCrossRef Pearson JK, Tan GM (2015) Pediatric anterior mediastinal mass: a review article. Semin Cardiothorac Vasc Anesth 19(3):248–254PubMedCrossRef
42.
Zurück zum Zitat Hirose S, Sydorak RM, Tsao K et al (2003) Spectrum of intrapartum management strategies for giant fetal cervical teratoma. J Pediatr Surg 38:446–450 discussion 446-50PubMedCrossRef Hirose S, Sydorak RM, Tsao K et al (2003) Spectrum of intrapartum management strategies for giant fetal cervical teratoma. J Pediatr Surg 38:446–450 discussion 446-50PubMedCrossRef
44.
Zurück zum Zitat Masahata K, Soh H, Tachibana K et al (2019) Clinical outcomes of ex utero intrapartum treatment for fetal airway obstruction. Pediatric Surg Int 35:835–843PubMedCrossRef Masahata K, Soh H, Tachibana K et al (2019) Clinical outcomes of ex utero intrapartum treatment for fetal airway obstruction. Pediatric Surg Int 35:835–843PubMedCrossRef
45.
Zurück zum Zitat McCarten KM, Metzger ML, Drachtman RA et al (2018) Significance of pleural effusion at diagnosis in pediatric Hodgkin lymphoma: a report from Children's Oncology Group protocol AHOD0031. Pediatr Radiol 48:1736–44PubMedPubMedCentralCrossRef McCarten KM, Metzger ML, Drachtman RA et al (2018) Significance of pleural effusion at diagnosis in pediatric Hodgkin lymphoma: a report from Children's Oncology Group protocol AHOD0031. Pediatr Radiol 48:1736–44PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Diamond M, Ruiz-Mesa C, Corrales-Medina FF, Tamariz LJ, Ziga E, Swaminathan S (2018) Incidence and outcome of pericardial effusion in pediatric patients after hematopoietic stem cell transplant: a single-institution experience. J Pediatr Hematol Oncol 40(2):132–136PubMedCrossRef Diamond M, Ruiz-Mesa C, Corrales-Medina FF, Tamariz LJ, Ziga E, Swaminathan S (2018) Incidence and outcome of pericardial effusion in pediatric patients after hematopoietic stem cell transplant: a single-institution experience. J Pediatr Hematol Oncol 40(2):132–136PubMedCrossRef
48.
Zurück zum Zitat Arya LS, Narain S, Thavaraj V, Saxena A, Bhargava M (2002) Leukemic pericardial effusion causing cardiac tamponade. Med Pediatr Oncol 38:282–284PubMedCrossRef Arya LS, Narain S, Thavaraj V, Saxena A, Bhargava M (2002) Leukemic pericardial effusion causing cardiac tamponade. Med Pediatr Oncol 38:282–284PubMedCrossRef
49.
Zurück zum Zitat Spottswood SE, Goble MM, Massey GV, Ben-Ezra JM (1994) Acute monoblastic leukemia presenting with pericardial effusion and cardiac tamponade. Pediatr Radiol 24:494–495PubMedCrossRef Spottswood SE, Goble MM, Massey GV, Ben-Ezra JM (1994) Acute monoblastic leukemia presenting with pericardial effusion and cardiac tamponade. Pediatr Radiol 24:494–495PubMedCrossRef
50.
Zurück zum Zitat Kumar IH, Shrote V, Kumar H (2009) Anaesthetic management of a child presenting with intrapericardial teratoma compressing the airway and the heart. Ann Card Anaesth 12:63–66PubMedCrossRef Kumar IH, Shrote V, Kumar H (2009) Anaesthetic management of a child presenting with intrapericardial teratoma compressing the airway and the heart. Ann Card Anaesth 12:63–66PubMedCrossRef
51.
