Skip to main content
Erschienen in: BMC Infectious Diseases 1/2017

Open Access 01.12.2017 | Research article

Estimation of the burden of varicella in Europe before the introduction of universal childhood immunization

verfasst von: Margarita Riera-Montes, Kaatje Bollaerts, Ulrich Heininger, Niel Hens, Giovanni Gabutti, Angel Gil, Bayad Nozad, Grazina Mirinaviciute, Elmira Flem, Audrey Souverain, Thomas Verstraeten, Susanne Hartwig

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2017

Abstract

Background

Varicella is generally considered a mild disease. Disease burden is not well known and country-level estimation is challenging. As varicella disease is not notifiable, notification criteria and rates vary between countries. In general, existing surveillance systems do not capture cases that do not seek medical care, and most are affected by underreporting and underascertainment. We aimed to estimate the overall varicella disease burden in Europe to provide critical information to support decision-making regarding varicella vaccination.

Methods

We conducted a systematic literature review to identify all available epidemiological data on varicella IgG antibody seroprevalence, primary care and hospitalisation incidence, and mortality. We then developed methods to estimate age-specific varicella incidence and annual number of cases by different levels of severity (cases in the community, health care seekers in primary care and hospitals, and deaths) for all countries belonging to the European Medicines Agency (EMA) region and Switzerland.

Results

In the absence of universal varicella immunization, the burden of varicella would be substantial with a total of 5.5 million (95% CI: 4.7–6.4) varicella cases occurring annually across Europe. Variation exists between countries but overall the majority of cases (3 million; 95% CI: 2.7–3.3) would occur in children <5 years. Annually, 3–3.9 million patients would consult a primary care physician, 18,200–23,500 patients would be hospitalised, and 80 varicella-related deaths would occur (95% CI: 19–822).

Conclusions

Varicella disease burden is substantial. Most cases occur in children <5 years old but adults require hospitalisation more often and are at higher risk of death. This information should be considered when planning and evaluating varicella control strategies. A better understanding of the driving factors of country-specific differences in varicella transmission and health care utilization is needed. Improving and standardizing varicella surveillance in Europe, as initiated by the European Centre for Disease Prevention and Control (ECDC), is important to improve data quality to facilitate inter-country comparison.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12879-017-2445-2) contains supplementary material, which is available to authorized users.
Abkürzungen
CI
Confidence interval
DMDB
Detailed Mortality Database
ECDC
European Centre for Disease Prevention and Control
EMA
European Medicines Agency
EU
European Union
HI
Hospitalisation incidence
HR
Hospitalisation rate
PCI
Primary care incidence
PCR
Primary care rate
SDC
Supplementary Digital Content
SLR
Systematic literature review
WHO
World Health Organisation

Background

Varicella Zoster Virus (VZV) is a double-stranded DNA virus of the herpes virus family [1]. It causes varicella (chickenpox), a highly communicable disease which is usually contracted in early childhood, typically affecting children 2–8 years of age [1]. Varicella is usually a mild disease, but can cause complications requiring hospitalisation [2, 3] and, in rare instances, can even be fatal [4]. After initial infection with VZV, the virus becomes latent in sensory nerve ganglia. Viral reactivation, which usually occurs with increased age or immunosuppression, causes herpes zoster (shingles). Shingles is a painful condition associated with complications including post-herpetic neuralgia and cerebrovascular disease [1].
Although several vaccines for the prevention of varicella are licensed in the European Union (EU), few EU member states (n = 7) have implemented a general recommendation for their use [4]. This may be related to a lack of data on the epidemiology of varicella at the country level. The estimation of varicella burden at country level is challenging. Varicella is not a mandatory reportable disease in the EU [4], and systematic pan-European surveillance does not exist. Data, if existing, are based either on national mandatory reporting or more rarely, on national sentinel surveillance systems [5]. The systems differ by the type of cases captured (all cases vs. medically attended cases or only cases with complications), case definitions used, methods for case ascertainment (clinical, laboratory, epidemiologically-linked, or combinations thereof), and data type (case-based or aggregated data). Additionally, available surveillance systems are almost all affected by underreporting [6, 7] and underascertainment: most surveillance systems only capture medically attended disease but not all patients with varicella seek medical care [8].
Systematic literature reviews (SLRs) on the burden of varicella in the EU have recently been conducted by ECDC [4] and Helmuth et al. [3], but like previous reviews, they were descriptive in nature. We set out to quantify the country-specific burden of varicella disease in Europe by using all publicly available data and extrapolating for those countries where we did not find data. To our knowledge, our study is the first to systematically estimate the burden of varicella for individual European countries. We anticipate that this work will contribute to a better understanding of the burden of varicella in Europe, and support decision-making regarding varicella vaccination.

Methods

Systematic literature review

Search strategy

A PubMed search was conducted for peer-reviewed publications reporting primary incidence, mortality or seroprevalence data in any language in countries under the European Medicines Agency (EMA) plus Swizerland. The search was limited to articles published on or after January 1st, 1995 and restricted to human studies. The full search string used was “Varicella AND (mortality OR complications OR epidemiology OR seroprevalence OR prevalence OR incidence) AND (“Europe”[Mesh] OR Austria OR Belgium OR Bulgaria OR Croatia OR Cyprus OR “Czech Republic” OR Denmark OR Estonia OR Finland OR France OR Germany OR Greece OR Hungary OR Iceland OR Ireland OR Italy OR Latvia OR Liechtenstein OR Lithuania OR Luxembourg OR Malta OR Netherlands OR Norway OR Poland OR Portugal OR Romania OR Slovenia OR Slovakia OR Spain OR Sweden OR “United Kingdom” OR Switzerland)”. Additional information was obtained from the ECDC and national health institutes websites, and through personal communication with national varicella surveillance focal points. Hand searching of the reference lists of papers selected for inclusion was conducted to identify additional publications.

Outcomes

Outcomes of interest for the literature review were varicella IgG antibody seroprevalence, incidence of varicella (varicella associated primary care visits and hospitalisations) and mortality.

Eligibility criteria

Studies were eligible for inclusion if: 1) they provided data for one or more of the outcomes of interest in the general population, 2) the data were collected before the introduction of universal varicella immunization for countries where universal varicella immunization has been introduced, and 3) the study was published on or after January 1st 1995. Studies were excluded if they did not contain primary data or if the study population was not representative of the general population in terms of varicella transmission dynamics and/or risk of infection (e.g. immunosuppressed patients, imprisoned individuals, or day care workers).

Data extraction

Two reviewers (MB, MR) screened titles and abstracts. Discrepancies were extensively discussed and no third reviewer was necessary to resolve disagreements. Evaluation of full text eligibility and data extraction was conducted by a single reviewer (MR). For articles published in languages other than English, reviewers were able to directly read and extract articles in Dutch, German, French, Swedish, Italian, Portuguese and Spanish. For one article in Icelandic, translation software was used for the body text. Legends for the tables and the abstract were provided in English by the journal. For quality control, a sample of 10% of the papers was re-extracted by a third reviewer (TV). The following data was extracted and stored in an MS Excel grid when available: author, journal, year of publication, country, study design, setting (community, primary care, hospital, other), population, case ascertainment, age range, sample size, and incidence or proportion with 95% confidence intervals (CIs). The quality of the evidence was assessed by a single reviewer (MR) with a risk of bias tool adapted from the one by Hoy et al. [9] (Additional file 1). This tool facilitated the scoring of studies from 0 to 8, with the following four categorisations: Excellent (very low risk of bias) – score 8 and prospective study design; Good (low risk of bias) – score 8, but no prospective study design; Acceptable (medium risk of bias) score 6–7; Low (high risk of bias) – score less than 6.

Incidence estimation

We aimed to estimate the annual incidence rates of varicella cases that 1) occurred in the community (with or without health care visit), 2) resulted in an ambulatory primary health care visit, 3) required hospitalisation, or 4) caused death.
Data sources were used for incidence estimation if: 1) studies attained a quality score of 6 or more; 2) data collection was conducted for at least 1 year; and 3) age-specific data was provided. In cases where the same data source was used to report incidence for different time periods, we selected the source with the longest time period covered and/or most recent data for inclusion in our analyses. We excluded data derived from mandatory notification systems which may be substantially affected by underreporting [10], except for countries where mandatory notification was the only data source available. When the age groups reported in the original data source did not match our age groups of interest, we either used weighted averages (to combine several age groups) or we redistributed the age groups assuming constant incidence within the age groups (to split a single age group). Age groups without upper limits were excluded from the calculations, because the width of the age group was not known and therefore the incidence cannot be recalculated for the age group of interest.

Incidence estimation for countries with data

Few studies in Europe have assessed the incidence rate of varicella at the community level. We therefore opted to derive the annual age-specific varicella incidence (per 100,000) from seroprevalence studies, which are commonly available. Particularly, for each country we first estimated age-specific seroprevalence using the catalytic model with a piecewise constant force of infection. Then, from these estimated profiles, we derivedincidence rates (and 95% CIs) as differences in seroprevalences for six age groups, < 5, 5–9, 10–14, 15–19, 20–39 and 40+ years. This approach assumes lifelong immunity, time homogeneity and non-differential mortality. For more details on the methodology used, we refer to Bollaerts et al. (Bollaerts K, Riera-Montes M, Hens N et al. A systematic review of varicella seroprevalence in European countries before universal childhood immunization: deriving incidence from seroprevalence data. Submitted 2017).
For incidence rates at the primary care and hospital level, we relied upon the published age-specific data for countries with more extensive information. For countries with more than one estimate, we provide a range with the lowest and highest estimates.
Varicella-specific mortality data was obtained from the World Health Organisation (WHO) European Detailed Mortality Database (DMDB) [11]. The DMDB contains mortality data by cause of death (ICD-9 or ICD-10 codes), age and sex. Other country-specific mortality data sources identified during the SLR were found either to rely upon the same data source that feeds into the WHO DMDB or to provide comparable results. We obtained mortality data for all countries for the 10 most recent years available prior to the introduction of universal varicella immunization. We calculated the Poisson exact 95% CIs of the mortality rates.

Incidence estimation for countries without data

To obtain age-specific community, primary care and hospital incidence estimates for countries without data, we took a 2-step approach. Firstly, we tried to build prediction models for each outcome and age group, calibrated using information from the countries with data. Secondly, when the model failed to predict (i.e. non-significance of any of the potential predictor variables), we extrapolated the minimum and maximum observed estimates within the same age group from countries with data (Table 2).
Particularly, we built a linear regression model based on the incidences in the younger age groups and country-level prediction variables that have been shown to be associated with country-level differences in varicella transmissibility and health care use [12, 13] (Additional file 2): proportion of children <3 years that receive no formal childcare [14], population density [14], inequality in income distribution [14], proportion of people at risk of poverty [14], total health expenditure [15], proportion of households with 1, 2, 3, and 4 or more children [14], number of annual consultations of a medical doctor per inhabitant [14], and number of acute hospital discharges per 100 population [14].
We failed to predict primary care incidence (PCI) and hospitalisation incidence (HI). Therefore, we relied upon the ratio between PCI and community incidence - the primary care rate (PCR), and on the ratio between HI and community incidence - the hospitalisation rate (HR). Specifically, we calculated PCI or HI by multiplying the country’s age-specific community incidence with the corresponding age-specific average minimum-maximum observed PCR or HR. We preferred this approach to the alternative approach of simply imputing the PCI and HI that was observed in other countries, as this would not take into account differences in community incidence.
No imputations were required for mortality data, as these were available from the DMDB for all countries.

Validation

To evaluate our methodology, we used information from a recent varicella study in Norway [16], which was conducted in 2015 and published after our literature search had concluded. This study provided both age-specific seroprevalence proportions and age-specific estimates of PCI at the national level. We used this published seroprevalence data to estimate varicella community incidence and derive PCI as described above.

Estimation of annual number of cases

To estimate the annual country-specific numbers of varicella-associated community cases, ambulatory primary care consultations, hospitalisations, and deaths per age group, we applied age-specific community incidence, PCI, HI, and mortality rates to each country’s population. Population data was obtained from Eurostat for the latest year available (2015) [14]. The total annual number of cases within Europe was then calculated by summing the number of cases for each country. The numbers of varicella-associated community cases and deaths are presented as point estimates with 95% CIs, while the numbers of varicella-related primary care consultations and hospitalisations are presented as a range.
We compared the estimated annual country-specific numbers of varicella-associated community cases to the numbers reported to EUVAC.NET, in order to estimate the underreporting of the disease. EUVAC.NET is a European surveillance network for selected vaccine-preventable diseases that was active until 2011 and was hosted by the Staten Serum Institute (SSI), Denmark. It incorporated 18 countries; all EU Member States up to 2011, as well as Croatia, Iceland, Norway, Switzerland and Turkey. Number of varicella cases were reported annually by all countries. We compared the EUVAC.NET data of 2009–2010 to our results, and calculated the ratio of reported to estimated number of cases, expressed in percentages.

