Skip to main content
Erschienen in: NeuroMolecular Medicine 3/2018

18.07.2018 | Review Paper

Emerging Concepts in Brain Glucose Metabolic Functions: From Glucose Sensing to How the Sweet Taste of Glucose Regulates Its Own Metabolism in Astrocytes and Neurons

verfasst von: Menizibeya O. Welcome, Nikos E. Mastorakis

Erschienen in: NeuroMolecular Medicine | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

The astrocyte-neuron lactate shunt (ANLS) hypothesis is the most widely accepted model of brain glucose metabolism. However, over the past decades, research has shown that neuronal and astrocyte plasma membrane receptors, in particular, GLUT2, Kir6.2 subunit of the potassium ATP-channel, SGLT-3 acting as glucosensors, play a pivotal role in brain glucose metabolism. Although both ANLS hypothesis and glucosensor model substantially improved our understanding of brain glucose metabolism, the latter appears to be gaining more attention in the scientific community as the former could not account for new research data indicating that hypothalamic and brainstem neurons may not require astrocyte-derived lactate for energy. More recently, emerging evidences suggest a crucial role of sweet taste receptors in brain glucose metabolism. Furthermore, a couple of intracellular molecules acting as glucosensors have been identified in central astrocytes and neurons. This review integrates new data on the mechanisms of brain glucose sensing and metabolism. The role of the glucosensors including the sweet taste T1R2 + T1R3-mediated brain glucose-sensing and metabolism in brain glucose metabolic disorders is discussed. Possible role of glucose sensors (GLUT2, K-ATPKir6.2, SGLT3, T1R2 + T1R3) in brain diseases involving metabolic dysfunctions and the therapeutic significance in targeting central glucosensors for the treatment of these brain diseases are also discussed.
Literatur
Zurück zum Zitat Agarwal, A., Wu, P.-H., Hughes, E. G., Fukaya, M., Tischfield, M. A., Langseth, A. J., et al. (2017). Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron, 93(3), 587–605.PubMedPubMedCentralCrossRef Agarwal, A., Wu, P.-H., Hughes, E. G., Fukaya, M., Tischfield, M. A., Langseth, A. J., et al. (2017). Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron, 93(3), 587–605.PubMedPubMedCentralCrossRef
Zurück zum Zitat Akieda-Asai, S., Zaima, N., Ikegami, K., Kahyo, T., Yao, I., Hatanaka, T., et al. (2010). SIRT1 regulates thyroid-stimulating hormone release by enhancing PIP5Kγ activity through deacetylation of specific lysine residues in mammals. PLoS ONE, 5(7), e11755.PubMedPubMedCentralCrossRef Akieda-Asai, S., Zaima, N., Ikegami, K., Kahyo, T., Yao, I., Hatanaka, T., et al. (2010). SIRT1 regulates thyroid-stimulating hormone release by enhancing PIP5Kγ activity through deacetylation of specific lysine residues in mammals. PLoS ONE, 5(7), e11755.PubMedPubMedCentralCrossRef
Zurück zum Zitat Al Massadi, O., Quiñones, M., Lear, P., Dieguez, C., & Nogueiras, R. (2013). The brain: A new organ for the metabolic actions of SIRT1. Hormone and Metabolic Research, 45(13), 960–966.PubMedCrossRef Al Massadi, O., Quiñones, M., Lear, P., Dieguez, C., & Nogueiras, R. (2013). The brain: A new organ for the metabolic actions of SIRT1. Hormone and Metabolic Research, 45(13), 960–966.PubMedCrossRef
Zurück zum Zitat Amat, R., Planavila, A., Chen, S. L., Iglesias, R., Giralt, M., & Villarroya, F. (2009). SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1alpha) gene in skeletal muscle through the PGC-1alpha autoregulatory loop and interaction with MyoD. Journal of Biological Chemistry, 284(33), 21872–21880.PubMedCrossRef Amat, R., Planavila, A., Chen, S. L., Iglesias, R., Giralt, M., & Villarroya, F. (2009). SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1alpha) gene in skeletal muscle through the PGC-1alpha autoregulatory loop and interaction with MyoD. Journal of Biological Chemistry, 284(33), 21872–21880.PubMedCrossRef
Zurück zum Zitat Ashford, M. L. J., Boden, P. R., & Treherne, J. M. (1990). Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K + channels. Pflugers Arch, 415, 479–483.PubMedCrossRef Ashford, M. L. J., Boden, P. R., & Treherne, J. M. (1990). Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K + channels. Pflugers Arch, 415, 479–483.PubMedCrossRef
Zurück zum Zitat Ashford, M. L. J., Sturgess, N. J., Trout, N. J., Gardner, N. J., & Hales, C. N. (1988). Adenosine-5′-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch, 412, 297–304.PubMedCrossRef Ashford, M. L. J., Sturgess, N. J., Trout, N. J., Gardner, N. J., & Hales, C. N. (1988). Adenosine-5′-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch, 412, 297–304.PubMedCrossRef
Zurück zum Zitat Bady, I., Marty, N., Dallaporta, M., Emery, M., Gyger, J., Tarussio, D., et al. (2006). Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding. Diabetes, 55, 988–995.PubMedCrossRef Bady, I., Marty, N., Dallaporta, M., Emery, M., Gyger, J., Tarussio, D., et al. (2006). Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding. Diabetes, 55, 988–995.PubMedCrossRef
Zurück zum Zitat Baranowska-Bosiacka, I., Falkowska, A., Gutowska, I., Gassowska, M., Kolasa-Wolosiuk, A., Tarnowski, M., et al. (2017). Glycogen metabolism in brain and neurons–astrocytes metabolic cooperation can be altered by pre- and neonatal lead (Pb) exposure. Toxicology, 390, 146–158.PubMedCrossRef Baranowska-Bosiacka, I., Falkowska, A., Gutowska, I., Gassowska, M., Kolasa-Wolosiuk, A., Tarnowski, M., et al. (2017). Glycogen metabolism in brain and neurons–astrocytes metabolic cooperation can be altered by pre- and neonatal lead (Pb) exposure. Toxicology, 390, 146–158.PubMedCrossRef
Zurück zum Zitat Belgardt, B. F., Okamura, T., & Brüning, J. C. (2009). Hormone and glucose signalling in POMC and AgRP neurons. The Journal of Physiology, 587(Pt 22), 5305–5314.PubMedPubMedCentralCrossRef Belgardt, B. F., Okamura, T., & Brüning, J. C. (2009). Hormone and glucose signalling in POMC and AgRP neurons. The Journal of Physiology, 587(Pt 22), 5305–5314.PubMedPubMedCentralCrossRef
Zurück zum Zitat Benford, H., Bolborea, M., Pollatzek, E., Lossow, K., Hermans-Borgmeyer, I., Liu, B., et al. (2017). A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia, 65(5), 773–789.PubMedPubMedCentralCrossRef Benford, H., Bolborea, M., Pollatzek, E., Lossow, K., Hermans-Borgmeyer, I., Liu, B., et al. (2017). A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia, 65(5), 773–789.PubMedPubMedCentralCrossRef
Zurück zum Zitat Bennett, K., James, C., Mutair, A., Al-Shaikh, H., Sinani, A., & Hussain, K. (2011). Four novel cases of permanent neonatal diabetes mellitus caused by homozygous mutations in the glucokinase gene. Pediatric Diabetes, 12(3 Pt 1), 192–196.PubMedCrossRef Bennett, K., James, C., Mutair, A., Al-Shaikh, H., Sinani, A., & Hussain, K. (2011). Four novel cases of permanent neonatal diabetes mellitus caused by homozygous mutations in the glucokinase gene. Pediatric Diabetes, 12(3 Pt 1), 192–196.PubMedCrossRef
Zurück zum Zitat Bhutia, Y. D., & Ganapathy, V. (2016). Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863(10), 2531–2539.CrossRef Bhutia, Y. D., & Ganapathy, V. (2016). Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863(10), 2531–2539.CrossRef
Zurück zum Zitat Blad, C. C., Tang, C., & Offermanns, S. (2012). G protein-coupled receptors for energy metabolites as new therapeutic targets. Nature Reviews Drug Discovery, 11, 603–619.PubMedCrossRef Blad, C. C., Tang, C., & Offermanns, S. (2012). G protein-coupled receptors for energy metabolites as new therapeutic targets. Nature Reviews Drug Discovery, 11, 603–619.PubMedCrossRef
Zurück zum Zitat Blouet, C., Ono, H., & Schwartz, G. J. (2008). Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metabolism, 8(6), 459–467.PubMedPubMedCentralCrossRef Blouet, C., Ono, H., & Schwartz, G. J. (2008). Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metabolism, 8(6), 459–467.PubMedPubMedCentralCrossRef
Zurück zum Zitat Blum-Degen, D., Frölich, L., Hoyer, S., & Riederer, P. (1995). Altered regulation of brain glucose metabolism as a cause of neurodegenerative disorders? Journal of Neural Transmission Supplementa, 46, 139–147. Blum-Degen, D., Frölich, L., Hoyer, S., & Riederer, P. (1995). Altered regulation of brain glucose metabolism as a cause of neurodegenerative disorders? Journal of Neural Transmission Supplementa, 46, 139–147.