Zurück zum Zitat Ashraf T, Day TG, Marek J, Hughes M, Giardini A (2013) A triad: cardiac rhabdomyosarcoma, stroke and tamponade. Pediatr Cardiol 34:771–773PubMedCrossRef Ashraf T, Day TG, Marek J, Hughes M, Giardini A (2013) A triad: cardiac rhabdomyosarcoma, stroke and tamponade. Pediatr Cardiol 34:771–773PubMedCrossRef
52.
Zurück zum Zitat Divarci E, Karapinar B, Yalaz M, Ergun O, Celik A (2016) Incidence and prognosis of intraabdominal hypertension and abdominal compartment syndrome in children. J Pediatr Surg 51:503–507PubMedCrossRef Divarci E, Karapinar B, Yalaz M, Ergun O, Celik A (2016) Incidence and prognosis of intraabdominal hypertension and abdominal compartment syndrome in children. J Pediatr Surg 51:503–507PubMedCrossRef
53.
Zurück zum Zitat Malbrain ML, Chiumello D, Pelosi P et al (2004) Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological study. Intensive Care Med 30:822–829PubMedCrossRef Malbrain ML, Chiumello D, Pelosi P et al (2004) Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological study. Intensive Care Med 30:822–829PubMedCrossRef
54.
Zurück zum Zitat Alexander A, Weber B, Lorenzo A et al (2011) Hydronephrosis in children with abdominal and pelvic neoplasms: outcome and survival analysis of a single center pediatric oncology series. J Urol 186:1705–1709PubMedCrossRef Alexander A, Weber B, Lorenzo A et al (2011) Hydronephrosis in children with abdominal and pelvic neoplasms: outcome and survival analysis of a single center pediatric oncology series. J Urol 186:1705–1709PubMedCrossRef
55.
Zurück zum Zitat Weidner BC, Attori RJ, Patterson RF, Berkow RL, Cosper GH, Nakayama DK (2017) Abdominal compartment syndrome after open biopsy for Wilms’ tumor. Am Surg 83:e360–e361PubMed Weidner BC, Attori RJ, Patterson RF, Berkow RL, Cosper GH, Nakayama DK (2017) Abdominal compartment syndrome after open biopsy for Wilms’ tumor. Am Surg 83:e360–e361PubMed
56.
Zurück zum Zitat Terpe F, Siekmeyer M, Bierbach U et al (2012) Fulminant and fatal course of acute lymphoblastic leukemia due to lactic acidosis and suspected abdominal compartment syndrome. J Pediatr Hematol Oncol 34:e80–e83PubMedCrossRef Terpe F, Siekmeyer M, Bierbach U et al (2012) Fulminant and fatal course of acute lymphoblastic leukemia due to lactic acidosis and suspected abdominal compartment syndrome. J Pediatr Hematol Oncol 34:e80–e83PubMedCrossRef
57.
Zurück zum Zitat Zavras N, Christianakis E, Ereikat K, Mpourikas D, Velaoras K, Alexandrou J (2012) Intracranial hypertension secondary to abdominal compartment syndrome in a girl with giant ovarian cystic mass. Indian J Pediatr 79:541–542PubMedCrossRef Zavras N, Christianakis E, Ereikat K, Mpourikas D, Velaoras K, Alexandrou J (2012) Intracranial hypertension secondary to abdominal compartment syndrome in a girl with giant ovarian cystic mass. Indian J Pediatr 79:541–542PubMedCrossRef
58.
Zurück zum Zitat Je BK, Kim HK, Horn PS (2019) Abdominal compartment syndrome in children: clinical and imaging features. AJR Am J Roentgenol 212:655–664PubMedCrossRef Je BK, Kim HK, Horn PS (2019) Abdominal compartment syndrome in children: clinical and imaging features. AJR Am J Roentgenol 212:655–664PubMedCrossRef
59.
Zurück zum Zitat Kaiser AD, Applegate KE, Ladd AP (2007) Current success in the treatment of intussusception in children. Surgery 142:469–475PubMedCrossRef Kaiser AD, Applegate KE, Ladd AP (2007) Current success in the treatment of intussusception in children. Surgery 142:469–475PubMedCrossRef
60.
Zurück zum Zitat Gupta H, Davidoff AM, Pui CH, Shochat SJ, Sandlund JT (2007) Clinical implications and surgical management of intussusception in pediatric patients with Burkitt lymphoma. J Pediatr Surg 42:998–1001PubMedCrossRef Gupta H, Davidoff AM, Pui CH, Shochat SJ, Sandlund JT (2007) Clinical implications and surgical management of intussusception in pediatric patients with Burkitt lymphoma. J Pediatr Surg 42:998–1001PubMedCrossRef
61.
Zurück zum Zitat Fallon SC, Redell MS, El-Bietar J, Lopez ME, Vasudevan SA, Brandt ML (2013) Intestinal perforation after treatment of Burkitt's lymphoma: case report and review of the literature. J Pediatr Surg 48:436–440PubMedCrossRef Fallon SC, Redell MS, El-Bietar J, Lopez ME, Vasudevan SA, Brandt ML (2013) Intestinal perforation after treatment of Burkitt's lymphoma: case report and review of the literature. J Pediatr Surg 48:436–440PubMedCrossRef
62.
63.
Zurück zum Zitat Ruymann FB, Raney RB Jr, Crist WM, Lawrence W Jr, Lindberg RD, Soule EH (1985) Rhabdomyosarcoma of the biliary tree in childhood. A report from the Intergroup Rhabdomyosarcoma Study. Cancer 56:575–581PubMedCrossRef Ruymann FB, Raney RB Jr, Crist WM, Lawrence W Jr, Lindberg RD, Soule EH (1985) Rhabdomyosarcoma of the biliary tree in childhood. A report from the Intergroup Rhabdomyosarcoma Study. Cancer 56:575–581PubMedCrossRef
64.
Zurück zum Zitat Gubernick JA, Rosenberg HK, Ilaslan H, Kessler A (2000) US approach to jaundice in infants and children. Radiographics 20:173–195PubMedCrossRef Gubernick JA, Rosenberg HK, Ilaslan H, Kessler A (2000) US approach to jaundice in infants and children. Radiographics 20:173–195PubMedCrossRef
65.
Zurück zum Zitat Nicol K, Savell V, Moore J, Teot L, Spunt SL, Qualman S, Children’s Oncology Group, Soft Tissue Sarcoma Committee (2007) Distinguishing undifferentiated embryonal sarcoma of the liver from biliary tract rhabdomyosarcoma: a Children’s Oncology Group study. Pediatr Dev Pathol 10(2):89–97PubMedCrossRef Nicol K, Savell V, Moore J, Teot L, Spunt SL, Qualman S, Children’s Oncology Group, Soft Tissue Sarcoma Committee (2007) Distinguishing undifferentiated embryonal sarcoma of the liver from biliary tract rhabdomyosarcoma: a Children’s Oncology Group study. Pediatr Dev Pathol 10(2):89–97PubMedCrossRef
66.
Zurück zum Zitat Perruccio K, Cecinati V, Scagnellato A et al (2018) Biliary tract rhabdomyosarcoma: a report from the soft tissue sarcoma Committee of the Associazione Italiana Ematologia Oncologia Pediatrica. Tumori. 104(3):232–237PubMedCrossRef Perruccio K, Cecinati V, Scagnellato A et al (2018) Biliary tract rhabdomyosarcoma: a report from the soft tissue sarcoma Committee of the Associazione Italiana Ematologia Oncologia Pediatrica. Tumori. 104(3):232–237PubMedCrossRef
68.
Zurück zum Zitat Huber J, Sovinz P, Freidl T et al (2008) Long term survival in two children with rhabdomyosarcoma of the biliary tract. Klin Padiatr 220(6):378–379PubMedCrossRef Huber J, Sovinz P, Freidl T et al (2008) Long term survival in two children with rhabdomyosarcoma of the biliary tract. Klin Padiatr 220(6):378–379PubMedCrossRef
69.