Results

Systematic literature review

The literature search was conducted in PubMed on October 2nd 2015. Identification of grey literature sources was conducted between October and December 2015.
We identified 120 data sources from 31 countries for extraction (Fig. 1) [5, 7, 8, 11, 17127]. Most data sources (97/120) scored the maximum in terms of quality assessment (score of 8). Only one data source scored less than 6. A table summarizing the main characteristics of all selected data sources, and a summarised version of the full data extraction table is provided in Additional files 3 and 4.
The most frequently found unique data source was on seroprevalence (n = 52) [1768], followed by hospitalisation (n = 39) [23, 27, 40, 69104], primary care (n = 27) [7, 8, 23, 27, 74, 76, 7881, 97, 99, 102, 104117], mortality (n = 15) [11, 23, 27, 7476, 79, 80, 84, 91, 97, 118121], and incidence of reported varicella cases through mandatory surveillance (n = 14) (Table 1) [5, 26, 27, 40, 79, 80, 101, 116, 122127]. Varicella community incidence was estimated from 43 seroprevalence data sources from 16 countries [1727, 2941, 4447, 4954, 5762, 64, 65, 68], primary care incidence from 17 PCI data sources from 8 countries [23, 74, 76, 79, 80, 99, 101, 102, 104106, 109, 110, 112, 114, 124, 126], hospitalisation incidence from 18 HI data sources from 10 countries [23, 6973, 75, 76, 7981, 84, 87, 90, 91, 94, 102, 103], and one data source was used to estimate mortality in 31 countries [11] (Table 2). Data on all four outcomes was only available for six countries (Belgium, France, Italy, the Netherlands, Spain and the UK).
Table 1
Number of literature sources available per outcome per country, broken down by outcomea
Country
N of sources
Outcome
Country
N papers
N grey literature
Sero-prevalence
Primary care incidence
Hospitalization incidence
Mortality
Austria
1
1
1
  
1
Belgium
5
4
4
3
2
3
Bulgaria
0
4
 
3
 
1
Croatia
1
4
1
3
 
1
Cyprus
0
3
 
2
 
1
Czech Rep
0
4
 
3
 
1
Denmark
0
1
   
1
Estonia
0
4
 
3
 
1
Finland
4
4
3
3
 
2
France
6
7
3
6
3
4
Germany
7
1
2
2
2
2
Greece
4
2
1
1
3
1
Hungary
1
4
 
4
 
1
Iceland
1
1
1
  
1
Ireland
4
4
3
 
3
2
Italy
14
3
7
9
5
2
Latvia
0
3
 
2
 
1
Lithuania
0
4
 
3
 
1
Luxembourg
1
1
1
1
1
1
Malta
0
4
 
3
 
1
Netherlands
7
2
4
5
4
2
Norway
0
1
   
1
Poland
3
4
1
5
1
1
Portugal
3
1
2
1
 
1
Romania
1
4
 
4
 
1
Slovakia
1
4
1
3
 
1
Slovenia
2
4
1
4
 
1
Spain
22
2
10
5
9
3
Sweden
4
1
1
 
3
1
Switzerland
6
1
5
1
 
1
UK
13
4
5
12
3
4
Total
101
18
57
91
39
46
Unique data sources
  
52
37
39
15
aThis includes literature sources that were not eligible for the estimation of the burden of varicella disease in Europe
Table 2
Number of data sources and countries included in incidence estimation per outcome
Outcome
N data sources
N countries
Countries with data
Community incidence (derived from seroprevalence data)
43
16
Belgium, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Poland, Slovakia, Slovenia, Spain, Switzerland, UK
Primary care incidence
17
8
Belgium, France, Italy, Netherlands, Poland, Romania, Spain, UK
Hospitalization incidence
18
10
Belgium, France, Germany, Greece, Ireland, Italy, Netherlands, Spain, Sweden, UK
Mortality
1
31
All

Varicella community incidence

The final model to predict community incidence in <5 year olds included as country-level predictors the proportion of children <3 years attending pre-school care and population density, with a moderate goodness of fit (R2 = 40%). For 5–9 year olds, the prediction model included the incidence in <5 year olds with a moderate to high goodness of fit (R2 = 80%). For the older age groups, we had to rely upon extrapolation. We first categorised countries based on the speed of varicella acquisition in children <5 years (annual incidence < or ≥10%) as in Bollaerts et al. (Bollaerts K, Riera-Montes M, Hens N et al. A systematic review of varicella seroprevalence in European countries before universal childhood immunization: deriving incidence from seroprevalence data. Submitted 2017). Then, we extrapolated the minimum and maximum age specific community incidence observed in countries with data (Table 2) to countries without data within the same category.
Age-specific annual incidence rates of varicella, as derived from serological data, varied considerably across the countries, particularly in age groups 10–14 and 15–19 years. In most countries the highest annual incidence was observed amongst children aged <5 years, ranging from 7052 (Greece) to 17,974 (Malta) per 100,000 (Table 3). In Bulgaria, Czech Republic, Italy, Romania, Switzerland and Greece the highest incidence was observed in 5–9 year olds. From the age of 10 years onwards, varicella incidence dropped drastically. Countries with the highest incidence in children <5 years had lower incidence rates in 10–14 year olds than those countries with the highest incidence in children 5–9 years of age. By the age of 15–19 years, incidence was <1000 per 100,000 in all countries with the exception of Greece.
Table 3
Age-specific annual community incidence (/100,000) of varicella in European countries before the introduction of universal childhood immunization programs
Country
Annual incidence /100.000 (95% CI) per age group in years
<5
5–9
10–14
15–19
20–39
40+
Austriaa
8986 (7449–10,523)
8421 (7643–9200)
1267 (882–1652)
688 (554–822)
195 (192–198)
18 (10–26)
Belgium
14,628 (13,848–15,408)
4126 (3160–5124)
284 (136–480)
220 (114–342)
120 (75–163)
38 (31–45)
Bulgariaa
8097 (6237–9957)
9053 (8136–9970)
1267 (882–1652)
688 (554–822)
195 (192–198)
18 (10–26)
Croatiaa
8911 (7386–10,436)
8475 (7685–9264)
1267 (882–1652)
688 (554–822)
195 (192–198)
18 (10–26)
Cyprusa
10,039 (8838–11,240)
7674 (7022–8325)
272 (0–916)
213 (0–698)
123 (0–372)
48 (0–113)
Czech Republica
7707 (5350–10,065)
9330 (8346–10,313)
1267 (882–1652)
688 (554–822)
195 (192–198)
18 (10–26)
Denmarka
15,965 (12,545–19,385)
3464 (2307–4622)
272 (0–916)
213 (0–698)
123 (0–372)
48 (0–113)
Estoniaa
8850 (7256–10,444)
8518 (7720–9317)
1267 (882–1652)
688 (554–822)
195 (192–198)
18 (10–26)
Finland
10,130 (9336–10,850)
8680 (7830–9530)
40 (0–102)
38 (0–94)
35 (0–79)
30 (0–55)
France
13,488 (12,698–14,254)
4668 (3554–5722)
554 (260–974)
388 (208–596)
172 (113–222)
36 (17–56)
Germany
11,884 (10,972–12,646)
7048 (6192–8046)
246 (156–374)
190 (126–266)
103 (77–128)
32 (24–40)
Greece
7052 (5986–7998)
7462 (5026–9578)
2804 (0–6364)
1370 (0–1666)
310 (0–543)
14 (0–213)
Hungarya
8752 (7101–10,404)
8588 (7775–9401)
1267 (882–1652)
688 (554–822)
195 (192–198)
18 (10–26)
Iceland
11,460 (8400–12,520)
7940 (6840–11,260)
0 (0–0)
0 (0–0)
0 (0–0)
0 (0–0)
Ireland
11,954 (10,688–13,194)
6434 (4894–7776)
76 (0–412)
72 (0–334)
65 (0–209)
52 (0–91)
Italy
8020 (7320–8736)
8118 (7072–9112)
916 (666–1242)
698 (534–892)
372 (320–421)
113 (93–128)
Latviaa
9239 (7726–10,751)
8242 (7498–8986)
1267 (882–1652)
688 (554–822)
195 (192–198)
18 (10–26)
Lithuaniaa
9468 (8045–10,891)
8079 (7365–8794)
1267 (882–1652)
688 (554–822)
195 (192–198)
18 (10–26)
Luxembourg
15,720 (14,482–16,790)
3292 (2070–4560)
152 (58–314)
128 (54–238)
86 (44–126)
41 (28–49)
Maltaa
17,974 (7481–28,467)
2037 (489–3586)
272 (0–916)
213 (0–698)
123 (0–372)
48 (0–113)
Netherlands
16,122 (15610–16,592)
3350 (2854–3902)
20 (4–46)
20 (4–42)
18 (4–36)
15 (3–26)
Norwaya
13,279 (10,433–16,124)
5372 (4653–6092)
272 (0–916)
213 (0–698)
123 (0–372)
48 (0–113)
Poland
8974 (7980–9990)
7734 (6148–9192)
1652 (662–2740)
822 (492–1022)
192 (94–284)
10 (1–71)
Portugala
12,693 (11,009–14,378)
5788 (5134–6443)
272 (0–916)
213 (0–698)
123 (0–372)
48 (0–113)
Romaniaa
7108 (4663–9552)
9755 (8665–10,846)
1267 (882–1652)
688 (554–822)
195 (192–198)
18 (10–26)
Slovakia
9362 (8398–10,330)
8264 (6926–9564)
882 (462–1494)
554 (348–758)
198 (152–230)
26 (8–56)
Slovenia
11,640 (10,764–12,472)
6954 (5978–7956)
274 (148–464)
220 (128–336)
132 (93–169)
51 (36–61)
Spain
10,874 (10,234–11,550)
7312 (6572–8014)
314 (236–400)
260 (202–318)
165 (139–188)
71 (64–76)
Swedena
13,578 (10,635–16,522)
5160 (4401–5919)
272 (0–916)
213 (0–698)
123 (0–372)
48 (0–113)
Switzerland
7368 (6494–8314)
11,798 (10,816–12,722)
74 (0–346)
68 (0–220)
54 (0–94)
36 (0–42)
UK
12,982 (12,230–13,718)
4656 (3638–5610)
388 (160–696)
324 (148–530)
212 (120–281)
95 (74–106)
acountries where community incidence was predicted

Varicella primary care incidence

We failed to model the PCI for any of the age groups and we therefore had to rely upon the maximum-minimum approach. The estimated PCRs ranged from 18% (Netherlands, 5–9 year olds) to 100% (Netherlands, 10–64 y; Italy, 10–14 y; Spain, 10–14 y; UK, 10–39 y; France, 5–64 y) across all age groups.
Varicella primary care incidence was highest in children <5 years with substantial inter-country variation, ranging from 1100 per 100,000 in Romania to 13,069 per 100,000 in France. Incidence decreased with age, dropping substantially from the age of 10 years onwards (Table 4).
Table 4
Age-specific annual primary care incidence/100,000 of varicella in Europe before the introduction of universal childhood immunization programs
Country
Annual incidence /100,000 (min-max) per age group in years
<5
5–9
10–14
15–19
20–39
40+
Austriaa
4773–5322
3623–5076
1610–3457
454–982
136–251
11–18
Belgium
4502-NA
1006-NA
190-NA
63-NA
49-NA
15-NA
Bulgariaa
4301–4796
3895–5457
1610–3457
454–982
136–251
11–18
Croatiaa
4733–5278
3646–5109
1610–3457
454–982
136–251
11–18
Cyprusa
5332–5946
3302–4626
346–742
141–304
86–158
30–49
Czech Rep.a
4093–4565
4014–5624
1610-3457
454–982
136–251
11–18
Denmarka
8480–9456
1490–2088
346–742
141–304
86–158
30–49
Estoniaa
4701–5242
3665–5134
1610–3457
454–982
136–251
11–18
Finlanda
5380-6000
3735-5232
51-109
25–54
24–45
19–31
France
10,694–13,069
3344–5917
368–1283
161–342
68–281
28–56
Germanya
6312-7039
3032-4248
313-671
125–271
72–133
20–33
Greecea
3746-4177
3211-4498
3562-7651
904–1955
216–398
9–15
Hungarya
4649–5184
3695–5177
1610–3457
454–982
136–251
11–18
Icelanda
6087-6788
3416-4786
0-0
0–0
0–0
0–0
Irelanda
6349-7080
2768-3878
97-207
48–103
45–83
33–53
Italy
7476–7582
4548–5062
1052–2283
461–996
260–478
71–116
Latviaa
4907–5472
3546–4968
1610–3457
454–982
136–251
11–18
Lithuaniaa
5029–5608
3476–4870
1610–3457
454–982
136–251
11–18
Luxembourga
8350-9311
1416-1984
193-415
84–183
60–111
26–42
Maltaa
9547–10,646
876–1228
346–742
141–304
86–158
30–49
Netherlands
3032–5817
591–1535
52–180
32–92
23–50
12–23
Norwaya
7053–7865
2311–3238
346–742
141–304
86–158
30–49
Poland
3929-NA
4106-NA
923-NA
197-NA
77-NA
9-NA
Portugala
6742–7518
2490–3489
346–742
141–304
86–158
30–49
Romania
1100-NA
1450-NA
1000-NA
500-NA
89-NA
8-NA
Slovakiaa
4973-5545
3556-4981
1121-2407
366–791
138–255
17–27
Sloveniaa
6182-6894
2992-4192
348-748
145–314
92–170
32–52
Spain
8304-NA
3281-NA
747-NA
172–371
115–212
45–73
Swedena
7212–8042
2220–3110
346–742
141–304
86–158
30–49
Switzerlanda
3913-4364
5076-7112
94-202
45–97
38–69
22–37
UK
3838–4695
1562–3012
339–653
245–365
213–255
22–67
acountries where primary care incidence was predicted NA: Not applicable