Zurück zum Zitat Bromley, S. M. (2000). Smell and taste disorders: a primary care approach. American Family Physician, 61(2), 427–436.PubMed Bromley, S. M. (2000). Smell and taste disorders: a primary care approach. American Family Physician, 61(2), 427–436.PubMed
Zurück zum Zitat Bruckbauer, A., & Zemel, M. B. (2014). Synergistic effects of polyphenols and methylxanthines with leucine on AMPK/sirtuin-mediated metabolism in muscle cells and adipocytes. PLoS ONE, 9(2), e89166.PubMedPubMedCentralCrossRef Bruckbauer, A., & Zemel, M. B. (2014). Synergistic effects of polyphenols and methylxanthines with leucine on AMPK/sirtuin-mediated metabolism in muscle cells and adipocytes. PLoS ONE, 9(2), e89166.PubMedPubMedCentralCrossRef
Zurück zum Zitat Burdakov, D., Luckman, S. M., & Verkhratsky, A. (2005). Glucose-sensing neurons of the hypothalamus. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1464), 2227–2235.PubMedCrossRef Burdakov, D., Luckman, S. M., & Verkhratsky, A. (2005). Glucose-sensing neurons of the hypothalamus. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1464), 2227–2235.PubMedCrossRef
Zurück zum Zitat Cai, F., Gyulkhandanyan, A. V., Wheeler, M. B., & Belsham, D. D. (2007). Glucose regulates AMP-activated protein kinase activity and gene expression in clonal, hypothalamic neurons expressing proopiomelanocortin: additive effects of leptin or insulin. Journal of Endocrinology, 192(3), 605–614.PubMedCrossRef Cai, F., Gyulkhandanyan, A. V., Wheeler, M. B., & Belsham, D. D. (2007). Glucose regulates AMP-activated protein kinase activity and gene expression in clonal, hypothalamic neurons expressing proopiomelanocortin: additive effects of leptin or insulin. Journal of Endocrinology, 192(3), 605–614.PubMedCrossRef
Zurück zum Zitat Cai, H., Cong, W., Ji, S., Rothman, S., Maudsley, S., & Martin, B. (2012). Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Current Alzheimer Research, 9(1), 5–17.PubMedPubMedCentralCrossRef Cai, H., Cong, W., Ji, S., Rothman, S., Maudsley, S., & Martin, B. (2012). Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Current Alzheimer Research, 9(1), 5–17.PubMedPubMedCentralCrossRef
Zurück zum Zitat Cani, P. D., Holst, J. J., Drucker, D. J., Delzenne, N. M., Thorens, B., Burcelin, R., et al. (2007). GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion. Molecular and Cellular Endocrinology, 276(1–2), 18–23.PubMedCrossRef Cani, P. D., Holst, J. J., Drucker, D. J., Delzenne, N. M., Thorens, B., Burcelin, R., et al. (2007). GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion. Molecular and Cellular Endocrinology, 276(1–2), 18–23.PubMedCrossRef
Zurück zum Zitat Cecchini, M. P., Fasano, A., Boschi, F., Osculati, F., & Tinazzi, M. (2015). Taste in Parkinson’s disease. Journal of Neurology, 262(4), 806–813.PubMedCrossRef Cecchini, M. P., Fasano, A., Boschi, F., Osculati, F., & Tinazzi, M. (2015). Taste in Parkinson’s disease. Journal of Neurology, 262(4), 806–813.PubMedCrossRef
Zurück zum Zitat Chakera, A. J., Carleton, V. L., Ellard, S., Wong, J., Yue, D. K., Pinner, J., et al. (2012). Antenatal diagnosis of fetal genotype determines if maternal hyperglycemia due to a glucokinase mutation requires treatment. Diabetes Care, 35(9), 1832–1834.PubMedPubMedCentralCrossRef Chakera, A. J., Carleton, V. L., Ellard, S., Wong, J., Yue, D. K., Pinner, J., et al. (2012). Antenatal diagnosis of fetal genotype determines if maternal hyperglycemia due to a glucokinase mutation requires treatment. Diabetes Care, 35(9), 1832–1834.PubMedPubMedCentralCrossRef
Zurück zum Zitat Chan, C. B., Hashemi, Z., & Subhan, F. B. (2017). The impact of low and no-caloric sweeteners on glucose absorption, incretin secretion, and glucose tolerance. Applied Physiology Nutrition and Metabolism, 42(8), 793–801.CrossRef Chan, C. B., Hashemi, Z., & Subhan, F. B. (2017). The impact of low and no-caloric sweeteners on glucose absorption, incretin secretion, and glucose tolerance. Applied Physiology Nutrition and Metabolism, 42(8), 793–801.CrossRef
Zurück zum Zitat Chao, D. H. M., Argmann, C., Van Eijk, M., Boot, R. G., Ottenhoff, R., Van Roomen, C., et al. (2016). Impact of obesity on taste receptor expression in extra-oral tissues: emphasis on hypothalamus and brainstem. Scientific Reports, 6, 29094.CrossRef Chao, D. H. M., Argmann, C., Van Eijk, M., Boot, R. G., Ottenhoff, R., Van Roomen, C., et al. (2016). Impact of obesity on taste receptor expression in extra-oral tissues: emphasis on hypothalamus and brainstem. Scientific Reports, 6, 29094.CrossRef
Zurück zum Zitat Chen, L. Q., Hou, B. H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X. Q., et al. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468(7323), 527–532.PubMedPubMedCentralCrossRef Chen, L. Q., Hou, B. H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X. Q., et al. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468(7323), 527–532.PubMedPubMedCentralCrossRef
Zurück zum Zitat Chen, L. Q., Qu, X. Q., Hou, B. H., Sosso, D., Osorio, S., Fernie, A. R., et al. (2012). Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 335(6065), 207–211.PubMedCrossRef Chen, L. Q., Qu, X. Q., Hou, B. H., Sosso, D., Osorio, S., Fernie, A. R., et al. (2012). Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 335(6065), 207–211.PubMedCrossRef
Zurück zum Zitat Chen, L.-Q., Cheung, L. S., Feng, L., Tanner, W., & Frommer, W. B. (2015). Transport of sugars. Annual Review of Biochemistry, 84, 865–894.PubMedCrossRef Chen, L.-Q., Cheung, L. S., Feng, L., Tanner, W., & Frommer, W. B. (2015). Transport of sugars. Annual Review of Biochemistry, 84, 865–894.PubMedCrossRef
Zurück zum Zitat Claret, M., Smith, M. A., Batterham, R. L., Selman, C., Choudhury, A. I., Fryer, L. G., et al. (2007). AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. Journal of Clinical Investigation, 117(8), 2325–2336.PubMedPubMedCentralCrossRef Claret, M., Smith, M. A., Batterham, R. L., Selman, C., Choudhury, A. I., Fryer, L. G., et al. (2007). AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. Journal of Clinical Investigation, 117(8), 2325–2336.PubMedPubMedCentralCrossRef
Zurück zum Zitat Claret, M., Smith, M. A., Knauf, C., Al-Qassab, H., Woods, A., Heslegrave, A., et al. (2011). Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice. Diabetes, 60(3), 735–745.PubMedPubMedCentralCrossRef Claret, M., Smith, M. A., Knauf, C., Al-Qassab, H., Woods, A., Heslegrave, A., et al. (2011). Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice. Diabetes, 60(3), 735–745.PubMedPubMedCentralCrossRef
Zurück zum Zitat Cohen, D. E., Supinski, A. M., Bonkowski, M. S., Donmez, G., & Guarente, L. P. (2009). Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes & Development, 23(24), 2812–2817.CrossRef Cohen, D. E., Supinski, A. M., Bonkowski, M. S., Donmez, G., & Guarente, L. P. (2009). Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes & Development, 23(24), 2812–2817.CrossRef
Zurück zum Zitat Cyr, N. E., Steger, J. S., Toorie, A. M., Yang, J. Z., Stuart, R., & Nillni, E. A. (2015). Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet-induced obese male rats. Endocrinology, 156(3), 961–974.PubMedCrossRef Cyr, N. E., Steger, J. S., Toorie, A. M., Yang, J. Z., Stuart, R., & Nillni, E. A. (2015). Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet-induced obese male rats. Endocrinology, 156(3), 961–974.PubMedCrossRef
Zurück zum Zitat Dali-Youcef, N., Lagouge, M., Froelich, S., Koehl, C., Schoonjans, K., & Auwerx, J. (2007). Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Annals of Medicine, 39(5), 335–345.PubMedCrossRef Dali-Youcef, N., Lagouge, M., Froelich, S., Koehl, C., Schoonjans, K., & Auwerx, J. (2007). Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Annals of Medicine, 39(5), 335–345.PubMedCrossRef
Zurück zum Zitat Davis, C. H., Kim, K. Y., Bushong, E. A., Mills, E. A., Boassa, D., Shih, T., et al. (2014). Transcellular degradation of axonal mitochondria. Proceedings of the National Academy of Sciences USA, 111(26), 9633–9638.CrossRef Davis, C. H., Kim, K. Y., Bushong, E. A., Mills, E. A., Boassa, D., Shih, T., et al. (2014). Transcellular degradation of axonal mitochondria. Proceedings of the National Academy of Sciences USA, 111(26), 9633–9638.CrossRef
Zurück zum Zitat de la Monte, S. M., & Tong, M. (2014). Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochemical Pharmacology, 88(4), 548–559.PubMedCrossRef de la Monte, S. M., & Tong, M. (2014). Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochemical Pharmacology, 88(4), 548–559.PubMedCrossRef
Zurück zum Zitat de la Monte, S. M., Tong, M., Schiano, I., & Didsbury, J. (2017). Improved brain insulin/IGF signaling and reduced neuroinflammation with T3D-959 in an experimental model of sporadic alzheimer’s disease. Journal of Alzheimer’s Disease, 55(2), 849–864.PubMedCrossRef de la Monte, S. M., Tong, M., Schiano, I., & Didsbury, J. (2017). Improved brain insulin/IGF signaling and reduced neuroinflammation with T3D-959 in an experimental model of sporadic alzheimer’s disease. Journal of Alzheimer’s Disease, 55(2), 849–864.PubMedCrossRef
Zurück zum Zitat de la Monte, S. M., Tong, M., & Wands, J. R. (2018). The 20-year voyage aboard the Journal of Alzheimer’s disease: docking at ‘type 3 diabetes’, environmental/exposure factors, pathogenic mechanisms, and potential treatments. Journal of Alzheimer’s Disease, 62(3), 1381–1390.PubMedPubMedCentralCrossRef de la Monte, S. M., Tong, M., & Wands, J. R. (2018). The 20-year voyage aboard the Journal of Alzheimer’s disease: docking at ‘type 3 diabetes’, environmental/exposure factors, pathogenic mechanisms, and potential treatments. Journal of Alzheimer’s Disease, 62(3), 1381–1390.PubMedPubMedCentralCrossRef
Zurück zum Zitat De Mille, D., & Grose, J. H. (2013). PAS kinase: a nutrient sensing regulator of glucose homeostasis. IUBMB Life, 65(11), 921–929.CrossRef De Mille, D., & Grose, J. H. (2013). PAS kinase: a nutrient sensing regulator of glucose homeostasis. IUBMB Life, 65(11), 921–929.CrossRef
Zurück zum Zitat Delaere, F., Duchampt, A., Mounien, L., Seyer, P., Duraffourd, C., Zitoun, C., et al. (2013). The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Molecular Metabolism, 2(1), 47–53.CrossRef Delaere, F., Duchampt, A., Mounien, L., Seyer, P., Duraffourd, C., Zitoun, C., et al. (2013). The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Molecular Metabolism, 2(1), 47–53.CrossRef
Zurück zum Zitat Deng, D., & Yan, N. (2016). GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Science, 25(3), 546–558.PubMedPubMedCentralCrossRef Deng, D., & Yan, N. (2016). GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Science, 25(3), 546–558.PubMedPubMedCentralCrossRef
Zurück zum Zitat Depoortere, I. (2014). Taste receptors of the gut: emerging roles in health and disease. Gut, 63(1), 179–190.PubMedCrossRef Depoortere, I. (2014). Taste receptors of the gut: emerging roles in health and disease. Gut, 63(1), 179–190.PubMedCrossRef
Zurück zum Zitat Díaz-García, C. M., Mongeon, R., Lahmann, C., Koveal, D., Zucker, H., & Yellen, G. (2017). Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metabolism, 26(2), 361–374.PubMedPubMedCentralCrossRef Díaz-García, C. M., Mongeon, R., Lahmann, C., Koveal, D., Zucker, H., & Yellen, G. (2017). Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metabolism, 26(2), 361–374.PubMedPubMedCentralCrossRef
Zurück zum Zitat Dienel, G. A. (2017a). Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. Journal of Neuroscience Research, 95(11), 2103–2125.PubMedCrossRef Dienel, G. A. (2017a). Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. Journal of Neuroscience Research, 95(11), 2103–2125.PubMedCrossRef
Zurück zum Zitat Dienel, G. A. (2017b). The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression. Neuroscience Letters, 637, 18–25.PubMedCrossRef Dienel, G. A. (2017b). The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression. Neuroscience Letters, 637, 18–25.PubMedCrossRef
Zurück zum Zitat Dienel, G. A., & Cruz, N. F. (2004). Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochemistry International, 45(2–3), 321–351.PubMedCrossRef Dienel, G. A., & Cruz, N. F. (2004). Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochemistry International, 45(2–3), 321–351.PubMedCrossRef
Zurück zum Zitat Dienel, G. A., & Cruz, N. F. (2016). Aerobic glycolysis during brain activation: Adrenergic regulation and influence of norepinephrine on astrocytic metabolism. Journal of Neurochemistry, 138(1), 14–52.PubMedCrossRef Dienel, G. A., & Cruz, N. F. (2016). Aerobic glycolysis during brain activation: Adrenergic regulation and influence of norepinephrine on astrocytic metabolism. Journal of Neurochemistry, 138(1), 14–52.PubMedCrossRef
Zurück zum Zitat DiNuzzo, M., Maraviglia, B., & Giove, F. (2011). Why does the brain (not) have glycogen? Bioessays, 33(5), 319–326.PubMedCrossRef DiNuzzo, M., Maraviglia, B., & Giove, F. (2011). Why does the brain (not) have glycogen? Bioessays, 33(5), 319–326.PubMedCrossRef
Zurück zum Zitat Doty, R. L., Tourbier, I. A., Pham, D. L., Cuzzocreo, J. L., Udupa, J. K., Karacali, B., et al. (2016). Taste dysfunction in multiple sclerosis. Journal of Neurology, 263(4), 677–688.PubMedPubMedCentralCrossRef Doty, R. L., Tourbier, I. A., Pham, D. L., Cuzzocreo, J. L., Udupa, J. K., Karacali, B., et al. (2016). Taste dysfunction in multiple sclerosis. Journal of Neurology, 263(4), 677–688.PubMedPubMedCentralCrossRef
Zurück zum Zitat Dunham, I., Shimizu, N., Roe, B. A., et al. (1999). The DNA sequence of human chromosome 22. Nature, 402(6761), 489–495.PubMedCrossRef Dunham, I., Shimizu, N., Roe, B. A., et al. (1999). The DNA sequence of human chromosome 22. Nature, 402(6761), 489–495.PubMedCrossRef
Zurück zum Zitat Dunn, L., Allen, G. F. G., Mamais, A., Ling, H., Li, A., Duberley, K. E., et al. (2014). Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiology of Aging, 35(5), 1111–1115.PubMedPubMedCentralCrossRef Dunn, L., Allen, G. F. G., Mamais, A., Ling, H., Li, A., Duberley, K. E., et al. (2014). Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiology of Aging, 35(5), 1111–1115.PubMedPubMedCentralCrossRef
Zurück zum Zitat Ebrahim, M. S. E., Lawson, M. L., & Geraghty, M. T. (2014). A novel heterozygous mutation in the glucokinase gene conferring exercise-induced symptomatic hyperglycaemia responsive to sulfonylurea. Diabetes & Metabolism, 40(4), 310–313.CrossRef Ebrahim, M. S. E., Lawson, M. L., & Geraghty, M. T. (2014). A novel heterozygous mutation in the glucokinase gene conferring exercise-induced symptomatic hyperglycaemia responsive to sulfonylurea. Diabetes & Metabolism, 40(4), 310–313.CrossRef
Zurück zum Zitat Ehninger, D., de Vries, P. J., & Silva, A. J. (2009). From mTOR to cognition: molecular and cellular mechanisms of cognitive impairments in tuberous sclerosis. Journal of Intellectual Disability Research, 53(10), 838–851.PubMedCrossRef Ehninger, D., de Vries, P. J., & Silva, A. J. (2009). From mTOR to cognition: molecular and cellular mechanisms of cognitive impairments in tuberous sclerosis. Journal of Intellectual Disability Research, 53(10), 838–851.PubMedCrossRef
Zurück zum Zitat Essner, R. A., Smith, A. G., Jamnik, A. A., Ryba, A. R., Trutner, Z. D., & Carter, M. E. (2017). AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons. The Journal of Neuroscience, 37(36), 8678–8687.PubMedPubMedCentralCrossRef Essner, R. A., Smith, A. G., Jamnik, A. A., Ryba, A. R., Trutner, Z. D., & Carter, M. E. (2017). AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons. The Journal of Neuroscience, 37(36), 8678–8687.PubMedPubMedCentralCrossRef
Zurück zum Zitat Ferrannini, E. (2017). Sodium-glucose co-transporters and their inhibition: clinical physiology. Cell Metabolism, 26(1), 27–38.PubMedCrossRef Ferrannini, E. (2017). Sodium-glucose co-transporters and their inhibition: clinical physiology. Cell Metabolism, 26(1), 27–38.PubMedCrossRef
Zurück zum Zitat Ferrer, J., Benito, C., & Gomis, R. (1995). Pancreatic islet GLUT2 glucose transporter mRNA and protein expression in humans with and without NIDDM. Diabetes, 44(12), 1369–1374.PubMedCrossRef Ferrer, J., Benito, C., & Gomis, R. (1995). Pancreatic islet GLUT2 glucose transporter mRNA and protein expression in humans with and without NIDDM. Diabetes, 44(12), 1369–1374.PubMedCrossRef
Zurück zum Zitat Fioramonti, X., Contié, S., Song, Z., Routh, V. H., Lorsignol, A., & Pénicaud, L. (2007). Characterization of glucosensing neuron subpopulations in the arcuate nucleus. Integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes, 56(5), 1219–1227.PubMedCrossRef Fioramonti, X., Contié, S., Song, Z., Routh, V. H., Lorsignol, A., & Pénicaud, L. (2007). Characterization of glucosensing neuron subpopulations in the arcuate nucleus. Integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes, 56(5), 1219–1227.PubMedCrossRef
Zurück zum Zitat García, M., Millán, C., Balmaceda-Aguilera, C., Castro, T., Pastor, P., Montecinos, H., et al. (2003). Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. Journal of Neurochemistry, 86(3), 709–724.PubMedCrossRef García, M., Millán, C., Balmaceda-Aguilera, C., Castro, T., Pastor, P., Montecinos, H., et al. (2003). Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. Journal of Neurochemistry, 86(3), 709–724.PubMedCrossRef
Zurück zum Zitat Genc, S., Kurnaz, I. A., & Ozilgen, M. (2011). Astrocyte-neuron lactate shuttle may boost more ATP supply to the neuron under hypoxic conditions—In silico study supported by in vitro expression data. BMC Systems Biology, 5, 162.PubMedPubMedCentralCrossRef Genc, S., Kurnaz, I. A., & Ozilgen, M. (2011). Astrocyte-neuron lactate shuttle may boost more ATP supply to the neuron under hypoxic conditions—In silico study supported by in vitro expression data. BMC Systems Biology, 5, 162.PubMedPubMedCentralCrossRef
Zurück zum Zitat Glendinning, J. I., Stano, S., Holter, M., Azenkot, T., Goldman, O., Margolskee, R. F., et al. (2015). Sugar-induced cephalic-phase insulin release is mediated by a T1r2 + T1r3-independent taste transduction pathway in mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 309(5), R552–R560.PubMedPubMedCentralCrossRef Glendinning, J. I., Stano, S., Holter, M., Azenkot, T., Goldman, O., Margolskee, R. F., et al. (2015). Sugar-induced cephalic-phase insulin release is mediated by a T1r2 + T1r3-independent taste transduction pathway in mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 309(5), R552–R560.PubMedPubMedCentralCrossRef
Zurück zum Zitat Gribble, F. M., Williams, L., Simpson, A. K., & Reimann, F. (2003). A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes, 52(5), 1147–1154.PubMedCrossRef Gribble, F. M., Williams, L., Simpson, A. K., & Reimann, F. (2003). A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes, 52(5), 1147–1154.PubMedCrossRef
Zurück zum Zitat Hall, C. N., Klein-Flügge, M. C., Howarth, C., & Attwell, D. (2012). Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. The Journal of Neuroscience, 32(26), 8940–8951.PubMedPubMedCentralCrossRef Hall, C. N., Klein-Flügge, M. C., Howarth, C., & Attwell, D. (2012). Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. The Journal of Neuroscience, 32(26), 8940–8951.PubMedPubMedCentralCrossRef
Zurück zum Zitat Hardie, D. G. (2011). AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes & Development, 25(18), 1895–1908.CrossRef Hardie, D. G. (2011). AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes & Development, 25(18), 1895–1908.CrossRef
Zurück zum Zitat Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., et al. (2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature, 535(7613), 551–555.PubMedPubMedCentralCrossRef Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., et al. (2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature, 535(7613), 551–555.PubMedPubMedCentralCrossRef
Zurück zum Zitat Hertz, L., Gibbs, M. E., & Dienel, G. A. (2014). Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline. Frontiers in Neuroscience, 8, 261.PubMedPubMedCentralCrossRef Hertz, L., Gibbs, M. E., & Dienel, G. A. (2014). Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline. Frontiers in Neuroscience, 8, 261.PubMedPubMedCentralCrossRef
Zurück zum Zitat Hertz, L., Peng, L., & Dienel, G. A. (2007). Energy metabolism in astrocytes: High rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. Journal of Cerebral Blood Flow & Metabolism, 27(2), 219–249.CrossRef Hertz, L., Peng, L., & Dienel, G. A. (2007). Energy metabolism in astrocytes: High rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. Journal of Cerebral Blood Flow & Metabolism, 27(2), 219–249.CrossRef
Zurück zum Zitat Hevor, T. K. (1994). Some aspects of carbohydrate metabolism in the brain. Biochimie, 76(2), 111–120.PubMedCrossRef Hevor, T. K. (1994). Some aspects of carbohydrate metabolism in the brain. Biochimie, 76(2), 111–120.PubMedCrossRef
