Skip to main content
Erschienen in: BMC Cancer 1/2017

Open Access 01.12.2017 | Research article

Evaluation of Slug expression is useful for predicting lymph node metastasis and survival in patients with gastric cancer

verfasst von: Han Hee Lee, Sung Hak Lee, Kyo Young Song, Sae Jung Na, Joo Hyun O, Jae Myung Park, Eun Sun Jung, Myung-Gyu Choi, Cho Hyun Park

Erschienen in: BMC Cancer | Ausgabe 1/2017

Abstract

Background

Slug is a transcription factor that activates the epithelial–mesenchymal transition (EMT) process in cancer progression. The aim of our study was to evaluate the clinical significance of Slug expression in gastric cancer.

Methods

The expression of Slug in gastric cancer tissues of 456 patients who underwent gastrectomy was evaluated by immunohistochemistry using tissue microarrays. Slug expression level was defined by the composite score determined by multiplying the tumor staining scores for intensity and extent. The associations of Slug expression with clinicopathological characteristics and overall and recurrence-free survival were analyzed.

Results

Patients were divided into three groups according to Slug composite score (≤4, 6, and 9). Low, mid, and high expression of Slug was observed in 104 (22.7%), 130 (28.3%), and 225 (49.0%) of cases, respectively. Overall survival and recurrence-free survival progressively increased from high to low Slug expression. In terms of lymph node metastasis, the rate of positive lymph node metastasis was 38/104 (36.5%), 79/130 (60.8%), and 178/225 (79.1%) in low, mid, and high Slug expression groups, respectively, displaying a tendency to increase with higher Slug expression. In a multivariate analysis adjusting for patient age, tumor size, tumor depth, and histology, high Slug expression was associated with a high rate of positive lymph node metastasis compared with low Slug expression (odds ratio 3.42; 95% confidence interval, 1.74–6.69). In a subgroup analysis of T1 cancer, patients with negative Slug expression (defined as <5% positive tumor cells or no/weak staining) showed no lymph node metastasis (0/13), whereas those with positive Slug expression showed 15.9% (17/107) lymph node metastasis, with a negative predictive value of 100%.

Conclusions

High expression of Slug in gastric cancer tissue was associated with lymph node metastasis and poor survival. Evaluation of Slug would be useful for discriminating patients at high risk of lymph node metastasis in early gastric cancer.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12885-017-3668-8) contains supplementary material, which is available to authorized users.
Abkürzungen
AGC
Advanced gastric cancer
EGC
Early gastric cancer
EMT
Epithelial–mesenchymal transition
ESD
Endoscopic submucosal dissection
FFPE
Formalin-fixed, paraffin-embedded
LNM
Lymph node metastasis
pTNM
Pathological tumor/node/metastasis
TMAs
Tissue microarrays

Background

Gastric cancer is the third leading cause of cancer death worldwide, and almost 1 million new cases occur annually [1]. With the introduction of mass screening methods such as endoscopy and upper gastrointestinal series, the proportion of patients with early detection of early gastric cancer (EGC) or precancerous adenoma has been increasing [2, 3]. Endoscopic submucosal dissection (ESD) has become the standard therapy for EGC because it is minimally invasive and allows en bloc and complete resection [4]. Recently, there has been an attempt to expand the indications of ESD [5]. Along with this, prediction of lymph node metastasis (LNM) in EGC is becoming more important because LNM is one of the most important factors for assessment of prognosis and decision of therapeutic modalities [6, 7]. Advanced gastric cancer (AGC) has a particularly poor prognosis compared with EGC. AGC spreads locally by breaking through the gastric wall into neighboring tissue and metastasizes to regional lymph nodes. The presence of metastatic lymph nodes could be an outstanding prognostic factor. Differences in the prognoses of patients with negative lymph node metastasis versus positive lymph node metastasis are especially robust in surgically treated AGC [810].
Epithelial-mesenchymal transition (EMT) is a biologic process by which epithelial cells lose their cell-cell junctions and apical-basal polarity and gain a highly motile and invasive phenotype to become mesenchymal cells [11]. EMT is integral to embryo formation and organ development [12] and has also been shown to occur during wound healing and tissue fibrosis [13]. In cancer, EMT contributes pathologically to cancer progression by enabling primary tumor cells to break through the basal lamina and invade adjacent tissue, leading to tumor metastasis [14].
Slug, also known as Snail2, is one of the key transcription factors that activate EMT process in cancer progression [15]. It contributes to repression of the epithelial phonotype by binding to E-box DNA sequences in the proximal promoter region of the E-cadherin gene [1618]. This role as a strong E-cadherin repressor mediates loss of tight junctions of epithelial cells and initiates EMT, which facilitates cancer cell invasion and distant metastasis [18, 19]. Slug has been highly studied in various cancers. In breast cancer patients, Slug is consistently overexpressed in aggressive and basal-type breast tumors [20] and seems to be involved in breast tumorigenesis and metastasis through regulation of the EMT [21]. It has also been demonstrated that Slug expression is correlated with poor prognosis in pancreatic and esophageal cancer patients [22, 23]. Recent studies have revealed that Slug not only functions in cancer metastasis, but also plays a role in cancer stemness [24, 25], implying that Slug participates in early steps of cancer progression.
In gastric cancer, upregulation of Slug mRNA is associated with suppression of E-cadherin in intestinal and diffuse type gastric carcinomas [26]. In a study focused on protein expression, high Slug expression was correlated with advanced stages and worse clinical outcomes [27]. However, there are only a few studies on the clinical significance of Slug in gastric cancer. In addition, the significance of Slug expression in early gastric cancer has not been proved.
Therefore, the purpose of our study was to evaluate the clinical significance of Slug expression in gastric cancer using a tissue microarray method in a large series of patients with resected gastric cancer.

Methods

Patients and clinical samples

A total of 459 patients (313 men and 146 women) were randomly selected by random number generation from 2495 consecutive patients with gastric cancer who had undergone radical surgery at Seoul St. Mary’s Hospital, The Catholic University of Korea, between 2000 and 2009. Clinicopathological data were reviewed retrospectively from the participants’ medical records and pathology reports at our institution. Variable factors including age, gender, type of surgery, tumor size, location, pathologic staging, histology, and lymphatic, venous, and perineural invasion were analyzed. Tumor location was categorized into upper, middle, and lower thirds of the stomach. The gastric cancers were staged according to the pathological tumor/node/metastasis (pTNM) classification (8th edition) of the Union for International Cancer Control [28]. The histological types of the gastric cancers were assessed according to the 2010 World Health Organization classification [29]. Tumors were also classified into intestinal, diffuse, and mixed types by Lauren classification [30]. Written informed consent was obtained from all patients. Patient consent and specimen collection were conducted in accordance with protocols approved by the Institutional Review Board of The Catholic University of Korea (KC14SISI0158).

Tissue microarray construction and immunohistochemistry

All gastric specimens were histologically reviewed, and tissue microarrays (TMAs) were constructed from each of the formalin-fixed, paraffin-embedded (FFPE) tissue blocks using a Manual Tissue Arrayer (Beecher Instruments, Sun Prairie, WI, USA) with a 2.0-mm tip.
Immunohistochemical analysis was performed using primary antibody against Slug (ab188875) (polyclonal; 1:150; Abcam, Cambridge, UK). We determined the optimal dilution of the Slug antibody using positive control tissue such as normal gastric epithelial cells and placenta. Four-micrometer-thick tissue sections from the TMA blocks were transferred to Probe On Plus slides (Fisher Scientific, Pittsburgh, PA, USA) and baked for 2 h in a dry oven at 56 °C (Agilent Technologies, Santa Clara, CA, USA). The FFPE sections were deparaffinized in xylene three times and rehydrated through 100%, 90%, 80%, and 70% ethanol in Tris-buffered saline (pH 7.4). Antigen retrieval was achieved by boiling in 10 mM sodium citrate buffer (pH 6.0) using a microwave oven for 20 min. After treatment with 3% H2O2 in phosphate-buffered saline, the tissues were incubated with primary antibody at 4 °C overnight and then with diluted (1:100) biotinylated anti-mouse antibody (Abnova, Walnut, CA, USA) for 1 h at room temperature. The signal was amplified using diluted ExtrAvidin-peroxidase (1:50; Sigma-Aldrich, St. Louis, MO, USA) for 1 h at room temperature and visualized using the liquid 3,3′-diaminobenzidine + Substrate Chromogen system (Dako, Glostrup, Denmark). Counterstaining was performed with hematoxylin. Nonspecific staining was not observed in any negative control sections.

