Skip to main content

16.02.2020 | Imaging Informatics and Artificial Intelligence

Evaluation of acute pulmonary embolism and clot burden on CTPA with deep learning

European Radiology
Weifang Liu, Min Liu, Xiaojuan Guo, Peiyao Zhang, Ling Zhang, Rongguo Zhang, Han Kang, Zhenguo Zhai, Xincao Tao, Jun Wan, Sheng Xie
Wichtige Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



To take advantage of the deep learning algorithms to detect and calculate clot burden of acute pulmonary embolism (APE) on computed tomographic pulmonary angiography (CTPA).

Materials and methods

The training set in this retrospective study consisted of 590 patients (460 with APE and 130 without APE) who underwent CTPA. A fully deep learning convolutional neural network (DL-CNN), called U-Net, was trained for the segmentation of clot. Additionally, an in-house validation set consisted of 288 patients (186 with APE and 102 without APE). In this study, we set different probability thresholds to test the performance of U-Net for the clot detection and selected sensitivity, specificity, and area under the curve (AUC) as the metrics of performance evaluation. Furthermore, we investigated the relationship between the clot burden assessed by the Qanadli score, Mastora score, and other imaging parameters on CTPA and the clot burden calculated by the DL-CNN model.


There was no statistically significant difference in AUCs with the different probability thresholds. When the probability threshold for segmentation was 0.1, the sensitivity and specificity of U-Net in detecting clot respectively were 94.6% and 76.5% while the AUC was 0.926 (95% CI 0.884–0.968). Moreover, this study displayed that the clot burden measured with U-Net was significantly correlated with the Qanadli score (r = 0.819, p < 0.001), Mastora score (r = 0.874, p < 0.001), and right ventricular functional parameters on CTPA.


DL-CNN achieved a high AUC for the detection of pulmonary emboli and can be applied to quantitatively calculate the clot burden of APE patients, which may contribute to reducing the workloads of clinicians.

Key Points

• Deep learning can detect APE with a good performance and efficiently calculate the clot burden to reduce the physicians’ workload.
• Clot burden measured with deep learning highly correlates with Qanadli and Mastora scores of CTPA.
• Clot burden measured with deep learning correlates with parameters of right ventricular function on CTPA.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf

Jetzt e.Med zum Sonderpreis bestellen!

Sichern Sie sich jetzt Ihr e.Med-Abo und sparen Sie 50 %!

Weitere Produktempfehlungen anzeigen
Über diesen Artikel
  1. Sie können e.Med Radiologie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.