Varicella hospitalisation incidence

We also failed to model the HI for any age group and used the minimum-maximum approach instead. The estimated HRs ranged from 0.05% (Ireland, 5–9 y) to 3.5% (Netherlands, 20–39 y) across all age groups.
All countries presented the highest HI in children <5 years. Incidence ranged from 9 per 100,000 in Sweden to 75 per 100,000 in France, decreasing to <20 per 100,000 for all countries in the 5–9 years age group (Table 5). In older age groups, HI remained ≤10 per 100,000.
Table 5
Age-specific annual hospitalization incidence (/100,000) of varicella in Europe before the introduction of universal childhood immunization programs
Country
Annual incidence /100,000 (min-max) per age group in years
<5
5–9
10–14
15–19
20–39
40+
Austriaa
28–34
10–13
6–9
3–5
3–3
0–0
Belgium
79-NA
3-NA
1–2
1–2
2–2
0–1
Bulgariaa
25–31
11–14
6–9
3–5
3–3
0–0
Croatiaa
28–34
10–13
6–9
3–5
3–3
0–0
Cyprusa
31–38
9–12
1–2
1–2
2–2
1–1
Czech Republica
24–29
11–15
6–9
3–5
3–3
0–0
Denmarka
50–60
4–5
1–2
1–2
2–2
1–1
Estoniaa
28–33
10–13
6–9
3–5
3–3
0–0
Finlanda
32-38
11–14
0–0
0–0
0–1
0–0
France
57–75
3–9
0.6–1.8
5.6-NA
3.5–NA
1–NA
Germany
45–NA
10–NA
2–NA
1–1
1–2
0–0
Greece
22–NA
12–NA
2.3–NA
7–10
4–5
0–0
Hungarya
27–33
10–13
6–9
3–5
3–3
0–0
Icelanda
36–43
10–12
0–0
0–0
0–0
0–0
Ireland
10–NA
3-NA
0.9–NA
0.1-NA
0.5–NA
0.4–NA
Italy
37–NA
19–NA
5.2–NA
2.5-NA
2.7–NA
0.7–NA
Latviaa
29–35
10–13
6–9
3–5
3–3
0–0
Lithuaniaa
29–36
10–13
6–9
3–5
3–3
0–0
Luxembourga
49-59
4–5
1–1
1–1
1–1
0–1
Maltaa
56–68
2–3
1–2
1–2
2–2
1–1
Netherlands
15–19
2–2
0.2–0.3
0.1–0.2
0.6–0.6
0.2–0.3
Norwaya
41–50
7–8
1–2
1–2
2–2
1–1
Polanda
28–34
9–12
8–11
4–6
3–3
0–0
Portugala
39–48
7–9
1–2
1–2
2–2
1–1
Romaniaa
22–27
12–15
6–9
3–5
3–3
0–0
Slovakiaa
29–35
10–13
4–6
3–4
3–3
0–0
Sloveniaa
36–44
8–11
1–2
1–2
2–2
1–1
Spain
23–51
5–12
0.9–3.1
0.9–NA
2.1–3.1
1–1.6
Sweden
9–30
6–NA
1.2–NA
1–2
2–2
1–1
Switzerlanda
23–28
14–18
0–1
0–0
1–1
0–0
UK
39–54
8–16
1.5–3.1
2.7–5.5
2.7–5.7
0.6–1
acountries where primary care incidence was predicted

Varicella mortality

Estimated varicella mortality was very low with an annual incidence <0.2 deaths per 100,000 in all age groups and countries (Table 6). For most countries, the mortality was highest in children <5 years. However, in some countries (Czech Republic, Greece, Ireland, Slovakia), mortality was higher in the 5–9 year age group, and in Lithuania, the mortality peak was found in the 10–14 years age group.
Table 6
Age-specific annual mortality incidence (/100,000) of varicella in European countries before the introduction of universal childhood immunization programs
Country
Annual incidence /100,000 (95% CI) per age group in years
<5
5–9
10–14
15–19
20–39
40+
Austria
0.08 (0–1.06)
0 (0–0.91)
0 (0–0.89)
0 (0–0.81)
0 (0–0.17)
0 (0–0.09)
Belgium
0.13 (0–0.81)
0.02 (0–0.59)
0.02 (0–0.63)
0 (0–0.58)
0 (0–0.13)
0.02 (0–0.11)
Bulgaria
0.03 (0–1.16)
0 (0–1.08)
0 (0–1.16)
0 (0–1.17)
0 (0–0.2)
0 (0–0.09)
Croatia
0.09 (0–1.97)
0.04 (0–1.82)
0 (0–1.79)
0 (0–1.52)
0.01 (0–0.35)
0 (0–0.16)
Cyprus
0 (0–7.45)
0 (0–7.77)
0 (0–8.15)
0 (0–7)
0 (0–1.32)
0 (0–0.93)
Czech Rep.
0 (0–0.66)
0.02 (0–0.68)
0 (0–0.78)
0 (0–0.8)
0 (0–0.12)
0 (0–0.07)
Denmark
0.06 (0–1.36)
0 (0–1.11)
0 (0–1.11)
0 (0–1.05)
0 (0–0.26)
0 (0–0.13)
Estonia
0 (0–5.11)
0 (0–4.9)
0 (0–5.84)
0 (0–6.17)
0 (0–1.03)
0 (0–0.54)
Finland
0 (0–1.22)
0 (0–1.21)
0 (0–1.26)
0 (0–1.2)
0 (0–0.27)
0.03 (0–0.19)
France
0.07 (0.01–0.22)
0.02 (0–0.13)
0.01 (0–0.11)
0 (0–0.1)
0.01 (0–0.04)
0.02 (0.01–0.05)
Germany
0.03 (0–0.17)
0.01 (0–0.13)
0.01 (0–0.12)
0 (0–0.09)
0 (0–0.03)
0 (0–0.02)
Greece
0 (0–0.73)
0.02 (0–0.71)
0.02 (0–0.73)
0 (0–0.68)
0.03 (0–0.18)
0 (0–0.06)
Hungary
0.06 (0–0.95)
0.02 (0–0.79)
0 (0–0.77)
0 (0–0.71)
0.01 (0–0.15)
0 (0–0.08)
Iceland
0 (0–16.04)
0 (0–16)
0 (0–17.3)
0 (0–16.71)
0 (0–3.97)
0 (0–2.52)
Ireland
0 (0–1.04)
0.05 (0–1.17)
0 (0–1.19)
0 (0–1.26)
0 (0–0.29)
0.06 (0–0.3)
Italy
0.04 (0–0.2)
0.01 (0–0.14)
0.01 (0–0.15)
0 (0–0.14)
0.01 (0–0.04)
0.01 (0–0.02)
Latvia
0 (0–3.78)
0 (0–3.48)
0 (0–3.97)
0 (0–4.15)
0 (0–0.68)
0 (0–0.35)
Lithuania
0 (0–2.47)
0 (0–2.67)
0.06 (0–2.82)
0 (0–2.15)
0 (0–0.49)
0 (0–0.24)
Luxembourg
0 (0–11.45)
0 (0–11.66)
0 (0–11.59)
0 (0–10.99)
0 (0–2.3)
0 (0–1.35)
Malta
0 (0–17.66)
0 (0–18.37)
0 (0–18.16)
0 (0–15.28)
0 (0–3.02)
0 (0–1.69)
Netherlands
0.04 (0–0.5)
0.01 (0–0.42)
0.01 (0–0.39)
0 (0–0.37)
0 (0–0.09)
0.02 (0–0.08)
Norway
0 (0–1.18)
0 (0–1.16)
0 (0–1.2)
0 (0–1.13)
0.01 (0–0.28)
0.07 (0.01–0.27)
Poland
0.03 (0–0.25)
0.03 (0–0.23)
0 (0–0.2)
0 (0–0.19)
0 (0–0.04)
0 (0–0.03)
Portugal
0.03 (0–0.88)
0.03 (0–0.8)
0 (0–0.69)
0 (0–0.67)
0.02 (0–0.18)
0.01 (0–0.08)
Romania
0.09 (0–0.56)
0 (0–0.34)
0.01 (0–0.36)
0 (0–0.34)
0 (0–0.07)
0 (0–0.04)
Slovakia
0 (0–1.31)
0.04 (0–1.39)
0 (0–1.4)
0 (0–1.26)
0 (0–0.22)
0 (0–0.14)
Slovenia
0 (0–3.37)
0 (0–3.56)
0 (0–4.02)
0 (0–3.88)
0 (0–0.67)
0.02 (0–0.36)
Spain
0.06 (0–0.27)
0.02 (0–0.18)
0.01 (0–0.19)
0 (0–0.18)
0.03 (0.01–0.08)
0.01 (0–0.04)
Sweden
0.12 (0–0.86)
0.02 (0–0.69)
0.04 (0–0.79)
0 (0–0.7)
0 (0–0.15)
0.04 (0–0.14)
Switzerland
0.03 (0–0.94)
0.03 (0–0.96)
0 (0–0.92)
0 (0–0.84)
0 (0–0.17)
0.03 (0–0.14)
UK
0.11 (0.03–0.27)
0.03 (0–0.16)
0.01 (0–0.12)
0.01 (0–0.12)
0.02 (0–0.05)
0.05 (0.03–0.08)

Validation

The observed annual community incidence in children under 10 years of age in Norway was in line with our predictions (8669 vs 9326 per 100,000). However, the model overestimated the number of cases in <5 year olds and underestimated the incidence in 5–9 year olds compared to the observed data (Table 7). The model also predicted substantially higher estimates of varicella PCI in Norway in most age groups compared to observed data, particularly in children under 10 years of age (Table 8).
Table 7
Norway: varicella age-specific annual community incidence (/100,000) before the introduction of universal childhood immunization programs, predicted vs observed
Age group (years)
Predicted incidence per 100,000 (95% CI)
Observed incidence per 100,000 (95% CI)
< 5
13,279 (10,433–16,124)
9164 (8100–10,344)
5–9
5372 (4653–6092)
8174 (6526–9644)
10–14
272 (0–916)
240 (70–486)
15–19
213 (0–698)
218 (68–414)
20–39
123 (0–372)
174 (62–287)
≥ 40
48 (0–113)
114 (53–149)
Table 8
Norway: Varicella age-specific annual primary care incidence (/100,000) before the introduction of universal childhood immunization programs, predicted versus observed
Age group (years)
Observed incidence per 100,000
Predicted incidence per 100,000
Extrapolation from observed community incidence
Extrapolation from predicted community incidence
< 5
2030
4851–5410
7053–7865
5–9
919
3517–4927
2311–3238
10–14
189
305–655
346–742
15–19
104
144–311
141–304
20–39
84
121–223
86–158
≥ 40
14
72–117
30–49