Zurück zum Zitat Hill, J., Zhao, J., & Dash, P. K. (2010). High blood glucose does not adversely affect outcome in moderately brain-injured rodents. Journal of Neurotrauma, 27(8), 1439–1448.PubMedPubMedCentralCrossRef Hill, J., Zhao, J., & Dash, P. K. (2010). High blood glucose does not adversely affect outcome in moderately brain-injured rodents. Journal of Neurotrauma, 27(8), 1439–1448.PubMedPubMedCentralCrossRef
Zurück zum Zitat Höfer, D., Püschel, B., & Drenckhahn, D. (1996). Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proceedings of the National Academy of Sciences USA, 93, 6631–6634.CrossRef Höfer, D., Püschel, B., & Drenckhahn, D. (1996). Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proceedings of the National Academy of Sciences USA, 93, 6631–6634.CrossRef
Zurück zum Zitat Hong, S., Zhao, B., Lombard, D. B., Fingar, D. C., & Inoki, K. (2014). Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. Journal of Biological Chemistry, 289(19), 13132–13141.PubMedCrossRef Hong, S., Zhao, B., Lombard, D. B., Fingar, D. C., & Inoki, K. (2014). Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. Journal of Biological Chemistry, 289(19), 13132–13141.PubMedCrossRef
Zurück zum Zitat Hoon, M. A., Northup, J. K., Margolskee, R. F., & Ryba, N. J. (1995). Functional expression of the taste specific G-protein, alpha-gustducin. Biochemical Journal, 309(Pt 2), 629–636.PubMedPubMedCentralCrossRef Hoon, M. A., Northup, J. K., Margolskee, R. F., & Ryba, N. J. (1995). Functional expression of the taste specific G-protein, alpha-gustducin. Biochemical Journal, 309(Pt 2), 629–636.PubMedPubMedCentralCrossRef
Zurück zum Zitat Hubbard, J. A., & Binder, D. K. (2016). Glutamate metabolism. In J. Hubbard & D. K. Binder (Eds.), Astrocytes and epilepsy (pp. 197–224). San Diego: Academic Press.CrossRef Hubbard, J. A., & Binder, D. K. (2016). Glutamate metabolism. In J. Hubbard & D. K. Binder (Eds.), Astrocytes and epilepsy (pp. 197–224). San Diego: Academic Press.CrossRef
Zurück zum Zitat Jęśko, H., Wencel, P., Strosznajder, R. P., & Strosznajder, J. B. (2017). Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res, 42(3), 876–890.PubMedCrossRef Jęśko, H., Wencel, P., Strosznajder, R. P., & Strosznajder, J. B. (2017). Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res, 42(3), 876–890.PubMedCrossRef
Zurück zum Zitat Jetton, T. L., Liang, Y., Pettepher, C. C., Zimmerman, E. C., Cox, F. G., Horvath, K., Matschinsky, F. M., & Magnuson, M. A. (1994). Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. Journal of Biological Chemistry, 269, 3641–3654.PubMed Jetton, T. L., Liang, Y., Pettepher, C. C., Zimmerman, E. C., Cox, F. G., Horvath, K., Matschinsky, F. M., & Magnuson, M. A. (1994). Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. Journal of Biological Chemistry, 269, 3641–3654.PubMed
Zurück zum Zitat Jia, B., Zhu, X. F., Pu, Z. J., Duan, Y. X., Hao, L. J., Zhang, J., Chen, L. Q., Jeon, C. O., & Xuan, Y. H. (2017). Integrative view of the diversity and evolution of SWEET and semiSWEET sugar transporters. Front Plant Sci, 8, 2178.PubMedPubMedCentralCrossRef Jia, B., Zhu, X. F., Pu, Z. J., Duan, Y. X., Hao, L. J., Zhang, J., Chen, L. Q., Jeon, C. O., & Xuan, Y. H. (2017). Integrative view of the diversity and evolution of SWEET and semiSWEET sugar transporters. Front Plant Sci, 8, 2178.PubMedPubMedCentralCrossRef
Zurück zum Zitat Jiang, G., & Zhang, B. B. (2003). Glucagon and regulation of glucose metabolism. American Journal of Physiology Endocrinology and Metabolism, 284(4), E671–E678.PubMedCrossRef Jiang, G., & Zhang, B. B. (2003). Glucagon and regulation of glucose metabolism. American Journal of Physiology Endocrinology and Metabolism, 284(4), E671–E678.PubMedCrossRef
Zurück zum Zitat Jouroukhin, Y., Kageyama, Y., Misheneva, V., Shevelkin, A., Andrabi, S., Prandovszky, E., Yolken, R. H., Dawson, V. L., Dawson, T. M., Aja, S., Sesaki, H., & Pletnikov, M. V. (2018). DISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disorders. Transl Psychiatry, 8(1), 76.PubMedPubMedCentralCrossRef Jouroukhin, Y., Kageyama, Y., Misheneva, V., Shevelkin, A., Andrabi, S., Prandovszky, E., Yolken, R. H., Dawson, V. L., Dawson, T. M., Aja, S., Sesaki, H., & Pletnikov, M. V. (2018). DISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disorders. Transl Psychiatry, 8(1), 76.PubMedPubMedCentralCrossRef
Zurück zum Zitat Kamat, P. K., Kalani, A., Rai, S., Tota, S. K., Kumar, A., & Ahmad, A. S. (2016). Streptozotocin intracerebroventricular-induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of sporadic Alzheimer’s disease (sAD)-like pathology. Molecular Neurobiology, 53(7), 4548–4562.PubMedCrossRef Kamat, P. K., Kalani, A., Rai, S., Tota, S. K., Kumar, A., & Ahmad, A. S. (2016). Streptozotocin intracerebroventricular-induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of sporadic Alzheimer’s disease (sAD)-like pathology. Molecular Neurobiology, 53(7), 4548–4562.PubMedCrossRef
Zurück zum Zitat Kang, L., Routh, V. H., Kuzhikandathil, E. V., Gaspers, L. D., & Levin, B. E. (2004). Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes, 53(3), 549–559.PubMedCrossRef Kang, L., Routh, V. H., Kuzhikandathil, E. V., Gaspers, L. D., & Levin, B. E. (2004). Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes, 53(3), 549–559.PubMedCrossRef
Zurück zum Zitat Kasischke, K. A. (2009). Activity-dependent metabolism in glia and neurons. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 53–60). San Diego: Academic Press.CrossRef Kasischke, K. A. (2009). Activity-dependent metabolism in glia and neurons. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 53–60). San Diego: Academic Press.CrossRef
Zurück zum Zitat Kety, S. S. (1957). The general metabolism of the brain in vivo. In D. Richter (Ed.), Metabolism of the nervous system (pp. 221–237). London: Pergamon.CrossRef Kety, S. S. (1957). The general metabolism of the brain in vivo. In D. Richter (Ed.), Metabolism of the nervous system (pp. 221–237). London: Pergamon.CrossRef
Zurück zum Zitat Khatri, N., & Man, H. Y. (2013). Synaptic activity and bioenergy homeostasis: Implications in brain trauma and neurodegenerative diseases. Frontiers in Neurology, 4, 199.PubMedPubMedCentralCrossRef Khatri, N., & Man, H. Y. (2013). Synaptic activity and bioenergy homeostasis: Implications in brain trauma and neurodegenerative diseases. Frontiers in Neurology, 4, 199.PubMedPubMedCentralCrossRef
Zurück zum Zitat Kim, U., Wooding, S., Ricci, D., Jorde, L. B., & Drayna, D. (2005). Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Human Mutation, 26(3), 199–204.PubMedCrossRef Kim, U., Wooding, S., Ricci, D., Jorde, L. B., & Drayna, D. (2005). Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Human Mutation, 26(3), 199–204.PubMedCrossRef
Zurück zum Zitat Kitamura, T., & Sasaki, T. (2012). Hypothalamic Sirt1 and regulation of food intake. Diabetology International, 3(3), 109–112.CrossRef Kitamura, T., & Sasaki, T. (2012). Hypothalamic Sirt1 and regulation of food intake. Diabetology International, 3(3), 109–112.CrossRef
Zurück zum Zitat Klip, A., & Hawkins, M. (2005). Desperately seeking sugar: Glial cells as hypoglycemia sensors. Journal of Clinical Investigation, 115(12), 3403–3405.PubMedPubMedCentralCrossRef Klip, A., & Hawkins, M. (2005). Desperately seeking sugar: Glial cells as hypoglycemia sensors. Journal of Clinical Investigation, 115(12), 3403–3405.PubMedPubMedCentralCrossRef
Zurück zum Zitat Klok, M. D., Jakobsdottir, S., & Drent, M. L. (2007). The role of leptin and ghrelin in the regulation of food intake and body weight in humans: A review. Obesity Reviews, 8(1), 21–34.PubMedCrossRef Klok, M. D., Jakobsdottir, S., & Drent, M. L. (2007). The role of leptin and ghrelin in the regulation of food intake and body weight in humans: A review. Obesity Reviews, 8(1), 21–34.PubMedCrossRef
Zurück zum Zitat Kochem, M. (2017). Type 1 taste receptors in taste and metabolism. Annals of Nutrition and Metabolism, 70(3), 27–36.PubMedCrossRef Kochem, M. (2017). Type 1 taste receptors in taste and metabolism. Annals of Nutrition and Metabolism, 70(3), 27–36.PubMedCrossRef
Zurück zum Zitat Kohno, D. (2017). Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus. J Physiol Sci, 67(4), 459–465.PubMedCrossRef Kohno, D. (2017). Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus. J Physiol Sci, 67(4), 459–465.PubMedCrossRef
Zurück zum Zitat Kohno, D., Koike, M., Ninomiya, Y., Kojima, I., Kitamura, T., & Yada, T. (2016). Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness. Frontiers in Neuroscience, 10, 502.PubMedPubMedCentral Kohno, D., Koike, M., Ninomiya, Y., Kojima, I., Kitamura, T., & Yada, T. (2016). Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness. Frontiers in Neuroscience, 10, 502.PubMedPubMedCentral
Zurück zum Zitat Kojima, I., & Nakagawa, Y. (2011). The role of the sweet taste receptor in enteroendocrine cells and pancreatic β-cells. Diabetes & Metabolism Journal, 35, 451–457.CrossRef Kojima, I., & Nakagawa, Y. (2011). The role of the sweet taste receptor in enteroendocrine cells and pancreatic β-cells. Diabetes & Metabolism Journal, 35, 451–457.CrossRef
Zurück zum Zitat Kojima, I., Nakagawa, Y., Ohtsu, Y., Medina, A., & Nagasawa, M. (2014). Sweet taste-sensing receptors expressed in pancreatic β-cells: Sweet molecules act as biased agonists. Endocrinology and Metabolism (Seoul), 29(1), 12–19.CrossRef Kojima, I., Nakagawa, Y., Ohtsu, Y., Medina, A., & Nagasawa, M. (2014). Sweet taste-sensing receptors expressed in pancreatic β-cells: Sweet molecules act as biased agonists. Endocrinology and Metabolism (Seoul), 29(1), 12–19.CrossRef
Zurück zum Zitat Konagaya, Y., Terai, K., Hirao, Y., Takakura, K., Imajo, M., Kamioka, Y., et al. (2017). A Highly sensitive FRET biosensor for AMPK exhibits heterogeneous AMPK responses among cells and organs. Cell Reports, 21(9), 2628–2638.PubMedCrossRef Konagaya, Y., Terai, K., Hirao, Y., Takakura, K., Imajo, M., Kamioka, Y., et al. (2017). A Highly sensitive FRET biosensor for AMPK exhibits heterogeneous AMPK responses among cells and organs. Cell Reports, 21(9), 2628–2638.PubMedCrossRef
Zurück zum Zitat Kong D, Vong L, Parton LE, Ye C, Tong Q, Hu X, et al. (2010) Glucose stimulation of hypothalamic MCH neurons involves KATP channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metabolism 12(5), 545–552.PubMedCrossRef Kong D, Vong L, Parton LE, Ye C, Tong Q, Hu X, et al. (2010) Glucose stimulation of hypothalamic MCH neurons involves KATP channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metabolism 12(5), 545–552.PubMedCrossRef
Zurück zum Zitat Kyriazis, G. A., Smith, K. R., Tyrberg, B., Hussain, T., & Pratley, R. E. (2014). Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology, 155(6), 2112–2121.PubMedPubMedCentralCrossRef Kyriazis, G. A., Smith, K. R., Tyrberg, B., Hussain, T., & Pratley, R. E. (2014). Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology, 155(6), 2112–2121.PubMedPubMedCentralCrossRef
Zurück zum Zitat Kyriazis, G. A., Soundarapandian, M. M., & Tyrberg, B. (2012). Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. PNAS, 109(8), E524–E532.PubMedCrossRef Kyriazis, G. A., Soundarapandian, M. M., & Tyrberg, B. (2012). Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. PNAS, 109(8), E524–E532.PubMedCrossRef
Zurück zum Zitat Lamy, C. M., Sanno, H., Labouèbe, G., Picard, A., Magnan, C., Chatton, J. Y., et al. (2014). Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Cell Metabolism, 19(3), 527–538.PubMedCrossRef Lamy, C. M., Sanno, H., Labouèbe, G., Picard, A., Magnan, C., Chatton, J. Y., et al. (2014). Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Cell Metabolism, 19(3), 527–538.PubMedCrossRef
Zurück zum Zitat Lazutkaite, G., Soldà, A., Lossow, K., Meyerhof, W., & Dale, N. (2017). Amino acid sensing in hypothalamic tanycytes via umami taste receptors. Molecular Metabolism, 6(11), 1480–1492.PubMedPubMedCentralCrossRef Lazutkaite, G., Soldà, A., Lossow, K., Meyerhof, W., & Dale, N. (2017). Amino acid sensing in hypothalamic tanycytes via umami taste receptors. Molecular Metabolism, 6(11), 1480–1492.PubMedPubMedCentralCrossRef
Zurück zum Zitat Lee, R. J., Kofonow, J. M., Rosen, P. L., Siebert, A. P., Chen, B., Doghramji, L., et al. (2014). Bitter and sweet taste receptors regulate human upper respiratory innate immunity. Journal of Clinical Investigation, 124(3), 1393–405.PubMedCrossRef Lee, R. J., Kofonow, J. M., Rosen, P. L., Siebert, A. P., Chen, B., Doghramji, L., et al. (2014). Bitter and sweet taste receptors regulate human upper respiratory innate immunity. Journal of Clinical Investigation, 124(3), 1393–405.PubMedCrossRef
Zurück zum Zitat Lee, R. J., Xiong, G., Kofonow, J. M., Chen, B., Lysenko, A., Jiang, P., et al. (2012). T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. Journal of Clinical Investigation, 122(11), 4145–4159.PubMedCrossRef Lee, R. J., Xiong, G., Kofonow, J. M., Chen, B., Lysenko, A., Jiang, P., et al. (2012). T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. Journal of Clinical Investigation, 122(11), 4145–4159.PubMedCrossRef
Zurück zum Zitat Leloup, C., Arluison, M., Lepetit, N., Cartier, N., Marfaing-Jallat, P., Ferré, P., et al. (1994). Glucose transporter 2 (GLUT 2): Expression in specific brain nuclei. Brain Research, 638(1–2), 221–226.PubMedCrossRef Leloup, C., Arluison, M., Lepetit, N., Cartier, N., Marfaing-Jallat, P., Ferré, P., et al. (1994). Glucose transporter 2 (GLUT 2): Expression in specific brain nuclei. Brain Research, 638(1–2), 221–226.PubMedCrossRef
Zurück zum Zitat Leturque, A., Brot-Laroche, E., & Le Gall, M. (2009). GLUT2 mutations, translocation, andreceptor function in diet sugar managing. American Journal of Physiology Endocrinology and Metabolism, 296, E985–E992.PubMedCrossRef Leturque, A., Brot-Laroche, E., & Le Gall, M. (2009). GLUT2 mutations, translocation, andreceptor function in diet sugar managing. American Journal of Physiology Endocrinology and Metabolism, 296, E985–E992.PubMedCrossRef
Zurück zum Zitat Litvin, M., Clark, A. L., & Fisher, S. J. (2013). Recurrent hypoglycemia: Boosting the brain’s metabolic flexibility. Journal of Clinical Investigation, 123(5), 1922–1924.PubMedCrossRef Litvin, M., Clark, A. L., & Fisher, S. J. (2013). Recurrent hypoglycemia: Boosting the brain’s metabolic flexibility. Journal of Clinical Investigation, 123(5), 1922–1924.PubMedCrossRef
Zurück zum Zitat Lu, P., Zhang, C. H., Lifshitz, L. M., & ZhuGe, R. (2017). Extraoral bitter taste receptors in health and disease. The Journal of General Physiology, 149(2), 181–197.PubMedPubMedCentralCrossRef Lu, P., Zhang, C. H., Lifshitz, L. M., & ZhuGe, R. (2017). Extraoral bitter taste receptors in health and disease. The Journal of General Physiology, 149(2), 181–197.PubMedPubMedCentralCrossRef
Zurück zum Zitat Lundgaard, I., Li, B., Xie, L., Kang, H., Sanggaard, S., Haswell, J. D. R., et al. (2015). Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications, 6, 6807.PubMedPubMedCentralCrossRef Lundgaard, I., Li, B., Xie, L., Kang, H., Sanggaard, S., Haswell, J. D. R., et al. (2015). Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications, 6, 6807.PubMedPubMedCentralCrossRef
Zurück zum Zitat Magistretti, P. J., & Allaman, I. (2018). Lactate in the brain: From metabolic end-product to signalling molecule. Nature Reviews Neuroscience, 19, 235–249.PubMedCrossRef Magistretti, P. J., & Allaman, I. (2018). Lactate in the brain: From metabolic end-product to signalling molecule. Nature Reviews Neuroscience, 19, 235–249.PubMedCrossRef
Zurück zum Zitat Mantych, G. J., James, D. E., & Devaskar, S. U. (1993). Jejunal/kidney glucose transporter isoform (Glut-5) is expressed in the human blood-brain barrier. Endocrinology, 132(1), 35–40.PubMedCrossRef Mantych, G. J., James, D. E., & Devaskar, S. U. (1993). Jejunal/kidney glucose transporter isoform (Glut-5) is expressed in the human blood-brain barrier. Endocrinology, 132(1), 35–40.PubMedCrossRef
Zurück zum Zitat Margolskee, R. F. (2002). Molecular mechanisms of bitter and sweet taste transduction. Journal of Biological Chemistry, 277, 1–4.PubMedCrossRef Margolskee, R. F. (2002). Molecular mechanisms of bitter and sweet taste transduction. Journal of Biological Chemistry, 277, 1–4.PubMedCrossRef
Zurück zum Zitat Margolskee, R. F., Dyer, J., Kokrashvili, Z., Salmon, K. S., Ilegems, E., Daly, K., et al. (2007). T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proceedings of the National Academy of Sciences of the United States of America, 104, 15075–15080.PubMedPubMedCentralCrossRef Margolskee, R. F., Dyer, J., Kokrashvili, Z., Salmon, K. S., Ilegems, E., Daly, K., et al. (2007). T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proceedings of the National Academy of Sciences of the United States of America, 104, 15075–15080.PubMedPubMedCentralCrossRef
Zurück zum Zitat Martin, B., Wang, R., Cong, W. N., Daimon, C. M., Wu, W. W., Ni, B., et al. (2017). Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction. Journal of Biological Chemistry, 292(27), 11508–11530.PubMedCrossRef Martin, B., Wang, R., Cong, W. N., Daimon, C. M., Wu, W. W., Ni, B., et al. (2017). Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction. Journal of Biological Chemistry, 292(27), 11508–11530.PubMedCrossRef
Zurück zum Zitat Marty, N., Bady, I., & Thorens, B. (2006). Distinct classes of central GLUT2-dependent sensors control counterregulation and feeding. Diabetes, 55(Supplement 2), S108–S113.CrossRef Marty, N., Bady, I., & Thorens, B. (2006). Distinct classes of central GLUT2-dependent sensors control counterregulation and feeding. Diabetes, 55(Supplement 2), S108–S113.CrossRef
Zurück zum Zitat Marty, N., Dallaporta, M., Foretz, M., Emery, M., Tarussio, D., Bady, I., et al. (2005). Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. Journal of Clinical Investigation, 115, 3545–3553.PubMedPubMedCentralCrossRef Marty, N., Dallaporta, M., Foretz, M., Emery, M., Tarussio, D., Bady, I., et al. (2005). Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. Journal of Clinical Investigation, 115, 3545–3553.PubMedPubMedCentralCrossRef
Zurück zum Zitat Marty, N., Dallaporta, M., & Thorens, B. (2007). Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda), 22, 241–251. Marty, N., Dallaporta, M., & Thorens, B. (2007). Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda), 22, 241–251.
Zurück zum Zitat Mathur, D., López-Rodas, G., Casanova, B., & Marti, M. B. (2014). Perturbed glucose metabolism: Insights into multiple sclerosis pathogenesis. Frontiers in Neurology, 5, 250.PubMedPubMedCentralCrossRef Mathur, D., López-Rodas, G., Casanova, B., & Marti, M. B. (2014). Perturbed glucose metabolism: Insights into multiple sclerosis pathogenesis. Frontiers in Neurology, 5, 250.PubMedPubMedCentralCrossRef
Zurück zum Zitat McLaughlin, S. K., McKinnon, P. J., & Margolskee, R. F. (1992). Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature, 357, 563–569.PubMedCrossRef McLaughlin, S. K., McKinnon, P. J., & Margolskee, R. F. (1992). Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature, 357, 563–569.PubMedCrossRef
Zurück zum Zitat McLaughlin, S. K., McKinnon, P. J., Robichon, A., Spickofsky, N., & Margolskee, R. F. (1993). Gustducin and transducin: A tale of two G proteins. Ciba Foundation Symposium, 179, 186–200.PubMed McLaughlin, S. K., McKinnon, P. J., Robichon, A., Spickofsky, N., & Margolskee, R. F. (1993). Gustducin and transducin: A tale of two G proteins. Ciba Foundation Symposium, 179, 186–200.PubMed
Zurück zum Zitat McNay, E. C., & Cotero, V. E. (2010). Mini-review: Impact of recurrent hypoglycemia on cognitive and brain function. Physiology & Behavior, 100(3), 234–238.CrossRef McNay, E. C., & Cotero, V. E. (2010). Mini-review: Impact of recurrent hypoglycemia on cognitive and brain function. Physiology & Behavior, 100(3), 234–238.CrossRef
Zurück zum Zitat McNay, E. C., & Sherwin, R. S. (2004). Effect of recurrent hypoglycemia on spatial cognition and cognitive metabolism in normal and diabetic rats. Diabetes, 53(2), 418–425.PubMedCrossRef McNay, E. C., & Sherwin, R. S. (2004). Effect of recurrent hypoglycemia on spatial cognition and cognitive metabolism in normal and diabetic rats. Diabetes, 53(2), 418–425.PubMedCrossRef
Zurück zum Zitat Meyerhof, W., Batram, C., Kuhn, C., Brockhoff, A., Chudoba, E., Bufe, B., et al. (2010). The molecular receptive ranges of human tas2r bitter taste receptors. Chemical Senses, 35(2), 157–170.PubMedCrossRef Meyerhof, W., Batram, C., Kuhn, C., Brockhoff, A., Chudoba, E., Bufe, B., et al. (2010). The molecular receptive ranges of human tas2r bitter taste receptors. Chemical Senses, 35(2), 157–170.PubMedCrossRef
Zurück zum Zitat Minervini, M., Atlante, A., Gagliardi, S., Ciotti, M. T., Marra, E., & Calissano, P. (1997). Glutamate stimulates 2-deoxyglucose uptake in rat cerebellar granule cells. Brain Research, 768(1–2), 57–62.PubMedCrossRef Minervini, M., Atlante, A., Gagliardi, S., Ciotti, M. T., Marra, E., & Calissano, P. (1997). Glutamate stimulates 2-deoxyglucose uptake in rat cerebellar granule cells. Brain Research, 768(1–2), 57–62.PubMedCrossRef
Zurück zum Zitat Morelli, A., Comeglio, P., Sarchielli, E., Cellai, I., Vignozzi, L., Vannelli, G. B., et al. (2013) Negative effects of high glucose exposure in human gonadotropin-releasing hormone neurons. International Journal of Endocrinology 2013, 684659.PubMedPubMedCentralCrossRef Morelli, A., Comeglio, P., Sarchielli, E., Cellai, I., Vignozzi, L., Vannelli, G. B., et al. (2013) Negative effects of high glucose exposure in human gonadotropin-releasing hormone neurons. International Journal of Endocrinology 2013, 684659.PubMedPubMedCentralCrossRef
Zurück zum Zitat Murovets, V. O., Bachmanov, A. A., Travnikov, S. V., Tchurikova, A. A., & Zolotarev, V. A. (2014). Involvement of Tas1r3 receptor protein in control of the metabolism of glucose at different levels of glycemia in mice. Zhurnal evoliutsionnoi biokhimii i fiziologii, 50(4), 296–304.PubMed Murovets, V. O., Bachmanov, A. A., Travnikov, S. V., Tchurikova, A. A., & Zolotarev, V. A. (2014). Involvement of Tas1r3 receptor protein in control of the metabolism of glucose at different levels of glycemia in mice. Zhurnal evoliutsionnoi biokhimii i fiziologii, 50(4), 296–304.PubMed
Zurück zum Zitat Murovets, V. O., Bachmanov, A. A., & Zolotarev, V. A. (2015). Impaired glucose metabolism in mice lacking the Tas1r3 taste receptor gene. PLoS ONE, 10(6), e0130997.PubMedPubMedCentralCrossRef Murovets, V. O., Bachmanov, A. A., & Zolotarev, V. A. (2015). Impaired glucose metabolism in mice lacking the Tas1r3 taste receptor gene. PLoS ONE, 10(6), e0130997.PubMedPubMedCentralCrossRef
Zurück zum Zitat Newson, B., Ahlman, H., Dahlstrom, A., & Nyhus, L. M. (1982). Ultrastructural observations in the rat ileal mucosa of possible epithelial ‘taste cells’ and submucosal sensory neurons. Acta Physiologica Scandinavica, 114(2), 161–164.PubMedCrossRef Newson, B., Ahlman, H., Dahlstrom, A., & Nyhus, L. M. (1982). Ultrastructural observations in the rat ileal mucosa of possible epithelial ‘taste cells’ and submucosal sensory neurons. Acta Physiologica Scandinavica, 114(2), 161–164.PubMedCrossRef
Zurück zum Zitat Nour, H. A., El Sawaf, A. L., Elewa, S. M., & El Sayed, Y. (2014). Strength and independence of associations between ghrelin, leptin, adiponectin and insulin in stimulating basic functions to energy metabolism. Alexandria Journal of Medicine, 50(1), 49–59.CrossRef Nour, H. A., El Sawaf, A. L., Elewa, S. M., & El Sayed, Y. (2014). Strength and independence of associations between ghrelin, leptin, adiponectin and insulin in stimulating basic functions to energy metabolism. Alexandria Journal of Medicine, 50(1), 49–59.CrossRef
Zurück zum Zitat O’Malley, D., Reimann, F., Simpson, A. K., & Gribble, F. M. (2006). Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes, 55, 3381–3386.PubMedPubMedCentralCrossRef O’Malley, D., Reimann, F., Simpson, A. K., & Gribble, F. M. (2006). Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes, 55, 3381–3386.PubMedPubMedCentralCrossRef
Zurück zum Zitat Ohkuri, T., Yasumatsu, K., Horio, N., Jyotaki, M., Margolskee, R. F., & Ninomiya, Y. (2009). Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(4), R960–R971.PubMedPubMedCentralCrossRef Ohkuri, T., Yasumatsu, K., Horio, N., Jyotaki, M., Margolskee, R. F., & Ninomiya, Y. (2009). Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(4), R960–R971.PubMedPubMedCentralCrossRef
Zurück zum Zitat Ono, H., Pocai, A., Wang, Y., Sakoda, H., Asano, T., Backer, J. M., et al. (2008). Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. Journal of Clinical Investigation, 118(8), 2959–2968.PubMed Ono, H., Pocai, A., Wang, Y., Sakoda, H., Asano, T., Backer, J. M., et al. (2008). Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. Journal of Clinical Investigation, 118(8), 2959–2968.PubMed
Zurück zum Zitat Oomura, Y., Kimura, K., Ooyama, H., Maeo, T., Iki, M., & Kuniyoshi, N. (1964). Reciprocal activities of the ventromedial and lateral hypothalamic area of cats. Science, 143, 484–485.PubMedCrossRef Oomura, Y., Kimura, K., Ooyama, H., Maeo, T., Iki, M., & Kuniyoshi, N. (1964). Reciprocal activities of the ventromedial and lateral hypothalamic area of cats. Science, 143, 484–485.PubMedCrossRef
Zurück zum Zitat Ozcan, S., Dover, J., Rosenwald, A. G., Wölfl, S., & Johnston, M. (1996). Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proceedings of the National Academy of Sciences USA, 93(22), 12428–12432.CrossRef Ozcan, S., Dover, J., Rosenwald, A. G., Wölfl, S., & Johnston, M. (1996). Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proceedings of the National Academy of Sciences USA, 93(22), 12428–12432.CrossRef
Zurück zum Zitat Patel, A. B., Lai, J. C. K., Chowdhury, G. M. I., Hyder, F., Rothman, D. L., Shulman, R. G., et al. (2014). Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proceedings of the National Academy of Sciences USA, 111(14), 5385–5390.CrossRef Patel, A. B., Lai, J. C. K., Chowdhury, G. M. I., Hyder, F., Rothman, D. L., Shulman, R. G., et al. (2014). Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proceedings of the National Academy of Sciences USA, 111(14), 5385–5390.CrossRef
Zurück zum Zitat Payne, J., Maher, F., Simpson, I., Mattice, L., & Davies, P. (1997). Glucose transporter Glut 5 expression in microglial cells. Glia, 21(3), 327–331.PubMedCrossRef Payne, J., Maher, F., Simpson, I., Mattice, L., & Davies, P. (1997). Glucose transporter Glut 5 expression in microglial cells. Glia, 21(3), 327–331.PubMedCrossRef
Zurück zum Zitat Pellerin, L., Bouzier-Sore, A. K., Aubert, A., Serres, S., Merle, M., Costalat, R., et al. (2007). Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia, 55, 1251–1262.PubMedCrossRef Pellerin, L., Bouzier-Sore, A. K., Aubert, A., Serres, S., Merle, M., Costalat, R., et al. (2007). Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia, 55, 1251–1262.PubMedCrossRef
Zurück zum Zitat Pellerin, L., & Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences USA, 91, 10625–10629.CrossRef Pellerin, L., & Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences USA, 91, 10625–10629.CrossRef
Zurück zum Zitat Pellerin, L., & Magistretti, P. J. (1996). Excitatory amino acids stimulate aerobic glycolysis in astrocytes via an activation of the Na+/K+ ATPase. Developmental Neuroscience, 18(5–6), 336–342.PubMedCrossRef Pellerin, L., & Magistretti, P. J. (1996). Excitatory amino acids stimulate aerobic glycolysis in astrocytes via an activation of the Na+/K+ ATPase. Developmental Neuroscience, 18(5–6), 336–342.PubMedCrossRef
Zurück zum Zitat Peng, L., Zhang, X., & Hertz, L. (1994). High extracellular potassium concentrations stimulate oxidative metabolism in a glutamatergic neuronal culture and glycolysis in cultured astrocytes but have no stimulatory effect in a GABAergic neuronal culture. Brain Research, 663(1), 168–172.PubMedCrossRef Peng, L., Zhang, X., & Hertz, L. (1994). High extracellular potassium concentrations stimulate oxidative metabolism in a glutamatergic neuronal culture and glycolysis in cultured astrocytes but have no stimulatory effect in a GABAergic neuronal culture. Brain Research, 663(1), 168–172.PubMedCrossRef
Zurück zum Zitat Pepino, M. Y., & Bourne, C. (2011). Nonnutritive sweeteners, energy balance and glucose homeostasis. Current Opinion in Clinical Nutrition & Metabolic Care, 14(4), 391–395.CrossRef Pepino, M. Y., & Bourne, C. (2011). Nonnutritive sweeteners, energy balance and glucose homeostasis. Current Opinion in Clinical Nutrition & Metabolic Care, 14(4), 391–395.CrossRef
Zurück zum Zitat Petroff, O. A. C. (2007). Metabolic biopsy of the brain. In S. G. Waxman (Ed.), Molecular neurology (pp. 77–100). San Diego: Academic Press.CrossRef Petroff, O. A. C. (2007). Metabolic biopsy of the brain. In S. G. Waxman (Ed.), Molecular neurology (pp. 77–100). San Diego: Academic Press.CrossRef
Zurück zum Zitat Pfeiffer-Guglielmi, B., Dombert, B., Jablonka, S., Hausherr, V., van Thriel, C., Schöbel, N., et al. (2014). Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons. BMC Neuroscience, 15, 70.PubMedPubMedCentralCrossRef Pfeiffer-Guglielmi, B., Dombert, B., Jablonka, S., Hausherr, V., van Thriel, C., Schöbel, N., et al. (2014). Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons. BMC Neuroscience, 15, 70.PubMedPubMedCentralCrossRef
Zurück zum Zitat Pierre, K., & Pellerin, L. (2005). Monocarboxylate transporters in the central nervous system: Distribution, regulation and function. Journal of Neurochemistry, 94, 1–14.PubMedCrossRef Pierre, K., & Pellerin, L. (2005). Monocarboxylate transporters in the central nervous system: Distribution, regulation and function. Journal of Neurochemistry, 94, 1–14.PubMedCrossRef
Zurück zum Zitat Porras, O. H., Loaiza, A., & Barros, L. F. (2004). Glutamate mediates acute glucose transport inhibition in hippocampal neurons. The Journal of Neuroscience, 24(43), 9669–9673.PubMedCrossRef Porras, O. H., Loaiza, A., & Barros, L. F. (2004). Glutamate mediates acute glucose transport inhibition in hippocampal neurons. The Journal of Neuroscience, 24(43), 9669–9673.PubMedCrossRef
Zurück zum Zitat Pradhan, G., Samson, S. L., & Sun, Y. (2013). Ghrelin: Much more than a hunger hormone. Current Opinion in Clinical Nutrition & Metabolic Care, 16(6), 619–624.CrossRef Pradhan, G., Samson, S. L., & Sun, Y. (2013). Ghrelin: Much more than a hunger hormone. Current Opinion in Clinical Nutrition & Metabolic Care, 16(6), 619–624.CrossRef
Zurück zum Zitat Prins, M. L. (2012). Cerebral ketone metabolism during development and injury. Epilepsy Research, 100(3), 218–223.PubMedCrossRef Prins, M. L. (2012). Cerebral ketone metabolism during development and injury. Epilepsy Research, 100(3), 218–223.PubMedCrossRef
Zurück zum Zitat Procaccini, C., Santopaolo, M., Faicchia, D., Colamatteo, A., Formisano, L., de Candia, P., et al. (2016). Role of metabolism in neurodegenerative disorders. Metabolism, 65(9), 1376–1390.PubMedCrossRef Procaccini, C., Santopaolo, M., Faicchia, D., Colamatteo, A., Formisano, L., de Candia, P., et al. (2016). Role of metabolism in neurodegenerative disorders. Metabolism, 65(9), 1376–1390.PubMedCrossRef
Zurück zum Zitat Rahman, S., & Islam, R. (2011). Mammalian Sirt1: Insights on its biological functions. Cell Communication and Signaling, 9, 11.PubMedCrossRef Rahman, S., & Islam, R. (2011). Mammalian Sirt1: Insights on its biological functions. Cell Communication and Signaling, 9, 11.PubMedCrossRef
Zurück zum Zitat Rinholm, J. E., Hamilton, N. B., Kessarism, N., Richardson, W. D., Bergersen, L. H., & Attwell, D. (2011). Regulation of oligodendrocyte development and myelination by glucose and lactate. The Journal of Neuroscience, 31, 538–548.PubMedPubMedCentralCrossRef Rinholm, J. E., Hamilton, N. B., Kessarism, N., Richardson, W. D., Bergersen, L. H., & Attwell, D. (2011). Regulation of oligodendrocyte development and myelination by glucose and lactate. The Journal of Neuroscience, 31, 538–548.PubMedPubMedCentralCrossRef
Zurück zum Zitat Rizki, G., Iwata, T. N., Li, J., Riedel, C. G., Picard, C. L., Jan, M., et al. (2011). The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genetics, 7(9), e1002235.PubMedPubMedCentralCrossRef Rizki, G., Iwata, T. N., Li, J., Riedel, C. G., Picard, C. L., Jan, M., et al. (2011). The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genetics, 7(9), e1002235.PubMedPubMedCentralCrossRef
Zurück zum Zitat Roh, E., Song, D. K., & Kim, M.-S. (2016). Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Experimental & Molecular Medicine, 48, e216.CrossRef Roh, E., Song, D. K., & Kim, M.-S. (2016). Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Experimental & Molecular Medicine, 48, e216.CrossRef
Zurück zum Zitat Roland, A. V., & Moenter, S. M. (2011). Regulation of gonadotropin-releasing hormone neurons by glucose. Trends in Endocrinology and Metabolism, 22(11), 443–449.PubMedCrossRef Roland, A. V., & Moenter, S. M. (2011). Regulation of gonadotropin-releasing hormone neurons by glucose. Trends in Endocrinology and Metabolism, 22(11), 443–449.PubMedCrossRef
Zurück zum Zitat Ruderman, N. B., Xu, X. J., Nelson, L., Cacicedo, J. M., Saha, A. K., Lan, F., et al. (2010). AMPK and SIRT1: A long-standing partnership? American Journal of Physiology Endocrinology and Metabolism, 298(4), E751–E760.PubMedPubMedCentralCrossRef Ruderman, N. B., Xu, X. J., Nelson, L., Cacicedo, J. M., Saha, A. K., Lan, F., et al. (2010). AMPK and SIRT1: A long-standing partnership? American Journal of Physiology Endocrinology and Metabolism, 298(4), E751–E760.PubMedPubMedCentralCrossRef
Zurück zum Zitat Sasaki, T., Kim, H. J., Kobayashi, M., Kitamura, Y. I., Yokota-Hashimoto, H., Shiuchi, T., et al. (2010). Induction of hypothalamic Sirt1 leads to cessation of feeding via agouti-related peptide. Endocrinology, 151(6), 2556–2566.PubMedCrossRef Sasaki, T., Kim, H. J., Kobayashi, M., Kitamura, Y. I., Yokota-Hashimoto, H., Shiuchi, T., et al. (2010). Induction of hypothalamic Sirt1 leads to cessation of feeding via agouti-related peptide. Endocrinology, 151(6), 2556–2566.PubMedCrossRef
Zurück zum Zitat Sbarbati, A., Tizzano, M., Merigo, F., Benati, D., Nicolato, E., Boschi, F., et al. (2009). Acyl homoserine lactones induce early response in the airway. Anatomical Record (Hoboken), 292(3), 439–448.CrossRef Sbarbati, A., Tizzano, M., Merigo, F., Benati, D., Nicolato, E., Boschi, F., et al. (2009). Acyl homoserine lactones induce early response in the airway. Anatomical Record (Hoboken), 292(3), 439–448.CrossRef
Zurück zum Zitat Schubert, D. (2005). Glucose metabolism and Alzheimer’s disease. Ageing Research Reviews, 4(2), 240–257.PubMedCrossRef Schubert, D. (2005). Glucose metabolism and Alzheimer’s disease. Ageing Research Reviews, 4(2), 240–257.PubMedCrossRef
Zurück zum Zitat Shah, K., DeSilva, S., & Abbruscato, T. (2012). The role of glucose transporters in brain disease: Diabetes and Alzheimer’s disease. International Journal of Molecular Sciences, 13(10), 12629–12655.PubMedPubMedCentralCrossRef Shah, K., DeSilva, S., & Abbruscato, T. (2012). The role of glucose transporters in brain disease: Diabetes and Alzheimer’s disease. International Journal of Molecular Sciences, 13(10), 12629–12655.PubMedPubMedCentralCrossRef
Zurück zum Zitat Shim, J. H., Xiao, C., Paschal, A. E., Bailey, S. T., Rao, P., Hayden, M. S., et al. (2005). TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes & Development, 19(22), 2668–2681.CrossRef Shim, J. H., Xiao, C., Paschal, A. E., Bailey, S. T., Rao, P., Hayden, M. S., et al. (2005). TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes & Development, 19(22), 2668–2681.CrossRef
Zurück zum Zitat Smith, M. A., Katsouri, L., Irvine, E. E., Hankir, M. K., Pedroni, S. M., Voshol, P. J., et al. (2015). Ribosomal S6K1 in POMC and AgRP neurons regulates glucose homeostasis but not feeding behavior in mice. Cell Reports, 11(3), 335–343.PubMedPubMedCentralCrossRef Smith, M. A., Katsouri, L., Irvine, E. E., Hankir, M. K., Pedroni, S. M., Voshol, P. J., et al. (2015). Ribosomal S6K1 in POMC and AgRP neurons regulates glucose homeostasis but not feeding behavior in mice. Cell Reports, 11(3), 335–343.PubMedPubMedCentralCrossRef
Zurück zum Zitat Sokoloff, L. (1960). The metabolism of the central nervous system in vivo. In J. Field, H. W. Magoun & V. E. Hall (Eds.), Handbook of physiology, section I, neurophysiology (Vol. 3, pp. 1843–1864). Washington DC: American Physiological Society. Sokoloff, L. (1960). The metabolism of the central nervous system in vivo. In J. Field, H. W. Magoun & V. E. Hall (Eds.), Handbook of physiology, section I, neurophysiology (Vol. 3, pp. 1843–1864). Washington DC: American Physiological Society.
Zurück zum Zitat Sokoloff, L., Takahashi, S., Gotoh, J., Driscoll, B. F., & Law, M. J. (1996). Contribution of astroglia to functionally activated energy metabolism. Developmental Neuroscience, 18(5–6), 344–352.PubMed Sokoloff, L., Takahashi, S., Gotoh, J., Driscoll, B. F., & Law, M. J. (1996). Contribution of astroglia to functionally activated energy metabolism. Developmental Neuroscience, 18(5–6), 344–352.PubMed
Zurück zum Zitat Song, Z., Levin, B. E., McArdle, J. J., Bakhos, N., & Routh, V. H. (2001). Convergence of pre-and postsynaptic influences on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes, 50, 2673–2681.PubMedCrossRef Song, Z., Levin, B. E., McArdle, J. J., Bakhos, N., & Routh, V. H. (2001). Convergence of pre-and postsynaptic influences on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes, 50, 2673–2681.PubMedCrossRef
Zurück zum Zitat Sonnewald, U., Westergaard, N., & Schousboe, A. (1997). Glutamate transport and metabolism in astrocytes. Glia, 21(1), 56–63.PubMedCrossRef Sonnewald, U., Westergaard, N., & Schousboe, A. (1997). Glutamate transport and metabolism in astrocytes. Glia, 21(1), 56–63.PubMedCrossRef
Zurück zum Zitat Soták, M., Marks, J., & Unwin, R. J. (2017). Putative tissue location and function of the SLC5 family member SGLT3. Experimental Physiology, 102, 5–13.PubMedCrossRef Soták, M., Marks, J., & Unwin, R. J. (2017). Putative tissue location and function of the SLC5 family member SGLT3. Experimental Physiology, 102, 5–13.PubMedCrossRef
Zurück zum Zitat Sprous, D., & Palmer, K. R. (2010). The T1R2/T1R3 sweet receptor and TRPM5 ion channel taste targets with therapeutic potential. Progress in Molecular Biology and Translational Science, 91, 151–208.PubMedCrossRef Sprous, D., & Palmer, K. R. (2010). The T1R2/T1R3 sweet receptor and TRPM5 ion channel taste targets with therapeutic potential. Progress in Molecular Biology and Translational Science, 91, 151–208.PubMedCrossRef
Zurück zum Zitat Steinman, M. Q., Gao, V., & Alberini, C. M. (2016). The role of lactate-mediated metabolic coupling between astrocytes and neurons in long-term memory formation. Frontiers in Integrative Neuroscience, 10, 10.PubMedPubMedCentralCrossRef Steinman, M. Q., Gao, V., & Alberini, C. M. (2016). The role of lactate-mediated metabolic coupling between astrocytes and neurons in long-term memory formation. Frontiers in Integrative Neuroscience, 10, 10.PubMedPubMedCentralCrossRef
Zurück zum Zitat Stride, A., Shields, B., Gill-Carey, O., Chakera, A. J., Colclough, K., Ellard, S., et al. (2014). Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia, 57(1), 54–56.PubMedCrossRef Stride, A., Shields, B., Gill-Carey, O., Chakera, A. J., Colclough, K., Ellard, S., et al. (2014). Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia, 57(1), 54–56.PubMedCrossRef
Zurück zum Zitat Tallroth, G., Ryding, E., & Agardh, C.-D. (1992). Regional cerebral blood flow in normal man during insulin-induced hypoglycemia and in the recovery period following glucose infusion. Metabolism, 41(7), 717–721.PubMedCrossRef Tallroth, G., Ryding, E., & Agardh, C.-D. (1992). Regional cerebral blood flow in normal man during insulin-induced hypoglycemia and in the recovery period following glucose infusion. Metabolism, 41(7), 717–721.PubMedCrossRef
Zurück zum Zitat Tang, B. L. (2018). Brain activity-induced neuronal glucose uptake/glycolysis: Is the lactate shuttle not required? Brain Research Bulletin, 137, 225–228.PubMedCrossRef Tang, B. L. (2018). Brain activity-induced neuronal glucose uptake/glycolysis: Is the lactate shuttle not required? Brain Research Bulletin, 137, 225–228.PubMedCrossRef
Zurück zum Zitat Tang, H.-M. V., Gao, W.-W., Chan, C.-P., Cheng, Y., Deng, J.-J., Yuen, K.-S., et al. (2015). SIRT1 suppresses human T-cell leukemia virus type 1 transcription. Journal of Virology, 89(16), 8623–8631.PubMedPubMedCentralCrossRef Tang, H.-M. V., Gao, W.-W., Chan, C.-P., Cheng, Y., Deng, J.-J., Yuen, K.-S., et al. (2015). SIRT1 suppresses human T-cell leukemia virus type 1 transcription. Journal of Virology, 89(16), 8623–8631.PubMedPubMedCentralCrossRef
Zurück zum Zitat Thorens, B. (2011). Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes, Obesity and Metabolism, 13(1), 82–88.PubMedCrossRef Thorens, B. (2011). Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes, Obesity and Metabolism, 13(1), 82–88.PubMedCrossRef
Zurück zum Zitat Thorens, B. (2015). GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 58(2), 221–232.PubMedCrossRef Thorens, B. (2015). GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 58(2), 221–232.PubMedCrossRef
Zurück zum Zitat Velagapudi, R., El-Bakoush, A., Lepiarz, I., Ogunrinade, F., & Olajide, O. A. (2017). AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Molecular and Cellular Biochemistry, 435(1), 149–162.PubMedPubMedCentralCrossRef Velagapudi, R., El-Bakoush, A., Lepiarz, I., Ogunrinade, F., & Olajide, O. A. (2017). AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Molecular and Cellular Biochemistry, 435(1), 149–162.PubMedPubMedCentralCrossRef