Evaluation of immunohistochemical staining

Two pathologists (SH Lee and ES Jung) who were blinded to the clinicopathological parameters independently reviewed the immunohistochemical staining for the tissue sections. We used a semi-quantitative scoring system based on the intensity and extent of stained cells for each case. The staining intensity was graded from 0 to 3 (0 = no expression at all, 1 = weak, 2 = moderate, 3 = strong). The extent was graded from 0 to 3 (0 = <5%, 1 = 5–25%, 2 = 26–50%, 3 = >50%). The intensity scores and extent scores were multiplied to obtain the composite score.

Statistical analysis

Continuous data are presented as mean ± standard deviation, and categorical data are presented as quantity and proportion. Pearson’s χ2 test for categorical variables and Student’s t test for unpaired data for continuous variables were performed to compare clinicopathological characteristics among the three Slug expression groups. A P value <0.05 was considered significant. Survival rates were calculated by the Kaplan–Meier method, with the date of gastrectomy as the starting point. Patients who were alive were censored at the time of the last follow-up. Differences in survival were examined by the log-rank test. Multivariable analysis was performed using a Cox proportional hazards model with a backward stepwise selection procedure. All analyses were performed by SAS for Windows software (version 8.02, SAS Institute, Cary, NC, USA).

Results

Expression profile of Slug in gastric cancer

Table 1 shows overall immunohistochemical Slug expression in the gastric cancer tissue microarray. More than half of the tissues showed diffuse Slug expression, which corresponds to extent score 3, and 71.9% (330/459) of tissues showed intensity score 3, indicating strong staining. Figure 1 shows representative images of the range of Slug staining intensity. Multiplication of these two variables yielded the Slug composite score, which ranged from 0 to 9. Classification of the patients according to Slug composite score yielded 104 (22.7%), 130 (28.3%), and 225 (49.0%) patients in the low, mid, and high Slug groups, respectively.
Table 1
Scoring methods of Slug expression
Measures
Number
Percent
Extent
 0: negative (<5%)
15
3.3
 1: sporadic (5–25%)
35
7.6
 2: focal (25–50%)
141
30.7
 3: diffuse (>50%)
268
58.4
Intensity
 0: no staining
2
0.4
 1: weak staining
24
5.2
 2: moderate staining
103
22.4
 3: strong staining
330
71.9
Extent × Intensity
= Slug composite score (range 0–9)
  
 Low (≤4)
104
22.7
 Mid (6)
130
28.3
 High (9)
225
49.0

Relationships between Slug expression and clinicopathological parameters

Table 2 summarizes the clinicopathological characteristics of the 459 patients undergoing gastrectomy for gastric cancer. The mean age of the patients was 58.6 years (range 23–86 years), and 68.2% (n = 313) were male. Distal subtotal gastrectomy was the most commonly performed surgery (63.2%). The high Slug group tended to have large tumors and advanced tumor depth and stages. They also had a high rate of positive perineural invasion. Regarding histology, the proportion of poorly differentiated adenocarcinoma tended to increase from low to high Slug expression groups. However, the proportion of signet ring cell carcinoma was highest in the low Slug group.
Table 2
Comparison of characteristics of the patients according to Slug composite score
Measures
Total patients (N = 459)
Low (n = 104)
Mid (n = 130)
High (n = 225)
P
Age (years)
 Mean ± SD
58.6 ± 11.9
56.3 ± 12.3
58.9 ± 11.8
59.6 ± 11.6
0.064
 Range
23–86
23–81
32–82
24–86
 