Annual number of varicella cases

We estimated that across European countries, and in the absence of universal varicella immunization, 5.5 million (95% CI: 4.7–6.4) new varicella cases would occur annually. Most cases (3 million; 95% CI: 2.7–3.3) would occur in children <5 years. At least 54% of varicella cases are expected to result in an ambulatory primary care visit and 0.3% will require hospitalisation (Table 9), implying that annually 3–3.9 million patients would consult a primary care physician and 18,200–23,500 patients be hospitalised. In addition, approximately 80 varicella-related deaths are expected to occur every year (95% CI: 19–822) (Fig. 2, Table 9). (See Additional file 5 for country-specific data).
Table 9
Annual number of varicella cases, consultations, hospitalizations and deaths and consultation, hospitalization and case fatality rates in Europe before the introduction of universal childhood immunization programs
Outcome
Age group (years)
<5
5–9
10–14
15–19
20–39
40+
Total
N varicella cases
3,029,226
1,816,442
175,020
116,926
244,923
141,087
5,523,624
N varicella consultations
1,660,087
826,610
179,400
67,609
164,118
78,015
2,975,839
N varicella hospitalizations
9905
2386
712
718
3209
1233
18,163
N varicella deaths
16
5
2
1
12
45
81
Proportion of varicella cases consulting a physician (%)
54.80
45.51
100.00
57.82
67.01
55.30
53.87
Proportion of varicella cases that are hospitalized (%)
0.33
0.13
0.41
0.61
1.31
0.87
0.33
Case fatality rate (%)
0.001
0.000
0.001
0.001
0.005
0.032
0.001
From comparing the number of annual varicella cases reported to EUVAC.NET to our estimates, an important under-reporting to EUVAC.NET was found, with only <1% (Greece: 6 vs 109,214 cases) to 51% (Slovenia: 11,074 vs 21,729 cases) of all cases of varicella occurring in the community reported to EUVAC.NET (Table 10) [123].
Table 10
Number of estimated varicella cases occurring in European countries every year, number of varicella cases reported to EUVAC
Country
Annual estimated number of cases in the community (All ages)
Number of varicella cases reported to EUVAC.NET (2009)
Number of varicella cases reported to EUVAC.NET (2010)
Average number of cases reported to EUVAC.NET (2009/10)
Reported cases/estimated total cases (%)
Bulgaria
68,840
29,117
19,724
24,421
35
Croatia
43,380
17,563
16,027
16,795
39
Cyprus
9387
159
75
117
1
Czech Republic
112,559
47,192
48,270
47,731
42
Estonia
14,846
8556
6146
7351
50
Finlanda
58,715
360
358
359
1
Greeceb
109,214
7
5
6
0
Hungary
97,591
40,460
39,602
40,031
41
Italy
597,881
56,502
39,649
48,076
8
Latvia
20,772
5019
3697
4358
21
Lithuania
28,498
12,698
11,042
11,870
42
Malta
4524
183
92
138
3
Norwayc
63,105
31
NR
31
0
Poland
403,362
140,115
183,446
161,781
40
Romania
206,872
44,693
36,245
40,469
20
Slovakia
57,449
17,735
19,887
18,811
33
Slovenia
21,729
13,060
9087
11,074
51
Spain
478,816
141,399
157,222
149,311
31
NR not reported
aFinland has a laboratory based surveillance system which does not separate clinical disease and therefore includes both varicella and herpes zoster. Only laboratory confimed cases are reported.bGreece: the national mandatory surveillance system includes only varicella cases with complications.cNorway: only laboratory confirmed cases of varicella encephalitis reported.
NET during 2009 and 2010, and percentage of reported cases out of the total number of estimated varicella cases occurring in the community

Discussion

We estimate that in the absence of universal varicella immunization, a total of 5.5 million (95% CI: 4.7–6.4) varicella cases would occur annually across Europe. It has previously been estimated that the annual number of new varicella cases in a country correspond approximately to the size of its birth cohort [4, 27, 94, 128]. Given that according to Eurostat [14] there were 5.2 million live births in Europe in 2015, this is in line with our estimates. Our study estimates that more than half of all varicella cases occur in children <5 years of age, as has been reported previously [4].
We found that community incidence varied greatly between countries, particularly in children and adolescents. This probably reflects different country-specific dynamics in varicella transmission during childhood, which have been associated with differences in social mixing patterns [12, 13]. Countries with low incidence rates in children <5 years of age have higher incidence rates in older age groups. This pattern tends to occur in countries in Eastern and Southern Europe, as has also been observed in a previous review [3].
According to our estimates, most varicella cases (54%) lead to a physician consultation and a small proportion of cases (0.3%) are hospitalised. We found that the highest consultation rates (100%) occurred among children aged 10 to 14 years, while the highest hospitalisation rates (1.3%) were in 20 to 39 year olds. Case fatality rate was highest (0.03%) in the >40 years age group followed by the 20 to 39 years age group (0.005%). These findings confirm that the majority of disease burden is in the younger age groups, but disease is more severe in adults and the elderly [4].
The main strength of our study is that we followed a systematic approach to quantify age-specific varicella incidence. In this way, we maximised transparency and comparability across countries. We based our estimates on the best available evidence, as obtained through a comprehensive SLR of the epidemiology of varicella. To estimate varicella incidence at community level we used seroprevalence data. Unlike other surveillance data, seroprevalence data are not affected by health care seeking or under-reporting and therefore provide a more accurate representation of the incidence at the community level, although using seroprevalence data requires the assumption of time homogeneity (Bollaerts K, Riera-Montes M, Hens N et al. A systematic review of varicella seroprevalence in European countries before universal childhood immunization: deriving incidence from seroprevalence data. Submitted 2017). Seroprevalence data are robust and have previously been used to estimate varicella incidence in Luxembourg, Italy and Spain [10, 40, 129].
Our study has several limitations. Data sources providing PCI, HI and mortality may be affected by under-ascertainment and underreporting, and we may therefore have underestimated the number of primary care visits, hospitalisations and deaths. Some of the studies we used in our estimations were regional only and might not be representative for the respective whole country. Despite our attempts to be comprehensive we cannot guarantee that all relevant data sources were identified in this review. However, we expect the number of missed data sources to be low. We did not find data for all outcomes for all countries, so we extrapolated the incidence for these countries based on data from other countries. This may have resulted in over- or underestimation of the incidence for some countries. We addressed this uncertainty by estimating 95% CIs (for the community incidence in the <5 and 5–9 year olds), or by providing a minimum-maximum range otherwise. We did not consider immigration in our estimates. A seroprevalence study carried out in adults in the Netherlands [64] showed that immigrants, in particular first generation immigrants, were more likely to be varicella seronegative compared to Dutch-born adults. Studies in the UK, Ireland and Spain among pregnant women have also shown that foreign-born women are more likely to be susceptible to varicella [36, 44, 47, 57]. There is a lack of studies addressing the impact of immigration on varicella epidemiology. Most seroprevalence surveys are carried out using residual serum samples with no information on immigration status [41]. As evidenced by van Rijckevorsel et al. [64], varicella serological profiles may show geographical differences within countries, with urban areas (being areas where immigration is typically concentrated) often presenting a higher proportion of varicella susceptible adults. To estimate varicella mortality, we used data from the WHO DMDB [11]. Mortality causes are coded using International Classification of Diseases (ICD)-9 or ICD-10 and it is difficult to ascertain the accuracy of the coding. Hence misclassification of the cause of death cannot be excluded. This may have resulted in over or underestimation of varicella mortality.
Given the limited number of studies that looked at specific complications and/or sequelae, we did not model these outcomes separately. It is however noteworthy that in addition to the immediate burden on the health care system as discussed in this paper, varicella may also cause complications and long term sequelae. In children (0–17 years), reported incidence of varicella complications requiring hospitalisation ranges from 0.82 per 100,000 of the population in the UK and Ireland [119], to 19 per 100,000 in Belgium [75]. Differences in incidence are probably related to differences in the definitions used for complicated varicella. In the UK study [119] only severe complications were included, excluding secondary skin infections, while the Belgian study [75] included any complication. The most frequent complications reported were bacterial superinfections, followed by varicella pneumonia and neurological complications. Concerning long term sequelae, these are usually a result of neurological complications of varicella. Long term sequelae have been reported in 0.4 to 8% of children hospitalised for varicella [85, 95, 100, 103, 130].
Recent published data from Norway provided us with an opportunity to validate the methodology used. We found that our model overestimated the varicella community incidence in Norway in <5 year olds and underestimated the incidence in 5 to 9 year olds. There were small differences in the predicted vs. observed incidence for ages 10 to 39, with the model underestimating the incidence in the ≥40 year olds. The model we used to estimate community incidence was based on the prediction variables including the percentage of children <3 years of age receiving formal childcare and population density. While for both prediction variables Norway is similar to northern European countries with the highest incidence observed in children <5 years old, the varicella epidemiology pattern in Norway also somewhat resembles that of southern European countries with a relatively high observed incidence in the 5 to 9 year olds. Although we explored the inclusion of additional explanatory variables in our model, none of them improved the fit of the model. The methodology we used to estimate PCI overestimated the observed PCI in Norway, particularly in the younger age groups. We used the minimum-maximum observed PCR to estimate PCI in countries without data. Health care seeking behaviour, and hence the PCR, varies strongly between countries [104]. For example, 38% of children <5 years with varicella consulting a physician [131] in the Netherlands compared to 88% of children <3 years in France [132]. There may also be differences in hospitalisation policies for varicella cases between countries which potentially affect the hospitalisation rate. We tried to address this uncertainty by estimating a minimum-maximum range for PCI and HI. However, we cannot exclude that PCI and HI may have been over or underestimated for some countries, like in the case of Norway.

Conclusions

In conclusion, the estimated burden of varicella in Europe in the pre-immunization period was substantial with more than 5 million new cases estimated annually, of which slightly more than half is expected to lead to a physician consultation, about 20,000 to hospitalisation, and up to 80 to death. Since very few countries or regions have introduced universal childhood varicella immunization programs, these figures are probably still true today. Although the main share of the burden is in children <5 years old, adults require hospitalisation more often and are at higher risk of death. This information should be considered when planning and evaluating varicella control strategies. Improving and standardizing varicella surveillance in Europe, as initiated by ECDC, will be important to improve the quality of data available and allow better inter-country comparison. There is also a need to better understand the driving factors of country-specific differences in varicella transmission and health care utilization. In addition, future research on sero-epidemiology with prospective sampling and data collection, ensuring the inclusion of migrant populations, would further improve our understanding of the epidemiology of varicella in Europe.

Acknowledgements

The authors would like to thank Martine Sabbe (WIV-ISP, Belgium), Jan Kyncl (SZU, Czech Republic), Daniel Levy-Bruhl (InVS, France), Thorolfur Gudnason (Landlaeknir, Iceland), Suzanne Cotter (HSE, Ireland), Joke Bilcke (Antwerp University), Alies van Lier (RIVM), Hester de Melker (RIVM), Maria Cristina Rota (Istituto Superiore di Sanità Rome, Italy) and Paloma Carrillo-Santisteve (ECDC) for providing data sources and/or references. The authors also thank Marc Baay (P95) for support with the systematic literature review and Sally Jackson (P95) for writing services.

Funding

This work is funded by Sanofi Pasteur, MSD, France.

Availability of data and materials

All data generated or analysed during this study are included in this published article (and its Additional files 1, 2, 3, 4 and 5).

Authors’ contributions

The idea and contents of the article emerged from discussions among SH, MR, KB and TV, who have experience in epidemiology and biostatistics. SH, MR, KB and TV designed the study. AS, UH and NH provided input to study design. MR conducted the systematic review. KB implemented the statistical analyses. UH, NH, GG, AG, BN, GM and EF provided input in the interpretation of the results. MR wrote the first manuscript draft. All authors critically reviewed the subsequent revisions and approved the final version. MR is the guarantor.

