Skip to main content
main-content

01.12.2017 | Research Article | Ausgabe 1/2017 Open Access

BMC Medical Imaging 1/2017

Estimation of myocardial deformation using correlation image velocimetry

Zeitschrift:
BMC Medical Imaging > Ausgabe 1/2017
Autoren:
Athira Jacob, Ganapathy Krishnamurthi, Manikandan Mathur
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12880-017-0195-7) contains supplementary material, which is available to authorized users.

Abstract

Background

Tagged Magnetic Resonance (tMR) imaging is a powerful technique for determining cardiovascular abnormalities. One of the reasons for tMR not being used in routine clinical practice is the lack of easy-to-use tools for image analysis and strain mapping. In this paper, we introduce a novel interdisciplinary method based on correlation image velocimetry (CIV) to estimate cardiac deformation and strain maps from tMR images.

Methods

CIV, a cross-correlation based pattern matching algorithm, analyses a pair of images to obtain the displacement field at sub-pixel accuracy with any desired spatial resolution. This first time application of CIV to tMR image analysis is implemented using an existing open source Matlab-based software called UVMAT. The method, which requires two main input parameters namely correlation box size (C B ) and search box size (S B ), is first validated using a synthetic grid image with grid sizes representative of typical tMR images. Phantom and patient images obtained from a Medical Imaging grand challenge dataset (http://​stacom.​cardiacatlas.​org/​motion-tracking-challenge/​) were then analysed to obtain cardiac displacement fields and strain maps. The results were then compared with estimates from Harmonic Phase analysis (HARP) technique.

Results

For a known displacement field imposed on both the synthetic grid image and the phantom image, CIV is accurate for 3-pixel and larger displacements on a 512 × 512 image with (C B ,S B )=(25,55) pixels. Further validation of our method is achieved by showing that our estimated landmark positions on patient images fall within the inter-observer variability in the ground truth. The effectiveness of our approach to analyse patient images is then established by calculating dense displacement fields throughout a cardiac cycle, and were found to be physiologically consistent. Circumferential strains were estimated at the apical, mid and basal slices of the heart, and were shown to compare favorably with those of HARP over the entire cardiac cycle, except in a few (∼4) of the segments in the 17-segment AHA model. The radial strains, however, are underestimated by our method in most segments when compared with HARP.

Conclusions

In summary, we have demonstrated the capability of CIV to accurately and efficiently quantify cardiac deformation from tMR images. Furthermore, physiologically consistent displacement fields and circumferential strain curves in most regions of the heart indicate that our approach, upon automating some pre-processing steps and testing in clinical trials, can potentially be implemented in a clinical setting.
Zusatzmaterial
Additional file 1 Appendix. Details of CIV algorithm and UVMAT software. (PDF 1720 kb)
12880_2017_195_MOESM1_ESM.pdf
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

BMC Medical Imaging 1/2017 Zur Ausgabe

Neu im Fachgebiet Radiologie

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise