Skip to main content
Erschienen in: The Cerebellum 3/2011

01.09.2011

Ethanol and Vestibular Stimulation Reveal Simple and Complex Aspects of Cerebellar Heterogeneity

verfasst von: Leonard M. Eisenman

Erschienen in: The Cerebellum | Ausgabe 3/2011

Einloggen, um Zugang zu erhalten

Abstract

Unlike the cerebral cortex, the cerebellum is characterized by a simple histological organization that is relatively uniform throughout. However, molecular characteristics of its constituent elements create a high degree of heterogeneity and complexity resulting in the delineation of modules defined by both parasagittal and anteroposterior boundaries. Eccles notion of the cerebellum as “designed to process input information in some unique and essential manner” may relate to analysis of temporal elements involved in both motor and cognitive behaviors. The complexity of molecular heterogeneities may provide for subtle alterations in temporal processing and lead to behavioral perturbations seen after alcohol or other disruptive stimuli.
Literatur
1.
Zurück zum Zitat Brodmann K. Vergleichende Lokalisation lehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: J.A. Barth; 1909. Brodmann K. Vergleichende Lokalisation lehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: J.A. Barth; 1909.
2.
Zurück zum Zitat Eccles JC, Ito M, Szentagothai J. The cerebellum as a neuronal machine. New York: Springer; 1967. Eccles JC, Ito M, Szentagothai J. The cerebellum as a neuronal machine. New York: Springer; 1967.
3.
Zurück zum Zitat J Voogd. The cerebellum of the cat. The Netherlands, University of Leiden; 1964 J Voogd. The cerebellum of the cat. The Netherlands, University of Leiden; 1964
4.
Zurück zum Zitat Groenewegen HJ, Voogd J. The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of the cat cerebellum. J Comp Neurol. 1977;174:417–88.PubMedCrossRef Groenewegen HJ, Voogd J. The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of the cat cerebellum. J Comp Neurol. 1977;174:417–88.PubMedCrossRef
5.
Zurück zum Zitat Groenewegen HJ, Voogd J, Freedman SL. The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of the cat cerebellum. J Comp Neurol. 1979;183:551–602.PubMedCrossRef Groenewegen HJ, Voogd J, Freedman SL. The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of the cat cerebellum. J Comp Neurol. 1979;183:551–602.PubMedCrossRef
6.
Zurück zum Zitat Hawkes R, Turner RW. Compartmentation of NADPH-diaphorase activity in the mouse cerebellar cortex. J Comp Neurol. 1994;346:499–516.PubMedCrossRef Hawkes R, Turner RW. Compartmentation of NADPH-diaphorase activity in the mouse cerebellar cortex. J Comp Neurol. 1994;346:499–516.PubMedCrossRef
7.
Zurück zum Zitat Hawkes R, Eisenman LM. Stripes and zones: the origins of regionalization of the adult cerebellum. Perspect Dev Neurobiol. 1997;5(1):95–105.PubMed Hawkes R, Eisenman LM. Stripes and zones: the origins of regionalization of the adult cerebellum. Perspect Dev Neurobiol. 1997;5(1):95–105.PubMed
8.
Zurück zum Zitat Ozol K, Hayden JM, Oberdick J, Hawkes R. Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol. 1999;412(1):95–111.PubMedCrossRef Ozol K, Hayden JM, Oberdick J, Hawkes R. Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol. 1999;412(1):95–111.PubMedCrossRef
9.
Zurück zum Zitat De Zeeuw CI, Cicirata F. Creating coordination in the cerebellum. Prog Brain Res. 2005;148:x–xiii De Zeeuw CI, Cicirata F. Creating coordination in the cerebellum. Prog Brain Res. 2005;148:x–xiii
10.
11.
Zurück zum Zitat Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443–54.PubMedCrossRef Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443–54.PubMedCrossRef
12.
Zurück zum Zitat Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334–46.PubMedCrossRef Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334–46.PubMedCrossRef
13.
Zurück zum Zitat Keele SW, Ivry R. Does the cerebellum provide a common computation for diverse tasks? a timing hypothesis. Ann N Y Acad Sci. 1990;608:179–207.PubMedCrossRef Keele SW, Ivry R. Does the cerebellum provide a common computation for diverse tasks? a timing hypothesis. Ann N Y Acad Sci. 1990;608:179–207.PubMedCrossRef
14.
Zurück zum Zitat O'Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28(9):2252–60.PubMedCrossRef O'Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28(9):2252–60.PubMedCrossRef
15.
Zurück zum Zitat Ruigrok TJ. Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum. J Comp Neurol. 2003;466(2):278–98.PubMedCrossRef Ruigrok TJ. Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum. J Comp Neurol. 2003;466(2):278–98.PubMedCrossRef
16.
Zurück zum Zitat Eisenman LM, Tran MH, Scott Donovan H. Acute ethanol administration produces specific patterns of localization of Fos-immunoreactivity in the cerebellum and inferior olive of two inbred strains of mice. Brain Res. 2002;952(1):135–41.PubMedCrossRef Eisenman LM, Tran MH, Scott Donovan H. Acute ethanol administration produces specific patterns of localization of Fos-immunoreactivity in the cerebellum and inferior olive of two inbred strains of mice. Brain Res. 2002;952(1):135–41.PubMedCrossRef
17.
Zurück zum Zitat Morgan JI, Curran T. Stimulus-transcription coupling in neurons: role of cellular immediate early genes. TINS. 1989;12:459–62.PubMed Morgan JI, Curran T. Stimulus-transcription coupling in neurons: role of cellular immediate early genes. TINS. 1989;12:459–62.PubMed
18.
Zurück zum Zitat Eisenman LM, Scott Donovan H. The ventral uvula of the mouse cerebellum: a neural target of ethanol and vestibular stimuli. Brain Res. 2004;1028(2):243–8.PubMedCrossRef Eisenman LM, Scott Donovan H. The ventral uvula of the mouse cerebellum: a neural target of ethanol and vestibular stimuli. Brain Res. 2004;1028(2):243–8.PubMedCrossRef
19.
Zurück zum Zitat Thunnissen IE, Epema AH, Gerrits NM. Secondary vestibulocerebellar mossy fiber projections to the caudal vermis in the rabbit. J Comp Neurol. 1989;290:262–77.PubMedCrossRef Thunnissen IE, Epema AH, Gerrits NM. Secondary vestibulocerebellar mossy fiber projections to the caudal vermis in the rabbit. J Comp Neurol. 1989;290:262–77.PubMedCrossRef
20.
Zurück zum Zitat Epema AH, Guilemond JM, Voogd J. Reciprocal connections between the cuadal vermis and the vestibular nuclei in the rabbit. Neurosci Lett. 1995;57:273–8.CrossRef Epema AH, Guilemond JM, Voogd J. Reciprocal connections between the cuadal vermis and the vestibular nuclei in the rabbit. Neurosci Lett. 1995;57:273–8.CrossRef
21.
Zurück zum Zitat Purcell IM, Perachio AA. Peripheral patterns of terminal innervation of vestibular primary afferent neurons projecting to the vestibulocerebellum in the gerbil. J Comp Neurol. 2001;432:48–61.CrossRef Purcell IM, Perachio AA. Peripheral patterns of terminal innervation of vestibular primary afferent neurons projecting to the vestibulocerebellum in the gerbil. J Comp Neurol. 2001;432:48–61.CrossRef
22.
Zurück zum Zitat Newlands SD, Purcell IM, Kevetter GA, Perachio A. Central projections of the uvular nerve in the gerbil. J Comp Neurol. 2002;452:11–23.PubMedCrossRef Newlands SD, Purcell IM, Kevetter GA, Perachio A. Central projections of the uvular nerve in the gerbil. J Comp Neurol. 2002;452:11–23.PubMedCrossRef
23.
Zurück zum Zitat Maklad A, Fritsch B. Parital segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Dev Brain Res. 2003;140:223–36.CrossRef Maklad A, Fritsch B. Parital segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Dev Brain Res. 2003;140:223–36.CrossRef
24.
Zurück zum Zitat Brochu G, Maler L, Hawkes R. Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol. 1990;291:538–52.PubMedCrossRef Brochu G, Maler L, Hawkes R. Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol. 1990;291:538–52.PubMedCrossRef