Competing interests

KB, MR and TV received consulting fees from SPMSD for this work. SH is a current SPMSD employee, AS is mandated by SPMSD. No honoraria were paid to UH, NH, GG, AG, BN, GM, and EF for this work. UH, NH, GM and EF have no conflicts to declare. GG received grants from GSK Biologicals SA, SPMSD, Novartis, Crucell/Janssen, Sequirus and Pfizer as consultant, advisory board member, expert, speaker, organizer of congresses/conferences or as investigator in clinical trials. BN received professional fees from SP for attending advisory panels and other consultancy projects. NH gratefully acknowledges support from the University of Antwerp scientific chair in Evidence-Based Vaccinology, financed in 2009–2016 by a gift from Pfizer and in 2016 by GSK.
Not applicable.
Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
3.
Zurück zum Zitat Helmuth IG, Poulsen A, Suppli CH, Molbak K. Varicella in Europe-a review of the epidemiology and experience with vaccination. Vaccine. 2015;33:2406–13.CrossRefPubMed Helmuth IG, Poulsen A, Suppli CH, Molbak K. Varicella in Europe-a review of the epidemiology and experience with vaccination. Vaccine. 2015;33:2406–13.CrossRefPubMed
6.
Zurück zum Zitat Bonhoeffer J, Baer G, Muehleisen B, et al. Prospective surveillance of hospitalisations associated with varicella-zoster virus infections in children and adolescents. Eur J Pediatr. 2005;164:366–70.CrossRefPubMed Bonhoeffer J, Baer G, Muehleisen B, et al. Prospective surveillance of hospitalisations associated with varicella-zoster virus infections in children and adolescents. Eur J Pediatr. 2005;164:366–70.CrossRefPubMed
7.
Zurück zum Zitat Socan M. Evaluation of mandatory case-based reporting system for varicella in the prevaccine era. Cent Eur J Public Health. 2010;18:99–103.PubMed Socan M. Evaluation of mandatory case-based reporting system for varicella in the prevaccine era. Cent Eur J Public Health. 2010;18:99–103.PubMed
8.
Zurück zum Zitat Fleming DM, Schellevis FG, Falcao I, Alonso TV, Padilla ML. The incidence of chickenpox in the community. Lessons for disease surveillance in sentinel practice networks. Eur J Epidemiol. 2001;17:1023–7.CrossRefPubMed Fleming DM, Schellevis FG, Falcao I, Alonso TV, Padilla ML. The incidence of chickenpox in the community. Lessons for disease surveillance in sentinel practice networks. Eur J Epidemiol. 2001;17:1023–7.CrossRefPubMed
9.
Zurück zum Zitat Hoy D, Brooks P, Woolf A, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65:934–9.CrossRefPubMed Hoy D, Brooks P, Woolf A, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65:934–9.CrossRefPubMed
10.
12.
Zurück zum Zitat Santermans E, Goeyvaerts N, Melegaro A, et al. The social contact hypothesis under the assumption of endemic equilibrium: elucidating the transmission potential of VZV in Europe. Epidemics. 2015;11:14–23.CrossRefPubMed Santermans E, Goeyvaerts N, Melegaro A, et al. The social contact hypothesis under the assumption of endemic equilibrium: elucidating the transmission potential of VZV in Europe. Epidemics. 2015;11:14–23.CrossRefPubMed
13.
Zurück zum Zitat Silhol R, Alvarez FP, Arena C, et al. Micro and macro population effects in disease transmission: the case of varicella. Epidemiol Infect. 2010;138:482–90.CrossRefPubMed Silhol R, Alvarez FP, Arena C, et al. Micro and macro population effects in disease transmission: the case of varicella. Epidemiol Infect. 2010;138:482–90.CrossRefPubMed
16.
Zurück zum Zitat Rimseliene G, Vainio K, Gibory M, Salamanca BV, Flem E. Varicella-zoster virus susceptibility and primary healthcare consultations in Norway. BMC Infect Dis. 2016;16:254.PubMedCentralCrossRefPubMed Rimseliene G, Vainio K, Gibory M, Salamanca BV, Flem E. Varicella-zoster virus susceptibility and primary healthcare consultations in Norway. BMC Infect Dis. 2016;16:254.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Aebi C, Fischer K, Gorgievski M, Matter L, Muhlemann K. Age-specific seroprevalence to varicella-zoster virus: study in Swiss children and analysis of European data. Vaccine. 2001;19:3097–103.CrossRefPubMed Aebi C, Fischer K, Gorgievski M, Matter L, Muhlemann K. Age-specific seroprevalence to varicella-zoster virus: study in Swiss children and analysis of European data. Vaccine. 2001;19:3097–103.CrossRefPubMed
19.
Zurück zum Zitat Alanen A, Kahala K, Vahlberg T, Koskela P, Vainionpaa R. Seroprevalence, incidence of prenatal infections and reliability of maternal history of varicella zoster virus, cytomegalovirus, herpes simplex virus and parvovirus B19 infection in south-western Finland. BJOG. 2005;112:50–6.CrossRefPubMed Alanen A, Kahala K, Vahlberg T, Koskela P, Vainionpaa R. Seroprevalence, incidence of prenatal infections and reliability of maternal history of varicella zoster virus, cytomegalovirus, herpes simplex virus and parvovirus B19 infection in south-western Finland. BJOG. 2005;112:50–6.CrossRefPubMed
20.
Zurück zum Zitat Alfonsi V, Montomoli E, Manini I, et al. Susceptibility to varicella in childbearing age women, Central Italy: is there a need for vaccinating this population group? Vaccine. 2007;25:6086–8.CrossRefPubMed Alfonsi V, Montomoli E, Manini I, et al. Susceptibility to varicella in childbearing age women, Central Italy: is there a need for vaccinating this population group? Vaccine. 2007;25:6086–8.CrossRefPubMed
21.
Zurück zum Zitat Baer G, Bonhoeffer J, Schaad UB, Heininger U. Seroprevalence and immunization history of selected vaccine preventable diseases in medical students. Vaccine. 2005;23:2016–20.CrossRefPubMed Baer G, Bonhoeffer J, Schaad UB, Heininger U. Seroprevalence and immunization history of selected vaccine preventable diseases in medical students. Vaccine. 2005;23:2016–20.CrossRefPubMed
22.
Zurück zum Zitat De Juanes JR, Gil A, San-Martin M, Gonzalez A, Esteban J, Garcia de Codes A. Seroprevalence of varicella antibodies in healthcare workers and health sciences students. Reliability of self-reported history of varicella. Vaccine. 2005;23:1434–6.CrossRefPubMed De Juanes JR, Gil A, San-Martin M, Gonzalez A, Esteban J, Garcia de Codes A. Seroprevalence of varicella antibodies in healthcare workers and health sciences students. Reliability of self-reported history of varicella. Vaccine. 2005;23:1434–6.CrossRefPubMed
23.
Zurück zum Zitat de Melker H, Berbers G, Hahne S, et al. The epidemiology of varicella and herpes zoster in The Netherlands: implications for varicella zoster virus vaccination. Vaccine. 2006;24:3946–52.CrossRefPubMed de Melker H, Berbers G, Hahne S, et al. The epidemiology of varicella and herpes zoster in The Netherlands: implications for varicella zoster virus vaccination. Vaccine. 2006;24:3946–52.CrossRefPubMed
24.
Zurück zum Zitat Diez-Domingo J, Gil A, San-Martin M, et al. Seroprevalence of varicella among children and adolescents in Valencia, Spain. Reliability of the parent’s reported history and the medical file for identification of potential candidates for vaccination. Hum Vaccin. 2005;1:204–6.CrossRefPubMed Diez-Domingo J, Gil A, San-Martin M, et al. Seroprevalence of varicella among children and adolescents in Valencia, Spain. Reliability of the parent’s reported history and the medical file for identification of potential candidates for vaccination. Hum Vaccin. 2005;1:204–6.CrossRefPubMed
25.
Zurück zum Zitat Fedeli U, Zanetti C, Saia B. Susceptibility of healthcare workers to measles, mumps rubella and varicella. J Hosp Infect. 2002;51:133–5.CrossRefPubMed Fedeli U, Zanetti C, Saia B. Susceptibility of healthcare workers to measles, mumps rubella and varicella. J Hosp Infect. 2002;51:133–5.CrossRefPubMed
28.
Zurück zum Zitat Gallagher J, Quaid B, Cryan B. Susceptibility to varicella zoster virus infection in health care workers. Occup Med (Lond). 1996;46:289–92.CrossRef Gallagher J, Quaid B, Cryan B. Susceptibility to varicella zoster virus infection in health care workers. Occup Med (Lond). 1996;46:289–92.CrossRef
29.
Zurück zum Zitat Gil A, Gonzalez A, Dal-Re R, Ortega P, Dominguez V. Prevalence of antibodies against varicella zoster, herpes simplex (types 1 and 2), hepatitis B and hepatitis a viruses among Spanish adolescents. J Inf Secur. 1998;36:53–6. Gil A, Gonzalez A, Dal-Re R, Ortega P, Dominguez V. Prevalence of antibodies against varicella zoster, herpes simplex (types 1 and 2), hepatitis B and hepatitis a viruses among Spanish adolescents. J Inf Secur. 1998;36:53–6.
30.
Zurück zum Zitat Guido M, Tinelli A, De Donno A, et al. Susceptibility to varicella-zoster among pregnant women in the province of Lecce, Italy. J Clin Virol. 2012;53:72–6.CrossRefPubMed Guido M, Tinelli A, De Donno A, et al. Susceptibility to varicella-zoster among pregnant women in the province of Lecce, Italy. J Clin Virol. 2012;53:72–6.CrossRefPubMed
31.
Zurück zum Zitat Heininger U, Baer G, Bonhoeffer J, Schaad UB. Reliability of varicella history in children and adolescents. Swiss Med Wkly. 2005;135:252–5.PubMed Heininger U, Baer G, Bonhoeffer J, Schaad UB. Reliability of varicella history in children and adolescents. Swiss Med Wkly. 2005;135:252–5.PubMed
32.
Zurück zum Zitat Heininger U, Braun-Fahrlander C, Desgrandchamps D, et al. Seroprevalence of varicella-zoster virus immunoglobulin G antibodies in Swiss adolescents and risk factor analysis for seronegativity. Pediatr Infect Dis J. 2001;20:775–8.CrossRefPubMed Heininger U, Braun-Fahrlander C, Desgrandchamps D, et al. Seroprevalence of varicella-zoster virus immunoglobulin G antibodies in Swiss adolescents and risk factor analysis for seronegativity. Pediatr Infect Dis J. 2001;20:775–8.CrossRefPubMed
33.
Zurück zum Zitat Heininger U, Desgrandchamps D, Schaad UB. Seroprevalence of Varicella-zoster virus IgG antibodies in Swiss children during the first 16 months of age. Vaccine. 2006;24:3258–60.CrossRefPubMed Heininger U, Desgrandchamps D, Schaad UB. Seroprevalence of Varicella-zoster virus IgG antibodies in Swiss children during the first 16 months of age. Vaccine. 2006;24:3258–60.CrossRefPubMed
34.
Zurück zum Zitat Kavaliotis J, Petridou S, Karabaxoglou D. How reliable is the history of chickenpox? Varicella serology among children up to 14 years of age. Int J Infect Dis. 2003;7:274–7.CrossRefPubMed Kavaliotis J, Petridou S, Karabaxoglou D. How reliable is the history of chickenpox? Varicella serology among children up to 14 years of age. Int J Infect Dis. 2003;7:274–7.CrossRefPubMed
35.
Zurück zum Zitat Khoshnood B, Debruyne M, Lancon F, et al. Seroprevalence of varicella in the French population. Pediatr Infect Dis J. 2006;25:41–4.CrossRefPubMed Khoshnood B, Debruyne M, Lancon F, et al. Seroprevalence of varicella in the French population. Pediatr Infect Dis J. 2006;25:41–4.CrossRefPubMed
36.
Zurück zum Zitat Knowles SJ, Grundy K, Cahill I, Cafferkey MT. Susceptibility to infectious rash illness in pregnant women from diverse geographical regions. Commun Dis Public Health. 2004;7:344–8.PubMed Knowles SJ, Grundy K, Cahill I, Cafferkey MT. Susceptibility to infectious rash illness in pregnant women from diverse geographical regions. Commun Dis Public Health. 2004;7:344–8.PubMed
37.