Zurück zum Zitat Veldhuizen, M. G., Babbs, R. K., Patel, B., Fobbs, W., Kroemer, N. B., Garcia, E., et al. (2017). Integration of sweet taste and metabolism determines carbohydrate reward. Current Biology, 27(16), 2476–2485.PubMedCrossRef Veldhuizen, M. G., Babbs, R. K., Patel, B., Fobbs, W., Kroemer, N. B., Garcia, E., et al. (2017). Integration of sweet taste and metabolism determines carbohydrate reward. Current Biology, 27(16), 2476–2485.PubMedCrossRef
Zurück zum Zitat Verberne, A. J., Sabetghadam, A., & Korim, W. S. (2014). Neural pathways that control the glucose counterregulatory response. Frontiers in Neuroscience, 8, 38.PubMedPubMedCentralCrossRef Verberne, A. J., Sabetghadam, A., & Korim, W. S. (2014). Neural pathways that control the glucose counterregulatory response. Frontiers in Neuroscience, 8, 38.PubMedPubMedCentralCrossRef
Zurück zum Zitat Wang, R., Liu, X., Hentges, S. T., Dunn-Meynell, A. A., Levin, B. E., Wang, W., et al. (2004). The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes, 53, 1959–1965.PubMedCrossRef Wang, R., Liu, X., Hentges, S. T., Dunn-Meynell, A. A., Levin, B. E., Wang, W., et al. (2004). The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes, 53, 1959–1965.PubMedCrossRef
Zurück zum Zitat Watterson, K. R., Bestow, D., Gallagher, J., Hamilton, D. L., Ashford, F. B., Meakin, P. J., et al. (2013). Anorexigenic and orexigenic hormone modulation of mammalian target of rapamycin complex 1 activity and the regulation of hypothalamic agouti-related protein mRNA expression. Neurosignals, 21(1–2), 28–41.PubMedCrossRef Watterson, K. R., Bestow, D., Gallagher, J., Hamilton, D. L., Ashford, F. B., Meakin, P. J., et al. (2013). Anorexigenic and orexigenic hormone modulation of mammalian target of rapamycin complex 1 activity and the regulation of hypothalamic agouti-related protein mRNA expression. Neurosignals, 21(1–2), 28–41.PubMedCrossRef
Zurück zum Zitat Welcome, M. O. (2018). Gastrointestinal physiology: Development, principles and mechanism of regulation. Cham: Springer.CrossRef Welcome, M. O. (2018). Gastrointestinal physiology: Development, principles and mechanism of regulation. Cham: Springer.CrossRef
Zurück zum Zitat Welcome, M. O., Mastorakis, N. E., & Pereverzev, V. A. (2015) Sweet taste receptor signaling network: Possible implication for cognitive functioning. Neurology Research International 2015, 606479.PubMedPubMedCentralCrossRef Welcome, M. O., Mastorakis, N. E., & Pereverzev, V. A. (2015) Sweet taste receptor signaling network: Possible implication for cognitive functioning. Neurology Research International 2015, 606479.PubMedPubMedCentralCrossRef
Zurück zum Zitat Welcome, M. O., & Pereverzev, V. A. (2014). Glycemic allostasis during mental activities on fasting in non-alcohol users and alcohol users with different durations of abstinence. Annals of Medical and Health Science Research, 4(3), 199–207.CrossRef Welcome, M. O., & Pereverzev, V. A. (2014). Glycemic allostasis during mental activities on fasting in non-alcohol users and alcohol users with different durations of abstinence. Annals of Medical and Health Science Research, 4(3), 199–207.CrossRef
Zurück zum Zitat Welcome, M. O., Pereverzeva, E. V., & Pereverzev, V. A. (2010). A novel psychophysiological model of the effect of alcohol use on academic performance of male medical students of Belarusian State Medical University. International Journal of Collaborative Research on Internal Medicine & Public Health, 2(6), 183–197. Welcome, M. O., Pereverzeva, E. V., & Pereverzev, V. A. (2010). A novel psychophysiological model of the effect of alcohol use on academic performance of male medical students of Belarusian State Medical University. International Journal of Collaborative Research on Internal Medicine & Public Health, 2(6), 183–197.
Zurück zum Zitat Wiesinger, H., Hamprecht, B., & Dringen, R. (1997). Metabolic pathways for glucose in astrocytes. Glia, 21(1), 22–34.PubMedCrossRef Wiesinger, H., Hamprecht, B., & Dringen, R. (1997). Metabolic pathways for glucose in astrocytes. Glia, 21(1), 22–34.PubMedCrossRef
Zurück zum Zitat Williams, J., & Mobarhan, S. (2003). A critical interaction: Leptin and ghrelin. Nutrition Reviews, 61(11), 391–393.PubMedCrossRef Williams, J., & Mobarhan, S. (2003). A critical interaction: Leptin and ghrelin. Nutrition Reviews, 61(11), 391–393.PubMedCrossRef
Zurück zum Zitat Wong, G. T., Gannon, K. S., & Margolskee, R. F. (1996). Transduction of bitter and sweet taste by gustducin. Nature, 381(6585), 796–800.PubMedCrossRef Wong, G. T., Gannon, K. S., & Margolskee, R. F. (1996). Transduction of bitter and sweet taste by gustducin. Nature, 381(6585), 796–800.PubMedCrossRef
Zurück zum Zitat Xia, T., Cheng, Y., Zhang, Q., Xiao, F., Liu, B., Chen, S., et al. (2012). S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid. Diabetes, 61(10), 2461–2471.PubMedPubMedCentralCrossRef Xia, T., Cheng, Y., Zhang, Q., Xiao, F., Liu, B., Chen, S., et al. (2012). S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid. Diabetes, 61(10), 2461–2471.PubMedPubMedCentralCrossRef
Zurück zum Zitat Yasumatsu, K., Ohkuri, T., Sanematsu, K., Shigemura, N., Katsukawa, H., Sako, N., et al. (2009). Genetically-increased taste cell population with G(alpha)-gustducin-coupled sweet receptors is associated with increase of gurmarin-sensitive taste nerve fibers in mice. BMC Neuroscience, 10, 152.PubMedPubMedCentralCrossRef Yasumatsu, K., Ohkuri, T., Sanematsu, K., Shigemura, N., Katsukawa, H., Sako, N., et al. (2009). Genetically-increased taste cell population with G(alpha)-gustducin-coupled sweet receptors is associated with increase of gurmarin-sensitive taste nerve fibers in mice. BMC Neuroscience, 10, 152.PubMedPubMedCentralCrossRef
Zurück zum Zitat Ye, X., Li, M., Hou, T., Gao, T., Zhu, W.-G., & Yang, Y. (2017). Sirtuins in glucose and lipid metabolism. Oncotarget, 8(1), 1845–1859.PubMedCrossRef Ye, X., Li, M., Hou, T., Gao, T., Zhu, W.-G., & Yang, Y. (2017). Sirtuins in glucose and lipid metabolism. Oncotarget, 8(1), 1845–1859.PubMedCrossRef
Zurück zum Zitat Yee, K. K, Sukumaran, S. K., Kotha, R., Gilbertson, T. A., & Margolskee, R. F (2011) Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proceedings of the National Academy of Sciences USA, 108(13), 5431–5436.CrossRef Yee, K. K, Sukumaran, S. K., Kotha, R., Gilbertson, T. A., & Margolskee, R. F (2011) Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proceedings of the National Academy of Sciences USA, 108(13), 5431–5436.CrossRef
Zurück zum Zitat Yu, J., & Auwerx, J. (2009). The role of sirtuins in the control of metabolic homeostasis. Annals of the New York Academy of Sciences, 1173, E10–E19.PubMedPubMedCentralCrossRef Yu, J., & Auwerx, J. (2009). The role of sirtuins in the control of metabolic homeostasis. Annals of the New York Academy of Sciences, 1173, E10–E19.PubMedPubMedCentralCrossRef
Zurück zum Zitat Yu, N., Martin, J. L., Stella, N., & Magistretti, P. J. (1993). Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes. Proceedings of the National Academy of Sciences USA, 90(9), 4042–4046.CrossRef Yu, N., Martin, J. L., Stella, N., & Magistretti, P. J. (1993). Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes. Proceedings of the National Academy of Sciences USA, 90(9), 4042–4046.CrossRef
Zurück zum Zitat Zhang, C., Bosch, M. A., Levine, J. E., Rønnekleiv, O. K., & Kelly, M. J. (2007). Gonadotropin-releasing hormone neurons express K(ATP) channels that are regulated by estrogen and responsive to glucose and metabolic inhibition. The Journal of Neuroscience, 27(38), 10153–10164.PubMedCrossRef Zhang, C., Bosch, M. A., Levine, J. E., Rønnekleiv, O. K., & Kelly, M. J. (2007). Gonadotropin-releasing hormone neurons express K(ATP) channels that are regulated by estrogen and responsive to glucose and metabolic inhibition. The Journal of Neuroscience, 27(38), 10153–10164.PubMedCrossRef
Zurück zum Zitat Zhang, D.-D., Zhang, J.-G., Wang, Y.-Z., Liu, Y., Liu, G.-L., & Li, X.-Y. (2015). Per-Arnt-Sim Kinase (PASK): An emerging regulator of mammalian glucose and lipid metabolism. Nutrients, 7(9), 7437–7450.PubMedPubMedCentralCrossRef Zhang, D.-D., Zhang, J.-G., Wang, Y.-Z., Liu, Y., Liu, G.-L., & Li, X.-Y. (2015). Per-Arnt-Sim Kinase (PASK): An emerging regulator of mammalian glucose and lipid metabolism. Nutrients, 7(9), 7437–7450.PubMedPubMedCentralCrossRef
Zurück zum Zitat Zhang, Y., Hoon, M. A., Chandrashekar, J., Mueller, K. L., Cook, B., Wu, D., et al. (2003). Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell, 112(3), 293–301.PubMedCrossRef Zhang, Y., Hoon, M. A., Chandrashekar, J., Mueller, K. L., Cook, B., Wu, D., et al. (2003). Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell, 112(3), 293–301.PubMedCrossRef
Zurück zum Zitat Zhang, Y., Xue, Y., Meng, S., Luo, Y., Liang, J., Li, J., et al. (2016). Inhibition of lactate transport erases drug memory and prevents drug relapse. Biological Psychiatry, 79(11), 928–939.PubMedCrossRef Zhang, Y., Xue, Y., Meng, S., Luo, Y., Liang, J., Li, J., et al. (2016). Inhibition of lactate transport erases drug memory and prevents drug relapse. Biological Psychiatry, 79(11), 928–939.PubMedCrossRef
Zurück zum Zitat Zhou, L., Huang, W., Xu, Y., Gao, C., Zhang, T., Guo, M., et al. (2018) Sweet taste receptors mediated ROS-NLRP3 inflammasome signaling activation: implications for diabetic nephropathy. Journal of Diabetes Research, 2018, 7078214.PubMedPubMedCentral Zhou, L., Huang, W., Xu, Y., Gao, C., Zhang, T., Guo, M., et al. (2018) Sweet taste receptors mediated ROS-NLRP3 inflammasome signaling activation: implications for diabetic nephropathy. Journal of Diabetes Research, 2018, 7078214.PubMedPubMedCentral
Metadaten
Titel
Emerging Concepts in Brain Glucose Metabolic Functions: From Glucose Sensing to How the Sweet Taste of Glucose Regulates Its Own Metabolism in Astrocytes and Neurons
verfasst von
Menizibeya O. Welcome
Nikos E. Mastorakis
Publikationsdatum
18.07.2018
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 3/2018
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-018-8503-0

Weitere Artikel der Ausgabe 3/2018

NeuroMolecular Medicine 3/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.