25.
Zurück zum Zitat Ahn AH, Dziennis S, Hawkes R, Herrup K. The cloning of Zebrin II reveals its identity with aldolase C. Development. 1994;120(8):2081–90.PubMed Ahn AH, Dziennis S, Hawkes R, Herrup K. The cloning of Zebrin II reveals its identity with aldolase C. Development. 1994;120(8):2081–90.PubMed
26.
Zurück zum Zitat Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of heat shock protein HSP25 in the central nervous system of the developing and adult mouse. J Comp Neurol. 2001;434(3):262–74.PubMedCrossRef Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of heat shock protein HSP25 in the central nervous system of the developing and adult mouse. J Comp Neurol. 2001;434(3):262–74.PubMedCrossRef
27.
Zurück zum Zitat Dino MR, Nunzi MG, Anelli R, Mugnaini E. Unipolar brush cells of the vestibulocerebellum: afferents and targets. Prog Brain Res. 2000;124:123–37.PubMedCrossRef Dino MR, Nunzi MG, Anelli R, Mugnaini E. Unipolar brush cells of the vestibulocerebellum: afferents and targets. Prog Brain Res. 2000;124:123–37.PubMedCrossRef
28.
Zurück zum Zitat Dino MR, Willard FH, Mugnaini E. Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex. J Neurocytol. 1999;28(2):99–123.PubMedCrossRef Dino MR, Willard FH, Mugnaini E. Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex. J Neurocytol. 1999;28(2):99–123.PubMedCrossRef
29.
Zurück zum Zitat Nunzi MG, Mugnaini E. Unipolar brush cell axons form a large system of intrinsic mossy fibers in the postnatal vestibulocerebellum. J Comp Neurol. 2000;422(1):55–65.PubMedCrossRef Nunzi MG, Mugnaini E. Unipolar brush cell axons form a large system of intrinsic mossy fibers in the postnatal vestibulocerebellum. J Comp Neurol. 2000;422(1):55–65.PubMedCrossRef
30.
Zurück zum Zitat Nunzi MG, Birnstiel S, Bhattacharyya BJ, Slater NT, Mugnaini E. Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex. J Comp Neurol. 2001;434(3):329–41.PubMedCrossRef Nunzi MG, Birnstiel S, Bhattacharyya BJ, Slater NT, Mugnaini E. Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex. J Comp Neurol. 2001;434(3):329–41.PubMedCrossRef
31.
Zurück zum Zitat Nunzi MG, Shigemoto R, Mugnaini E. Differential expression of calretinin and metabotropic glutamate receptor mGluR1 alpha defines subsets of unipolar brush cells in mouse cerebellum. J Comp Neurol. 2002;451(2):189–99.PubMedCrossRef Nunzi MG, Shigemoto R, Mugnaini E. Differential expression of calretinin and metabotropic glutamate receptor mGluR1 alpha defines subsets of unipolar brush cells in mouse cerebellum. J Comp Neurol. 2002;451(2):189–99.PubMedCrossRef
32.
Zurück zum Zitat Wu HS, Sugihara I, Shinoda Y. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol. 1999;411(1):97–118.PubMedCrossRef Wu HS, Sugihara I, Shinoda Y. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol. 1999;411(1):97–118.PubMedCrossRef
33.
Zurück zum Zitat Dino MR, Schuerger RJ, Liu Y, Slater NT, Mugnaini E. Unipolar brush cell: a potential feedforward excitatory interneuron of the cerebellum. Neuroscience. 2000;98(4):625–36.PubMedCrossRef Dino MR, Schuerger RJ, Liu Y, Slater NT, Mugnaini E. Unipolar brush cell: a potential feedforward excitatory interneuron of the cerebellum. Neuroscience. 2000;98(4):625–36.PubMedCrossRef
34.
Zurück zum Zitat Barmack NH, Baughman RW, Eckenstein FP. Cholinergic innervation of the cerebellum of the rat by secondary vestibular afferents. Ann N Y Acad Sci. 1992;22(656):566–79.CrossRef Barmack NH, Baughman RW, Eckenstein FP. Cholinergic innervation of the cerebellum of the rat by secondary vestibular afferents. Ann N Y Acad Sci. 1992;22(656):566–79.CrossRef
35.
Zurück zum Zitat Barmack NH. Cholinergic pathways and functions related to the vestibulo-cerebellum. In: Beitz AJ, Anderson JH, editors. Neurochemistry of the Vestibular System. Boca Raton, FL: CRC Press; 2000. p. 269–85. Barmack NH. Cholinergic pathways and functions related to the vestibulo-cerebellum. In: Beitz AJ, Anderson JH, editors. Neurochemistry of the Vestibular System. Boca Raton, FL: CRC Press; 2000. p. 269–85.
36.
Zurück zum Zitat Jaarsma D, Levey AI, Frostholm A, Rotter A, Voogd J. Light-microscopic distribution and parasagittal organisation of muscarinic receptors in rabbit cerebellar cortex. J Chem Neuroanat. 1995;9(4):241–59.PubMedCrossRef Jaarsma D, Levey AI, Frostholm A, Rotter A, Voogd J. Light-microscopic distribution and parasagittal organisation of muscarinic receptors in rabbit cerebellar cortex. J Chem Neuroanat. 1995;9(4):241–59.PubMedCrossRef
37.
Zurück zum Zitat Jaarsma D, Ruigrok TJ, Caffe R, Cozzari C, Levey AI, Mugnaini E, et al. Cholinergic innervation and receptors in the cerebellum. Prog Brain Res. 1997;114:67–96.PubMedCrossRef Jaarsma D, Ruigrok TJ, Caffe R, Cozzari C, Levey AI, Mugnaini E, et al. Cholinergic innervation and receptors in the cerebellum. Prog Brain Res. 1997;114:67–96.PubMedCrossRef
38.
Zurück zum Zitat Vilaro MT, Wiederhold KH, Palacios JM, Mengod G. Muscarinic M2 receptor mRNA expression and receptor binding in cholinergic and non-cholinergic cells in the rat brain: a correlative study using in situ hybridization histochemistry and receptor autoradiography. Neuroscience. 1992;47(2):367–93.PubMedCrossRef Vilaro MT, Wiederhold KH, Palacios JM, Mengod G. Muscarinic M2 receptor mRNA expression and receptor binding in cholinergic and non-cholinergic cells in the rat brain: a correlative study using in situ hybridization histochemistry and receptor autoradiography. Neuroscience. 1992;47(2):367–93.PubMedCrossRef
39.
Zurück zum Zitat Davies M. The role of GABAA receptors in mediating the effects of alcohol in the central nervous system. J Psychiatry Neurosci. 2003;28(4):263–74.PubMed Davies M. The role of GABAA receptors in mediating the effects of alcohol in the central nervous system. J Psychiatry Neurosci. 2003;28(4):263–74.PubMed
40.
Zurück zum Zitat Palacios JM, Young 3rd WS, Kuhar MJ. Autoradiographic localization of gamma-aminobutyric acid (GABA) receptors in the rat cerebellum. Proc Natl Acad Sci U S A. 1980;77(1):670–4.PubMedCrossRef Palacios JM, Young 3rd WS, Kuhar MJ. Autoradiographic localization of gamma-aminobutyric acid (GABA) receptors in the rat cerebellum. Proc Natl Acad Sci U S A. 1980;77(1):670–4.PubMedCrossRef
41.
Zurück zum Zitat Kingsbury AE, Wilkin GP, Patel AJ, Balazs R. Distribution of GABA receptors in the rat cerebellum. J Neurochem. 1980;35(3):739–42.PubMedCrossRef Kingsbury AE, Wilkin GP, Patel AJ, Balazs R. Distribution of GABA receptors in the rat cerebellum. J Neurochem. 1980;35(3):739–42.PubMedCrossRef
42.
Zurück zum Zitat Bowery NG, Hudson AL, Price GW. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience. 1987;20(2):365–83.PubMedCrossRef Bowery NG, Hudson AL, Price GW. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience. 1987;20(2):365–83.PubMedCrossRef
43.
Zurück zum Zitat Rotter A, Gorenstein C, Frostholm A. The localization of GABAA receptors in mice with mutations affecting the structure and connectivity of the cerebellum. Brain Res. 1988;439(1–2):236–48. 26.PubMedCrossRef Rotter A, Gorenstein C, Frostholm A. The localization of GABAA receptors in mice with mutations affecting the structure and connectivity of the cerebellum. Brain Res. 1988;439(1–2):236–48. 26.PubMedCrossRef
44.
Zurück zum Zitat Laurie DJ, Seeburg PH, Wisden W. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellums. J Neurosci. 1992;12(3):1063–76.PubMed Laurie DJ, Seeburg PH, Wisden W. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellums. J Neurosci. 1992;12(3):1063–76.PubMed
45.