Zurück zum Zitat Koskiniemi M, Lappalainen M, Schmid DS, Rubtcova E, Loparev VN. Genotypic analysis of varicella-zoster virus and its seroprevalence in Finland. Clin Vaccine Immunol. 2007;14:1057–61.PubMedCentralCrossRefPubMed Koskiniemi M, Lappalainen M, Schmid DS, Rubtcova E, Loparev VN. Genotypic analysis of varicella-zoster virus and its seroprevalence in Finland. Clin Vaccine Immunol. 2007;14:1057–61.PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Kudesia G, Partridge S, Farrington CP, Soltanpoor N. Changes in age related seroprevalence of antibody to varicella zoster virus: impact on vaccine strategy. J Clin Pathol. 2002;55:154–5.PubMedCentralCrossRefPubMed Kudesia G, Partridge S, Farrington CP, Soltanpoor N. Changes in age related seroprevalence of antibody to varicella zoster virus: impact on vaccine strategy. J Clin Pathol. 2002;55:154–5.PubMedCentralCrossRefPubMed
39.
Zurück zum Zitat Leuridan E, Hens N, Hutse V, Aerts M, Van Damme P. Kinetics of maternal antibodies against rubella and varicella in infants. Vaccine. 2011;29:2222–6.CrossRefPubMed Leuridan E, Hens N, Hutse V, Aerts M, Van Damme P. Kinetics of maternal antibodies against rubella and varicella in infants. Vaccine. 2011;29:2222–6.CrossRefPubMed
40.
Zurück zum Zitat Mossong J, Putz L, Schneider F. Seroprevalence and force of infection of varicella-zoster virus in Luxembourg. Epidemiol Infect. 2004;132:1121–7.PubMedCentralCrossRefPubMed Mossong J, Putz L, Schneider F. Seroprevalence and force of infection of varicella-zoster virus in Luxembourg. Epidemiol Infect. 2004;132:1121–7.PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Nardone A, de Ory F, Carton M, et al. The comparative sero-epidemiology of varicella zoster virus in 11 countries in the European region. Vaccine. 2007;25:7866–72.CrossRefPubMed Nardone A, de Ory F, Carton M, et al. The comparative sero-epidemiology of varicella zoster virus in 11 countries in the European region. Vaccine. 2007;25:7866–72.CrossRefPubMed
42.
Zurück zum Zitat Oliveira J, da Cunha S, Corte-Real R, Sampaio L, Dais N, Melico-Silvestre A. The prevalence of measles, rubella, mumps and chickenpox antibodies in a population of health care workers. Acta Medica Port. 1995;8:206–16. Oliveira J, da Cunha S, Corte-Real R, Sampaio L, Dais N, Melico-Silvestre A. The prevalence of measles, rubella, mumps and chickenpox antibodies in a population of health care workers. Acta Medica Port. 1995;8:206–16.
43.
Zurück zum Zitat Oliveira J, Dias N, Ferreira TM, et al. The determination of susceptibility to measles, rubella, mumps and chickenpox in students of health-related areas. Acta Medica Port. 1999;12:155–60. Oliveira J, Dias N, Ferreira TM, et al. The determination of susceptibility to measles, rubella, mumps and chickenpox in students of health-related areas. Acta Medica Port. 1999;12:155–60.
44.
Zurück zum Zitat Pembrey L, Raynor P, Griffiths P, Chaytor S, Wright J, Hall AJ. Seroprevalence of cytomegalovirus, Epstein Barr virus and varicella zoster virus among pregnant women in Bradford: a cohort study. PLoS One. 2013;8:e81881.PubMedCentralCrossRefPubMed Pembrey L, Raynor P, Griffiths P, Chaytor S, Wright J, Hall AJ. Seroprevalence of cytomegalovirus, Epstein Barr virus and varicella zoster virus among pregnant women in Bradford: a cohort study. PLoS One. 2013;8:e81881.PubMedCentralCrossRefPubMed
45.
Zurück zum Zitat Perez-Farinos N, Garcia-Comas L, Ramirez-Fernandez R, et al. Seroprevalence of antibodies to varicella-zoster virus in Madrid (Spain) in the absence of vaccination. Cent Eur J Public Health. 2008;16:41–4.PubMed Perez-Farinos N, Garcia-Comas L, Ramirez-Fernandez R, et al. Seroprevalence of antibodies to varicella-zoster virus in Madrid (Spain) in the absence of vaccination. Cent Eur J Public Health. 2008;16:41–4.PubMed
46.
Zurück zum Zitat Pinquier D, Gagneur A, Balu L, et al. Prevalence of anti-varicella-zoster virus antibodies in French infants under 15 months of age. Clin Vaccine Immunol. 2009;16:484–7.PubMedCentralCrossRefPubMed Pinquier D, Gagneur A, Balu L, et al. Prevalence of anti-varicella-zoster virus antibodies in French infants under 15 months of age. Clin Vaccine Immunol. 2009;16:484–7.PubMedCentralCrossRefPubMed
47.
Zurück zum Zitat Plans P, Costa J, Espunes J, Plasencia A, Salleras L. Prevalence of varicella-zoster antibodies in pregnant women in Catalonia (Spain). Rationale for varicella vaccination of women of childbearing age. BJOG. 2007;114:1122–7.CrossRefPubMed Plans P, Costa J, Espunes J, Plasencia A, Salleras L. Prevalence of varicella-zoster antibodies in pregnant women in Catalonia (Spain). Rationale for varicella vaccination of women of childbearing age. BJOG. 2007;114:1122–7.CrossRefPubMed
48.
Zurück zum Zitat Ringler M, Gobel G, Most J, Weithaler K. Fully vaccinated children are rare: immunization coverage and seroprevalence in Austrian school children. Eur J Epidemiol. 2003;18:161–70.CrossRefPubMed Ringler M, Gobel G, Most J, Weithaler K. Fully vaccinated children are rare: immunization coverage and seroprevalence in Austrian school children. Eur J Epidemiol. 2003;18:161–70.CrossRefPubMed
49.
Zurück zum Zitat Saadatian-Elahi M, Mekki Y, Del Signore C, et al. Seroprevalence of varicella antibodies among pregnant women in Lyon-France. Eur J Epidemiol. 2007;22:405–9.CrossRefPubMed Saadatian-Elahi M, Mekki Y, Del Signore C, et al. Seroprevalence of varicella antibodies among pregnant women in Lyon-France. Eur J Epidemiol. 2007;22:405–9.CrossRefPubMed
50.
Zurück zum Zitat Salleras L, Dominguez A, Plans P, et al. Seroprevalence of varicella zoster virus infection in child and adult population of Catalonia (Spain). Med Microbiol Immunol. 2008;197:329–33.CrossRefPubMed Salleras L, Dominguez A, Plans P, et al. Seroprevalence of varicella zoster virus infection in child and adult population of Catalonia (Spain). Med Microbiol Immunol. 2008;197:329–33.CrossRefPubMed
51.
Zurück zum Zitat Salleras L, Dominguez A, Vidal J, Plans P, Salleras M, Taberner JL. Seroepidemiology of varicella-zoster virus infection in Catalonia (Spain). Rationale for universal vaccination programmes. Vaccine. 2000;19:183–8.CrossRefPubMed Salleras L, Dominguez A, Vidal J, Plans P, Salleras M, Taberner JL. Seroepidemiology of varicella-zoster virus infection in Catalonia (Spain). Rationale for universal vaccination programmes. Vaccine. 2000;19:183–8.CrossRefPubMed
52.
Zurück zum Zitat Sauerbrei A, Prager J, Bischoff A, Wutzler P. Antibodies against vaccine-preventable diseases in pregnant women and their offspring. Measles, mumps, rubella, poliomyelitis, and varicella. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2004;47:10–5.CrossRefPubMed Sauerbrei A, Prager J, Bischoff A, Wutzler P. Antibodies against vaccine-preventable diseases in pregnant women and their offspring. Measles, mumps, rubella, poliomyelitis, and varicella. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2004;47:10–5.CrossRefPubMed
53.
Zurück zum Zitat Siennicka J, Trzcinska A, Rosinska M, Litwinska B. Seroprevalence of varicella-zoster virus in polish population. Przegl Epidemiol. 2009;63:495–9.PubMed Siennicka J, Trzcinska A, Rosinska M, Litwinska B. Seroprevalence of varicella-zoster virus in polish population. Przegl Epidemiol. 2009;63:495–9.PubMed
55.
Zurück zum Zitat Suarez Gonzalez A, Otero Guerra L, De La Guerra GV, La Iglesia Martinez Pd P, Solis Sanchez G, Rodriguez Fernandez A. Varicella and parvovirus B19 immunity among pregnant women in Gijon, Spain. Med Clin (Barc). 2002;119:171–3.CrossRef Suarez Gonzalez A, Otero Guerra L, De La Guerra GV, La Iglesia Martinez Pd P, Solis Sanchez G, Rodriguez Fernandez A. Varicella and parvovirus B19 immunity among pregnant women in Gijon, Spain. Med Clin (Barc). 2002;119:171–3.CrossRef
56.
Zurück zum Zitat Svahn A, Berggren J, Parke A, Storsaeter J, Thorstensson R, Linde A. Changes in seroprevalence to four herpesviruses over 30 years in Swedish children aged 9-12 years. J Clin Virol. 2006;37:118–23.CrossRefPubMed Svahn A, Berggren J, Parke A, Storsaeter J, Thorstensson R, Linde A. Changes in seroprevalence to four herpesviruses over 30 years in Swedish children aged 9-12 years. J Clin Virol. 2006;37:118–23.CrossRefPubMed
57.
Zurück zum Zitat Talukder YS, Kafatos G, Pinot de Moira A, et al. The seroepidemiology of varicella zoster virus among pregnant Bangladeshi and white British women in the London borough of tower hamlets, UK. Epidemiol Infect. 2007;135:1344–53.PubMedCentralCrossRefPubMed Talukder YS, Kafatos G, Pinot de Moira A, et al. The seroepidemiology of varicella zoster virus among pregnant Bangladeshi and white British women in the London borough of tower hamlets, UK. Epidemiol Infect. 2007;135:1344–53.PubMedCentralCrossRefPubMed
58.
Zurück zum Zitat Thiry N, Beutels P, Shkedy Z, et al. The seroepidemiology of primary varicella-zoster virus infection in Flanders (Belgium). Eur J Pediatr. 2002;161:588–93.CrossRefPubMed Thiry N, Beutels P, Shkedy Z, et al. The seroepidemiology of primary varicella-zoster virus infection in Flanders (Belgium). Eur J Pediatr. 2002;161:588–93.CrossRefPubMed
59.
Zurück zum Zitat Thorarinsdottir H, Love A, Laxdal T, Gudnason T, Haraldsson A. Varicella in Icelandic children--epidemiology and complications. Laeknabladid. 2009;95:113–8.PubMed Thorarinsdottir H, Love A, Laxdal T, Gudnason T, Haraldsson A. Varicella in Icelandic children--epidemiology and complications. Laeknabladid. 2009;95:113–8.PubMed
60.
Zurück zum Zitat Trevisan A, Frasson C, Morandin M, et al. Immunity against infectious diseases: predictive value of self-reported history of vaccination and disease. Infect Control Hosp Epidemiol. 2007;28:564–9.CrossRefPubMed Trevisan A, Frasson C, Morandin M, et al. Immunity against infectious diseases: predictive value of self-reported history of vaccination and disease. Infect Control Hosp Epidemiol. 2007;28:564–9.CrossRefPubMed
61.
Zurück zum Zitat Trevisan A, Morandin M, Frasson C, et al. Prevalence of childhood exanthematic disease antibodies in paramedical students: need of vaccination. Vaccine. 2006;24:171–6.CrossRefPubMed Trevisan A, Morandin M, Frasson C, et al. Prevalence of childhood exanthematic disease antibodies in paramedical students: need of vaccination. Vaccine. 2006;24:171–6.CrossRefPubMed
62.
Zurück zum Zitat van Lier A, Smits G, Mollema L, et al. Varicella zoster virus infection occurs at a relatively young age in The Netherlands. Vaccine. 2013;31:5127–33.CrossRefPubMed van Lier A, Smits G, Mollema L, et al. Varicella zoster virus infection occurs at a relatively young age in The Netherlands. Vaccine. 2013;31:5127–33.CrossRefPubMed
63.
Zurück zum Zitat van Rijckevorsel GG, Bovee LP, Damen M, Sonder GJ, Schim van der Loeff MF, van den Hoek A. Increased seroprevalence of IgG-class antibodies against cytomegalovirus, parvovirus B19, and varicella-zoster virus in women working in child day care. BMC Public Health. 2012;12:475. van Rijckevorsel GG, Bovee LP, Damen M, Sonder GJ, Schim van der Loeff MF, van den Hoek A. Increased seroprevalence of IgG-class antibodies against cytomegalovirus, parvovirus B19, and varicella-zoster virus in women working in child day care. BMC Public Health. 2012;12:475.
64.