Zurück zum Zitat Shen CH, Dong KR, Tao YF et al (2017) Liver transplantation for biliary rhabdomyosarcoma with liver metastasis: report of one case. Transplant Proc 49(1):185–187PubMedCrossRef Shen CH, Dong KR, Tao YF et al (2017) Liver transplantation for biliary rhabdomyosarcoma with liver metastasis: report of one case. Transplant Proc 49(1):185–187PubMedCrossRef
70.
Zurück zum Zitat Walker AJ, Grainge MJ, Card TR et al (2014) Venous thromboembolism in children with cancer – a population-based cohort study. Thromb res 133(3):340–344 Walker AJ, Grainge MJ, Card TR et al (2014) Venous thromboembolism in children with cancer – a population-based cohort study. Thromb res 133(3):340–344
71.
Zurück zum Zitat Pavor M, Halton J, Dietrich K et al (2016) Age at cancer diagnosis, non-O blood group and asparaginase therapy are independently associated with deep venous thrombosis in pediatric oncology patients: a risk model. Thromb Res 144:27–31CrossRef Pavor M, Halton J, Dietrich K et al (2016) Age at cancer diagnosis, non-O blood group and asparaginase therapy are independently associated with deep venous thrombosis in pediatric oncology patients: a risk model. Thromb Res 144:27–31CrossRef
72.
Zurück zum Zitat Athale U, Cox S, Siciliano S, Chan AK (2007) Thromboembolism in children with sarcoma. Pediatr Blood Cancer 49(2):171–176PubMedCrossRef Athale U, Cox S, Siciliano S, Chan AK (2007) Thromboembolism in children with sarcoma. Pediatr Blood Cancer 49(2):171–176PubMedCrossRef
73.
Zurück zum Zitat Uchiumi H, Matsushima T, Yamane A et al (2007) Prevalence and clinical characteristics of acute myeloid leukemia associated with disseminated intravascular coagulation. Int J Hematol 86:137–142PubMedCrossRef Uchiumi H, Matsushima T, Yamane A et al (2007) Prevalence and clinical characteristics of acute myeloid leukemia associated with disseminated intravascular coagulation. Int J Hematol 86:137–142PubMedCrossRef
74.
Zurück zum Zitat Slats AM, Egeler RM, van der Does-van den Berg A et al (2005) Causes of death--other than progressive leukemia--in childhood acute lymphoblastic (ALL) and myeloid leukemia (AML): the Dutch childhood oncology group experience. Leukemia 19:537–544PubMedCrossRef Slats AM, Egeler RM, van der Does-van den Berg A et al (2005) Causes of death--other than progressive leukemia--in childhood acute lymphoblastic (ALL) and myeloid leukemia (AML): the Dutch childhood oncology group experience. Leukemia 19:537–544PubMedCrossRef
75.
Zurück zum Zitat Yuan SM, Shen WM, Chen HN, Hong ZJ, Jian HQ (2015) Kasabach-Merritt phenomenon in Chinese children: report of 19 cases and brief review of literature. J Clin Exp Med 8(6):10006–10010 Yuan SM, Shen WM, Chen HN, Hong ZJ, Jian HQ (2015) Kasabach-Merritt phenomenon in Chinese children: report of 19 cases and brief review of literature. J Clin Exp Med 8(6):10006–10010
76.
Zurück zum Zitat Nievelstein RAJ, van Dam IM, van der Molen AJ (2010) Mulitidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 40(8):1324–1344PubMedPubMedCentralCrossRef Nievelstein RAJ, van Dam IM, van der Molen AJ (2010) Mulitidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 40(8):1324–1344PubMedPubMedCentralCrossRef
Metadaten
Titel
Emergency imaging in paediatric oncology: a pictorial review
verfasst von
Trevor Gaunt
Felice D’Arco
Anne M. Smets
Kieran McHugh
Susan C. Shelmerdine
Publikationsdatum
01.12.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Insights into Imaging / Ausgabe 1/2019
Elektronische ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-019-0796-5

Weitere Artikel der Ausgabe 1/2019

Insights into Imaging 1/2019 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.