Skip to main content
Erschienen in: Brain Structure and Function 7/2019

26.06.2019 | Short Communication

Ensemble encoding of action speed by striatal fast-spiking interneurons

verfasst von: Bradley M. Roberts, Michael G. White, Mary H. Patton, Rong Chen, Brian N. Mathur

Erschienen in: Brain Structure and Function | Ausgabe 7/2019

Einloggen, um Zugang zu erhalten

Abstract

Striatal fast-spiking interneurons (FSIs) potently inhibit the output neurons of the striatum and, as such, powerfully modulate action learning. Through electrical synaptic coupling, FSIs are theorized to temporally coordinate their activity. This has important implications for their ability to temporally summate inhibition on downstream striatal projection neurons. While some in vivo single-unit electrophysiological recordings of putative FSIs support coordinated firing, others do not. Moreover, it is unclear as to what aspect of action FSIs encode. To address this, we used in vivo calcium imaging of genetically identified FSIs in freely moving mice and applied machine learning analyses to decipher the relationship between FSI activity and movement. We report that FSIs exhibit ensemble activity that encodes the speed of action sub-components, including ambulation and head movements. These results suggest FSI population dynamics fit within a Hebbian model for ensemble inhibition of striatal output guiding action.
Literatur
Zurück zum Zitat DeLong MR, Georgopoulos AP (1981) Motor functions of the basal ganglia. In: Brookhart JM, Mountcastle VB, Brooks VB, Geiger SR (eds) Handbook of physiology. Sect. 1: The nervous system, vol II: Motor control. American Physiological Society, Bethesda, pp 1017–1061 DeLong MR, Georgopoulos AP (1981) Motor functions of the basal ganglia. In: Brookhart JM, Mountcastle VB, Brooks VB, Geiger SR (eds) Handbook of physiology. Sect. 1: The nervous system, vol II: Motor control. American Physiological Society, Bethesda, pp 1017–1061
Zurück zum Zitat Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York
Zurück zum Zitat Friedman J (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232CrossRef Friedman J (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232CrossRef
Zurück zum Zitat Friedman J (2002) Stochastic gradient boosting. Comput Stat Data Anal 38:367–378CrossRef Friedman J (2002) Stochastic gradient boosting. Comput Stat Data Anal 38:367–378CrossRef
Zurück zum Zitat Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70:119–136CrossRef Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70:119–136CrossRef
Zurück zum Zitat Guizar-Sicairos M, Thurman ST, Fienup JR (2008) Efficient subpixel image registration algorithms. Opt Lett 33:156–158CrossRef Guizar-Sicairos M, Thurman ST, Fienup JR (2008) Efficient subpixel image registration algorithms. Opt Lett 33:156–158CrossRef
Zurück zum Zitat Jin X, Tecuapetla F, Costa RM (2014) Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci 17:423–430CrossRef Jin X, Tecuapetla F, Costa RM (2014) Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci 17:423–430CrossRef
Zurück zum Zitat Kalanithi PS, Zheng W, Kataoka Y, DiFiglia M et al (2005) Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci USA 102:13307–13312CrossRef Kalanithi PS, Zheng W, Kataoka Y, DiFiglia M et al (2005) Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci USA 102:13307–13312CrossRef
Zurück zum Zitat Koos T, Tepper JM, Wilson CJ (2004) Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum. J Neurosci 24(36):7916–7922CrossRef Koos T, Tepper JM, Wilson CJ (2004) Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum. J Neurosci 24(36):7916–7922CrossRef
Zurück zum Zitat Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28:1–26CrossRef Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28:1–26CrossRef
Zurück zum Zitat Lovinger DM (2010) Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58(7):951–961CrossRef Lovinger DM (2010) Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58(7):951–961CrossRef
Zurück zum Zitat Luk KC, Sadikot AF (2001) GABA promotes survival but not proliferation of parvalbumin-immunoreactive interneurons in rodent neostriatum: an in vivo study with stereology. Neuroscience 104:93–103CrossRef Luk KC, Sadikot AF (2001) GABA promotes survival but not proliferation of parvalbumin-immunoreactive interneurons in rodent neostriatum: an in vivo study with stereology. Neuroscience 104:93–103CrossRef
Zurück zum Zitat Mathur BN, Tanahira C, Tamamaki N, Lovinger DM (2013) Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nat Neurosci 16:1275–1283CrossRef Mathur BN, Tanahira C, Tamamaki N, Lovinger DM (2013) Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nat Neurosci 16:1275–1283CrossRef
Zurück zum Zitat Schlösser B, Klausa G, Prime G, Ten Bruggencate G (1999) Postnatal development of calretinin- and parvalbumin-positive interneurons in the rat neostriatum: an immunohistochemical study. J Comp Neurol 405:185–198CrossRef Schlösser B, Klausa G, Prime G, Ten Bruggencate G (1999) Postnatal development of calretinin- and parvalbumin-positive interneurons in the rat neostriatum: an immunohistochemical study. J Comp Neurol 405:185–198CrossRef
Zurück zum Zitat Tepper JM, Koós T, Wilson CJ (2004) GABAergic microcircuits in the neostriatum. Trends Neurosci 27:662–669CrossRef Tepper JM, Koós T, Wilson CJ (2004) GABAergic microcircuits in the neostriatum. Trends Neurosci 27:662–669CrossRef
Zurück zum Zitat Tepper JM, Tecuapetla F, Koós T, Ibáñez-Sandoval O (2010) Heterogeneity and diversity of striatal GABAergic interneurons. Front Neuroanat 4:150CrossRef Tepper JM, Tecuapetla F, Koós T, Ibáñez-Sandoval O (2010) Heterogeneity and diversity of striatal GABAergic interneurons. Front Neuroanat 4:150CrossRef
Metadaten
Titel
Ensemble encoding of action speed by striatal fast-spiking interneurons
verfasst von
Bradley M. Roberts
Michael G. White
Mary H. Patton
Rong Chen
Brian N. Mathur
Publikationsdatum
26.06.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 7/2019
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-01908-7

Weitere Artikel der Ausgabe 7/2019

Brain Structure and Function 7/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.