Zurück zum Zitat van Rijckevorsel GG, Damen M, Sonder GJ, van der Loeff MF, van den Hoek A. Seroprevalence of varicella-zoster virus and predictors for seronegativity in the Amsterdam adult population. BMC Infect Dis. 2012;12:140.PubMedCentralCrossRefPubMed van Rijckevorsel GG, Damen M, Sonder GJ, van der Loeff MF, van den Hoek A. Seroprevalence of varicella-zoster virus and predictors for seronegativity in the Amsterdam adult population. BMC Infect Dis. 2012;12:140.PubMedCentralCrossRefPubMed
65.
Zurück zum Zitat Vandersmissen G, Moens G, Vranckx R, de Schryver A, Jacques P. Occupational risk of infection by varicella zoster virus in Belgian healthcare workers: a seroprevalence study. Occup Environ Med. 2000;57:621–6.PubMedCentralCrossRefPubMed Vandersmissen G, Moens G, Vranckx R, de Schryver A, Jacques P. Occupational risk of infection by varicella zoster virus in Belgian healthcare workers: a seroprevalence study. Occup Environ Med. 2000;57:621–6.PubMedCentralCrossRefPubMed
66.
Zurück zum Zitat Vilibic-Cavlek T, Ljubin-Sternak S, Kolaric B, et al. Immunity to varicella-zoster virus in Croatian women of reproductive age targeted for serology testing. Arch Gynecol Obstet. 2012;286:901–4.CrossRefPubMed Vilibic-Cavlek T, Ljubin-Sternak S, Kolaric B, et al. Immunity to varicella-zoster virus in Croatian women of reproductive age targeted for serology testing. Arch Gynecol Obstet. 2012;286:901–4.CrossRefPubMed
67.
Zurück zum Zitat Vyse AJ, Gay NJ, Hesketh LM, Morgan-Capner P, Miller E. Seroprevalence of antibody to varicella zoster virus in England and Wales in children and young adults. Epidemiol Infect. 2004;132:1129–34.PubMedCentralCrossRefPubMed Vyse AJ, Gay NJ, Hesketh LM, Morgan-Capner P, Miller E. Seroprevalence of antibody to varicella zoster virus in England and Wales in children and young adults. Epidemiol Infect. 2004;132:1129–34.PubMedCentralCrossRefPubMed
68.
Zurück zum Zitat Wutzler P, Farber I, Wagenpfeil S, Bisanz H, Tischer A. Seroprevalence of varicella-zoster virus in the German population. Vaccine. 2001;20:121–4.CrossRefPubMed Wutzler P, Farber I, Wagenpfeil S, Bisanz H, Tischer A. Seroprevalence of varicella-zoster virus in the German population. Vaccine. 2001;20:121–4.CrossRefPubMed
72.
Zurück zum Zitat National Archive SDO data, Ministry of Health, General Directorate of Health and Planning, VI Office, 2001-2005. National Archive SDO data, Ministry of Health, General Directorate of Health and Planning, VI Office, 2001-2005.
73.
Zurück zum Zitat Bennet R, Bogdanovic G, Giske CG, Eriksson M. More severe bacterial infections could be prevented with vaccine. Rotavirus, influenza and varicella cause thousands of hospital admissions. Lakartidningen. 2010;107:3040–3.PubMed Bennet R, Bogdanovic G, Giske CG, Eriksson M. More severe bacterial infections could be prevented with vaccine. Rotavirus, influenza and varicella cause thousands of hospital admissions. Lakartidningen. 2010;107:3040–3.PubMed
74.
Zurück zum Zitat Bilcke J, Ogunjimi B, Marais C, et al. The health and economic burden of chickenpox and herpes zoster in Belgium. Epidemiol Infect. 2012;140:2096–109.CrossRefPubMed Bilcke J, Ogunjimi B, Marais C, et al. The health and economic burden of chickenpox and herpes zoster in Belgium. Epidemiol Infect. 2012;140:2096–109.CrossRefPubMed
75.
Zurück zum Zitat Blumental S, Sabbe M, Lepage P, Belgian Group for V. Varicella paediatric hospitalisations in Belgium: a 1-year national survey. Arch Dis Child. 2016;101:16–22.CrossRefPubMed Blumental S, Sabbe M, Lepage P, Belgian Group for V. Varicella paediatric hospitalisations in Belgium: a 1-year national survey. Arch Dis Child. 2016;101:16–22.CrossRefPubMed
76.
77.
Zurück zum Zitat Bonmarin I, Ndiaye B, Seringe E, Levy-Bruhl D. The epidemiology of varicella in France. Bull Epidemiol Hebd. 2005;8:30–2. Bonmarin I, Ndiaye B, Seringe E, Levy-Bruhl D. The epidemiology of varicella in France. Bull Epidemiol Hebd. 2005;8:30–2.
78.
Zurück zum Zitat Bonsignori F, Chiappini E, Frenos S, Peraldo M, Galli L, de Martino M. Hospitalization rates for complicated and uncomplicated chickenpox in a poorly vaccined pediatric population. Infection. 2007;35:444–50.CrossRefPubMed Bonsignori F, Chiappini E, Frenos S, Peraldo M, Galli L, de Martino M. Hospitalization rates for complicated and uncomplicated chickenpox in a poorly vaccined pediatric population. Infection. 2007;35:444–50.CrossRefPubMed
79.
Zurück zum Zitat Bramley JC, Jones IG. Epidemiology of chickenpox in Scotland: 1981 to 1998. Commun Dis Public Health. 2000;3:282–7.PubMed Bramley JC, Jones IG. Epidemiology of chickenpox in Scotland: 1981 to 1998. Commun Dis Public Health. 2000;3:282–7.PubMed
80.
Zurück zum Zitat Brisson M, Edmunds WJ. Epidemiology of Varicella-zoster virus in England and Wales. J Med Virol. 2003;70(Suppl 1):S9–14.CrossRefPubMed Brisson M, Edmunds WJ. Epidemiology of Varicella-zoster virus in England and Wales. J Med Virol. 2003;70(Suppl 1):S9–14.CrossRefPubMed
81.
Zurück zum Zitat Brisson M, Edmunds WJ, Law B, et al. Epidemiology of varicella zoster virus infection in Canada and the United Kingdom. Epidemiol Infect. 2001;127:305–14.PubMedCentralCrossRefPubMed Brisson M, Edmunds WJ, Law B, et al. Epidemiology of varicella zoster virus infection in Canada and the United Kingdom. Epidemiol Infect. 2001;127:305–14.PubMedCentralCrossRefPubMed
82.
Zurück zum Zitat Critselis E, Nastos PT, Theodoridou K, et al. Time trends in pediatric hospitalizations for varicella infection are associated with climatic changes: a 22-year retrospective study in a tertiary Greek referral center. PLoS One. 2012;7:e52016.PubMedCentralCrossRefPubMed Critselis E, Nastos PT, Theodoridou K, et al. Time trends in pediatric hospitalizations for varicella infection are associated with climatic changes: a 22-year retrospective study in a tertiary Greek referral center. PLoS One. 2012;7:e52016.PubMedCentralCrossRefPubMed
83.
Zurück zum Zitat Diez Domingo J, Ridao M, Latour J, Ballester A, Morant A. A cost benefit analysis of routine varicella vaccination in Spain. Vaccine. 1999;17:1306–11.CrossRefPubMed Diez Domingo J, Ridao M, Latour J, Ballester A, Morant A. A cost benefit analysis of routine varicella vaccination in Spain. Vaccine. 1999;17:1306–11.CrossRefPubMed
84.
Zurück zum Zitat Dubos F, Grandbastien B, Hue V, Martinot A. Epidemiology of hospital admissions for paediatric varicella infections: a one-year prospective survey in the pre-vaccine era. Epidemiol Infect. 2007;135:131–8.CrossRefPubMed Dubos F, Grandbastien B, Hue V, Martinot A. Epidemiology of hospital admissions for paediatric varicella infections: a one-year prospective survey in the pre-vaccine era. Epidemiol Infect. 2007;135:131–8.CrossRefPubMed
85.
Zurück zum Zitat Giacchino R, Losurdo G, Castagnola E. Decline in mortality with varicella vaccination. N Engl J Med. 2005;352:1819.CrossRefPubMed Giacchino R, Losurdo G, Castagnola E. Decline in mortality with varicella vaccination. N Engl J Med. 2005;352:1819.CrossRefPubMed
86.
Zurück zum Zitat Gil A, Gonzalez A, Oyaguez I, Martin MS, Carrasco P. The burden of severe varicella in Spain, 1995--2000 period. Eur J Epidemiol. 2004;19:699–702.CrossRefPubMed Gil A, Gonzalez A, Oyaguez I, Martin MS, Carrasco P. The burden of severe varicella in Spain, 1995--2000 period. Eur J Epidemiol. 2004;19:699–702.CrossRefPubMed
87.
Zurück zum Zitat Gil A, Oyaguez I, Carrasco P, Gonzalez A. Epidemiology of primary varicella hospitalizations in Spain. Vaccine. 2001;20:295–8.CrossRefPubMed Gil A, Oyaguez I, Carrasco P, Gonzalez A. Epidemiology of primary varicella hospitalizations in Spain. Vaccine. 2001;20:295–8.CrossRefPubMed
88.
Zurück zum Zitat Gil A, San-Martin M, Carrasco P, Gonzalez A. Epidemiology of severe varicella-zoster virus infection in Spain. Vaccine. 2004;22:3947–51.CrossRefPubMed Gil A, San-Martin M, Carrasco P, Gonzalez A. Epidemiology of severe varicella-zoster virus infection in Spain. Vaccine. 2004;22:3947–51.CrossRefPubMed
89.
Zurück zum Zitat Grimheden P, Bennet R, Hjern A, Nilsson A, Eriksson M. Chickenpox not always a harmless child disease. General vaccination in Sweden can prevent significant morbidity. Lakartidningen. 2009;106:580–2.PubMed Grimheden P, Bennet R, Hjern A, Nilsson A, Eriksson M. Chickenpox not always a harmless child disease. General vaccination in Sweden can prevent significant morbidity. Lakartidningen. 2009;106:580–2.PubMed
90.
Zurück zum Zitat Guillen JM, Gil-Prieto R, Alvaro A, Gil A. Burden of adult varicella hospitalizations in Spain (2001-2007). Hum Vaccin. 2010;6:659–63.CrossRefPubMed Guillen JM, Gil-Prieto R, Alvaro A, Gil A. Burden of adult varicella hospitalizations in Spain (2001-2007). Hum Vaccin. 2010;6:659–63.CrossRefPubMed
91.
Zurück zum Zitat Guillen JM, Samaniego-Colmenero Mde L, Hernandez-Barrera V, Gil A. Varicella paediatric hospitalizations in Spain. Epidemiol Infect. 2009;137:519–25.CrossRefPubMed Guillen JM, Samaniego-Colmenero Mde L, Hernandez-Barrera V, Gil A. Varicella paediatric hospitalizations in Spain. Epidemiol Infect. 2009;137:519–25.CrossRefPubMed
92.
Zurück zum Zitat Hervas D, Osona B, Masip C, Yeste S, Figuerola J, Hervas JA. Risk of varicella complications in children treated with inhaled steroids. Pediatr Infect Dis J. 2008;27:1113–4.CrossRefPubMed Hervas D, Osona B, Masip C, Yeste S, Figuerola J, Hervas JA. Risk of varicella complications in children treated with inhaled steroids. Pediatr Infect Dis J. 2008;27:1113–4.CrossRefPubMed
93.
Zurück zum Zitat Jelastopulu E, Merekoulias G, Alexopoulos EC. Underreporting of communicable diseases in the prefecture of Achaia, western Greece, 1999-2004 - missed opportunities for early intervention. Euro Surveill. 2010;15:19579.PubMed Jelastopulu E, Merekoulias G, Alexopoulos EC. Underreporting of communicable diseases in the prefecture of Achaia, western Greece, 1999-2004 - missed opportunities for early intervention. Euro Surveill. 2010;15:19579.PubMed
94.
Zurück zum Zitat Liese JG, Grote V, Rosenfeld E, et al. The burden of varicella complications before the introduction of routine varicella vaccination in Germany. Pediatr Infect Dis J. 2008;27:119–24.CrossRefPubMed Liese JG, Grote V, Rosenfeld E, et al. The burden of varicella complications before the introduction of routine varicella vaccination in Germany. Pediatr Infect Dis J. 2008;27:119–24.CrossRefPubMed
95.
Zurück zum Zitat Marchetto S, de Benedictis FM, de Martino M, et al. Epidemiology of hospital admissions for chickenpox in children: an Italian multicentre study in the pre-vaccine era. Acta Paediatr. 2007;96:1490–3.CrossRefPubMed Marchetto S, de Benedictis FM, de Martino M, et al. Epidemiology of hospital admissions for chickenpox in children: an Italian multicentre study in the pre-vaccine era. Acta Paediatr. 2007;96:1490–3.CrossRefPubMed
96.
Zurück zum Zitat Nilsson A, Ortqvist A. Severe varicella pneumonia in adults in Stockholm County 1980-1989. Scand J Infect Dis. 1996;28:121–3.CrossRefPubMed Nilsson A, Ortqvist A. Severe varicella pneumonia in adults in Stockholm County 1980-1989. Scand J Infect Dis. 1996;28:121–3.CrossRefPubMed
97.