Zurück zum Zitat Nakamura J, Sasa M, Takaori S. Ethanol potentiates the effect of gamma-aminobutyric acid on medial vestibular nucleus neurons responding to horizontal rotation. Life Sci. 1989;45(11):971–8.PubMedCrossRef Nakamura J, Sasa M, Takaori S. Ethanol potentiates the effect of gamma-aminobutyric acid on medial vestibular nucleus neurons responding to horizontal rotation. Life Sci. 1989;45(11):971–8.PubMedCrossRef
46.
Zurück zum Zitat Korpi ER, Kleingoor C, Kettenmann H, Seeburg PH. Benzodiazepine-induced motor impairment linked to point mutation in cerebellar GABAA receptor. Nature. 1993;361(6410):356–9. 28.PubMedCrossRef Korpi ER, Kleingoor C, Kettenmann H, Seeburg PH. Benzodiazepine-induced motor impairment linked to point mutation in cerebellar GABAA receptor. Nature. 1993;361(6410):356–9. 28.PubMedCrossRef
47.
Zurück zum Zitat Weight FF. Cellular and molecular physiology of alcohol actions in the nervous system. Int Rev Neurobiol. 1992;33:289–348.PubMedCrossRef Weight FF. Cellular and molecular physiology of alcohol actions in the nervous system. Int Rev Neurobiol. 1992;33:289–348.PubMedCrossRef
48.
Zurück zum Zitat Swensen AM, Bean BP. Ionic mechanisms of burst firing in dissociated Purkinje neurons. J Neurosci. 2003;23(29):9650–63.PubMed Swensen AM, Bean BP. Ionic mechanisms of burst firing in dissociated Purkinje neurons. J Neurosci. 2003;23(29):9650–63.PubMed
49.
Zurück zum Zitat Baloh RW, Yue Q, Furman JM, Nelson SF. Familial episodic ataxia: clinical heterogeneity in four families linked to chromosome 19p. Ann Neurol. 1997;41(1):8–16.PubMedCrossRef Baloh RW, Yue Q, Furman JM, Nelson SF. Familial episodic ataxia: clinical heterogeneity in four families linked to chromosome 19p. Ann Neurol. 1997;41(1):8–16.PubMedCrossRef
50.
Zurück zum Zitat Walter JT, Alvina K, Womack MD, Chevez C, Khodakhah K. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci. 2006;9(3):389–97.PubMedCrossRef Walter JT, Alvina K, Womack MD, Chevez C, Khodakhah K. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci. 2006;9(3):389–97.PubMedCrossRef
51.
Zurück zum Zitat Fureman BE, Jinnah HA, Hess EJ. Triggers of paroxysmal dyskinesia in the calcium channel mouse mutant tottering. Pharmacol Biochem Behav. 2002;73(3):631–7.PubMedCrossRef Fureman BE, Jinnah HA, Hess EJ. Triggers of paroxysmal dyskinesia in the calcium channel mouse mutant tottering. Pharmacol Biochem Behav. 2002;73(3):631–7.PubMedCrossRef
52.
Zurück zum Zitat Hoebeek FE, Khosrovani S, Witter L, De Zeeuw CI. Purkinje cell input to cerebellar nuclei in tottering: ultrastructure and physiology. Cerebellum. 2008;7(4):547–58.PubMedCrossRef Hoebeek FE, Khosrovani S, Witter L, De Zeeuw CI. Purkinje cell input to cerebellar nuclei in tottering: ultrastructure and physiology. Cerebellum. 2008;7(4):547–58.PubMedCrossRef
53.
Zurück zum Zitat Sawada K, Kalam Azad A, Sakata-Haga H, Lee NS, Jeong YG, Fukui Y. Striking pattern of Purkinje cell loss in cerebellum of an ataxic mutant mouse, tottering. Acta Neurobiol Exp. 2009;69(1):138–45. Sawada K, Kalam Azad A, Sakata-Haga H, Lee NS, Jeong YG, Fukui Y. Striking pattern of Purkinje cell loss in cerebellum of an ataxic mutant mouse, tottering. Acta Neurobiol Exp. 2009;69(1):138–45.
Metadaten
Titel
Ethanol and Vestibular Stimulation Reveal Simple and Complex Aspects of Cerebellar Heterogeneity
verfasst von
Leonard M. Eisenman
Publikationsdatum
01.09.2011
Verlag
Springer-Verlag
Erschienen in
The Cerebellum / Ausgabe 3/2011
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-010-0238-x

Weitere Artikel der Ausgabe 3/2011

The Cerebellum 3/2011 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Demenzkranke durch Antipsychotika vielfach gefährdet

Demenz Nachrichten

Der Einsatz von Antipsychotika gegen psychische und Verhaltenssymptome in Zusammenhang mit Demenzerkrankungen erfordert eine sorgfältige Nutzen-Risiken-Abwägung. Neuen Erkenntnissen zufolge sind auf der Risikoseite weitere schwerwiegende Ereignisse zu berücksichtigen.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.