Zurück zum Zitat Pena-Rey I, Martinez de Aragon MV, Villaverde Hueso A, Terres Arellano M, Alcalde Cabero E, Suarez Rodriguez B. Epidemiology of varicella in spain pre-and post-vaccination periods. Rev Esp Salud Publica. 2009;83:711–24.CrossRefPubMed Pena-Rey I, Martinez de Aragon MV, Villaverde Hueso A, Terres Arellano M, Alcalde Cabero E, Suarez Rodriguez B. Epidemiology of varicella in spain pre-and post-vaccination periods. Rev Esp Salud Publica. 2009;83:711–24.CrossRefPubMed
98.
Zurück zum Zitat Perez-Yarza EG, Arranz L, Alustiza J, et al. Hospital admissions for varicella complications in children aged less than 15 years old. An Pediatr (Barc). 2003;59:229–33.CrossRef Perez-Yarza EG, Arranz L, Alustiza J, et al. Hospital admissions for varicella complications in children aged less than 15 years old. An Pediatr (Barc). 2003;59:229–33.CrossRef
99.
Zurück zum Zitat Pierik JG, Gumbs PD, Fortanier SA, Van Steenwijk PC, Postma MJ. Epidemiological characteristics and societal burden of varicella zoster virus in the Netherlands. BMC Infect Dis. 2012;12:110.PubMedCentralCrossRefPubMed Pierik JG, Gumbs PD, Fortanier SA, Van Steenwijk PC, Postma MJ. Epidemiological characteristics and societal burden of varicella zoster virus in the Netherlands. BMC Infect Dis. 2012;12:110.PubMedCentralCrossRefPubMed
100.
Zurück zum Zitat Rack AL, Grote V, Streng A, et al. Neurologic varicella complications before routine immunization in Germany. Pediatr Neurol. 2010;42:40–8.CrossRefPubMed Rack AL, Grote V, Streng A, et al. Neurologic varicella complications before routine immunization in Germany. Pediatr Neurol. 2010;42:40–8.CrossRefPubMed
101.
Zurück zum Zitat Rogalska J, Paradowska-Stankiewicz I. Chickenpox in Poland in 2012. Przegl Epidemiol. 2014;68:201–4. 323-204PubMed Rogalska J, Paradowska-Stankiewicz I. Chickenpox in Poland in 2012. Przegl Epidemiol. 2014;68:201–4. 323-204PubMed
103.
Zurück zum Zitat Theodoridou M, Laina I, Hadjichristodoulou C, Syriopoulou V. Varicella-related complications and hospitalisations in a tertiary pediatric medical center before vaccine introduction. Eur J Pediatr. 2006;165:273–4.CrossRefPubMed Theodoridou M, Laina I, Hadjichristodoulou C, Syriopoulou V. Varicella-related complications and hospitalisations in a tertiary pediatric medical center before vaccine introduction. Eur J Pediatr. 2006;165:273–4.CrossRefPubMed
104.
Zurück zum Zitat van Lier A, van Erp J, Donker GA, van der Maas NA, Sturkenboom MC, de Melker HE. Low varicella-related consultation rate in the Netherlands in primary care data. Vaccine. 2014;32:3517–24.CrossRefPubMed van Lier A, van Erp J, Donker GA, van der Maas NA, Sturkenboom MC, de Melker HE. Low varicella-related consultation rate in the Netherlands in primary care data. Vaccine. 2014;32:3517–24.CrossRefPubMed
106.
Zurück zum Zitat Ciofi Degli Atti ML, Salmaso S, Bella A, et al. Pediatric sentinel surveillance of vaccine-preventable diseases in Italy. Pediatr Infect Dis J. 2002;21:763–8.CrossRefPubMed Ciofi Degli Atti ML, Salmaso S, Bella A, et al. Pediatric sentinel surveillance of vaccine-preventable diseases in Italy. Pediatr Infect Dis J. 2002;21:763–8.CrossRefPubMed
107.
Zurück zum Zitat Fornaro P, Gandini F, Marin M, et al. Epidemiology and cost analysis of varicella in Italy: results of a sentinel study in the pediatric practice. Italian sentinel group on pediatric infectious diseases. Pediatr Infect Dis J. 1999;18:414–9.CrossRefPubMed Fornaro P, Gandini F, Marin M, et al. Epidemiology and cost analysis of varicella in Italy: results of a sentinel study in the pediatric practice. Italian sentinel group on pediatric infectious diseases. Pediatr Infect Dis J. 1999;18:414–9.CrossRefPubMed
108.
Zurück zum Zitat Iseli A, Aebi C, Banz K, Brunner M, Schmutz AM, Heininger U. Prospective surveillance of varicella-zoster virus infections in an out-patient setting in Switzerland. Hum Vaccin. 2009;5:843–6.CrossRefPubMed Iseli A, Aebi C, Banz K, Brunner M, Schmutz AM, Heininger U. Prospective surveillance of varicella-zoster virus infections in an out-patient setting in Switzerland. Hum Vaccin. 2009;5:843–6.CrossRefPubMed
109.
Zurück zum Zitat Lowe GL, Salmon RL, Thomas DR, Evans MR. Declining incidence of chickenpox in the absence of universal childhood immunisation. Arch Dis Child. 2004;89:966–9.PubMedCentralCrossRefPubMed Lowe GL, Salmon RL, Thomas DR, Evans MR. Declining incidence of chickenpox in the absence of universal childhood immunisation. Arch Dis Child. 2004;89:966–9.PubMedCentralCrossRefPubMed
110.
Zurück zum Zitat Nicolosi A, Sturkenboom M, Mannino S, Arpinelli F, Cantarutti L, Giaquinto C. The incidence of varicella: correction of a common error. Epidemiology. 2003;14:99–102.CrossRefPubMed Nicolosi A, Sturkenboom M, Mannino S, Arpinelli F, Cantarutti L, Giaquinto C. The incidence of varicella: correction of a common error. Epidemiology. 2003;14:99–102.CrossRefPubMed
111.
Zurück zum Zitat Paul E, Thiel T. Epidemiology of varicella zoster infection. Results of a prospective study in the Ansbach area. Hautarzt. 1996;47:604–9.CrossRefPubMed Paul E, Thiel T. Epidemiology of varicella zoster infection. Results of a prospective study in the Ansbach area. Hautarzt. 1996;47:604–9.CrossRefPubMed
112.
Zurück zum Zitat Perez-Farinos N, Ordobas M, Garcia-Fernandez C, et al. Varicella and herpes zoster in Madrid, based on the sentinel general practitioner network: 1997-2004. BMC Infect Dis. 2007;7:59.PubMedCentralCrossRefPubMed Perez-Farinos N, Ordobas M, Garcia-Fernandez C, et al. Varicella and herpes zoster in Madrid, based on the sentinel general practitioner network: 1997-2004. BMC Infect Dis. 2007;7:59.PubMedCentralCrossRefPubMed
113.
Zurück zum Zitat Ross AM, Fleming DM. Chickenpox increasingly affects preschool children. Commun Dis Public Health. 2000;3:213–5.PubMed Ross AM, Fleming DM. Chickenpox increasingly affects preschool children. Commun Dis Public Health. 2000;3:213–5.PubMed
116.
Zurück zum Zitat Stefler D, Bhopal R. Comparison of the Hungarian and Scottish communicable disease control systems: lessons for a convergent European Community. Public Health. 2010;124:167–73.CrossRefPubMed Stefler D, Bhopal R. Comparison of the Hungarian and Scottish communicable disease control systems: lessons for a convergent European Community. Public Health. 2010;124:167–73.CrossRefPubMed
117.
Zurück zum Zitat Urtiaga M, Irisarri F, Zabala A. Diseases of compulsory notification (DCN) in Navarra. 2002. An Sist Sanit Navar. 2003;26:99–108.CrossRefPubMed Urtiaga M, Irisarri F, Zabala A. Diseases of compulsory notification (DCN) in Navarra. 2002. An Sist Sanit Navar. 2003;26:99–108.CrossRefPubMed
119.
Zurück zum Zitat Cameron JC, Allan G, Johnston F, Finn A, Heath PT, Booy R. Severe complications of chickenpox in hospitalised children in the UK and Ireland. Arch Dis Child. 2007;92:1062–6.PubMedCentralCrossRefPubMed Cameron JC, Allan G, Johnston F, Finn A, Heath PT, Booy R. Severe complications of chickenpox in hospitalised children in the UK and Ireland. Arch Dis Child. 2007;92:1062–6.PubMedCentralCrossRefPubMed
120.
Zurück zum Zitat Grote V, von Kries R, Springer W, Hammersen G, Kreth HW, Liese J. Varicella-related deaths in children and adolescents--Germany 2003-2004. Acta Paediatr. 2008;97:187–92.CrossRefPubMed Grote V, von Kries R, Springer W, Hammersen G, Kreth HW, Liese J. Varicella-related deaths in children and adolescents--Germany 2003-2004. Acta Paediatr. 2008;97:187–92.CrossRefPubMed
121.
Zurück zum Zitat Lantto M, Renko M, Uhari M. Changes in infectious disease mortality in children during the past three decades. Pediatr Infect Dis J. 2013;32:e355–9.CrossRefPubMed Lantto M, Renko M, Uhari M. Changes in infectious disease mortality in children during the past three decades. Pediatr Infect Dis J. 2013;32:e355–9.CrossRefPubMed
124.
Zurück zum Zitat Arama V, Rafila A, Streinu-Cercel A, et al. Varicella in Romania: epidemiological trends, 1986-2004. Euro Surveill. 2005;10:E050811.050816. Arama V, Rafila A, Streinu-Cercel A, et al. Varicella in Romania: epidemiological trends, 1986-2004. Euro Surveill. 2005;10:E050811.050816.
125.
Zurück zum Zitat Baldo V, Baldovin T, Russo F, et al. Varicella: epidemiological aspects and vaccination coverage in the Veneto region. BMC Infect Dis. 2009;9:150.PubMedCentralCrossRefPubMed Baldo V, Baldovin T, Russo F, et al. Varicella: epidemiological aspects and vaccination coverage in the Veneto region. BMC Infect Dis. 2009;9:150.PubMedCentralCrossRefPubMed
126.
Zurück zum Zitat Lipke M, Paradowska-Stankiewicz I. Chickenpox in Poland in 2011. Przegl Epidemiol. 2013;67:195–7. 317-198PubMed Lipke M, Paradowska-Stankiewicz I. Chickenpox in Poland in 2011. Przegl Epidemiol. 2013;67:195–7. 317-198PubMed
127.
Zurück zum Zitat Wutzler P, Neiss A, Banz K, Goertz A, Bisanz H. Can varicella be eliminated by vaccination? Potential clinical and economic effects of universal childhood varicella immunisation in Germany. Med Microbiol Immunol. 2002;191:89–96.CrossRefPubMed Wutzler P, Neiss A, Banz K, Goertz A, Bisanz H. Can varicella be eliminated by vaccination? Potential clinical and economic effects of universal childhood varicella immunisation in Germany. Med Microbiol Immunol. 2002;191:89–96.CrossRefPubMed
128.
Zurück zum Zitat Baldo V, Ferro A, Napoletano G, et al. Universal varicella vaccination in the Veneto region, Italy: launch of a programme targeting all children aged 14 months and susceptible adolescents. Euro Surveill. 2007;12:E071101 071103. Baldo V, Ferro A, Napoletano G, et al. Universal varicella vaccination in the Veneto region, Italy: launch of a programme targeting all children aged 14 months and susceptible adolescents. Euro Surveill. 2007;12:E071101 071103.
129.
130.
Zurück zum Zitat Ziebold C, von Kries R, Lang R, Weigl J, Schmitt HJ. Severe complications of varicella in previously healthy children in Germany: a 1-year survey. Pediatrics. 2001;108:E79.CrossRefPubMed Ziebold C, von Kries R, Lang R, Weigl J, Schmitt HJ. Severe complications of varicella in previously healthy children in Germany: a 1-year survey. Pediatrics. 2001;108:E79.CrossRefPubMed
131.
Zurück zum Zitat Wolleswinkel-van den Bosch JH, Speets AM, Rumke HC, Gumbs PD, Fortanier SC. The burden of varicella from a parent’s perspective and its societal impact in The Netherlands: an internet survey. BMC Infect Dis. 2011;11:320. Wolleswinkel-van den Bosch JH, Speets AM, Rumke HC, Gumbs PD, Fortanier SC. The burden of varicella from a parent’s perspective and its societal impact in The Netherlands: an internet survey. BMC Infect Dis. 2011;11:320.
132.
Zurück zum Zitat Saddier P, Floret D, Guess HA, et al. Cost of varicella in France: a study in day care centers. J Infect Dis. 1998;178(Suppl 1):S58–63.CrossRefPubMed Saddier P, Floret D, Guess HA, et al. Cost of varicella in France: a study in day care centers. J Infect Dis. 1998;178(Suppl 1):S58–63.CrossRefPubMed
Metadaten
Titel
Estimation of the burden of varicella in Europe before the introduction of universal childhood immunization
verfasst von
Margarita Riera-Montes
Kaatje Bollaerts
Ulrich Heininger
Niel Hens
Giovanni Gabutti
Angel Gil
Bayad Nozad
Grazina Mirinaviciute
Elmira Flem
Audrey Souverain
Thomas Verstraeten
Susanne Hartwig
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2017
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2445-2

Weitere Artikel der Ausgabe 1/2017

BMC Infectious Diseases 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.