Male
313 (68.2%)
65 (62.5%)
94 (72.3%)
154 (68.4%)
0.276
Type of surgery
 Total gastrectomy
166 (36.2%)
30 (28.8%)
51 (39.2%)
85 (37.8%)
 
 Subtotal gastrectomy
290 (63.2%)
73 (70.2%)
78 (60.0%)
139 (61.8%)
 
 Wedge resection
3 (0.7%)
1 (1.0%)
1 (0.8%)
1 (0.4%)
 
Tumor size (cm)
 Mean ± SD
5.0 ± 2.9
4.1 ± 2.5
5.1 ± 3.3
5.4 ± 2.8
0.001
 Range
0.2–19.0
0.4–12.5
0.5–19.0
0.2–15.5
 
Location
 Upper third
80 (17.4%)
16 (15.4%)
22 (16.9%)
42 (18.7%)
0.599
 Middle third
164 (35.7%)
43 (41.3%)
50 (38.5%)
71 (31.6%)
 
 Lower third
206 (44.9%)
44 (42.3%)
55 (42.3%)
107 (47.6%)
 
 Whole stomach
9 (2.0%)
1 (1.0%)
3 (2.3%)
5 (2.2%)
 
Tumor depth (pT)
 T1
120 (26.1%)
56 (53.8%)
30 (23.1%)
34 (15.1%)
<0.001
 T2
62 (13.5%)
18 (17.3%)
26 (20.0%)
18 (8.0%)
 
 T3
121 (26.4%)
14 (13.5%)
35 (26.9%)
72 (32.0%)
 
 T4
156 (34.0%)
16 (15.4%)
39 (30.0%)
101 (44.9%)
 
TNM Stage
 I
131 (28.5%)
62 (59.6%)
37 (28.5%)
32 (14.2%)
<0.001
 II
122 (26.6%)
25 (24.0%)
45 (34.6%)
52 (23.1%)
 
 III
206 (44.9%)
17 (16.3%)
48 (36.9%)
141 (62.7%)
 
Venous invasiona
 Negative
406 (88.5%)
97 (94.2%)
117 (90.0%)
192 (85.3%)
0.055
 Positive
52 (11.3%)
6 (5.8%)
13 (10.0%)
33 (14.7%)
 
Perineural invasion
 Negative
270 (58.8%)
81 (77.9%)
75 (57.7%)
114 (50.7%)
<0.001
 Positive
189 (41.2%)
23 (22.1%)
55 (42.3%)
111 (49.3%)
 
Histology
 Adenocarcinoma
    
0.005b
  Well differentiated
38 (8.3%)
12 (11.5%)
5 (3.8%)
21 (9.3%)
 
  Moderately differentiated
136 (29.6%)
23 (22.1%)
44 (33.8%)
69 (30.7%)
 
  Poorly differentiated
189 (41.2%)
35 (33.7%)
53 (40.8%)
101 (44.9%)
 
 Mucinous adenocarcinoma
19 (4.1%)
5 (4.8%)
7 (5.4%)
7 (3.1%)
 
 Signet ring cell carcinoma
77 (16.8%)
29 (27.9%)
21 (16.2%)
27 (12.0%)
 
Lauren classification
 Intestinal
174 (37.9%)
40 (38.5%)
47 (36.2%)
87 (38.7%)
0.433
 Diffuse
177 (38.6%)
40 (38.5%)
58 (44.6%)
79 (35.1%)
 
 Mixed
108 (23.5%)
24 (23.1%)
25 (19.2%)
59 (26.2%)
 
Where appropriate, data are shown as the mean ± SD
aLymphatic and venous invasion could not be evaluated in 2 and 1 cases, respectively
bLinear-by-linear association

Slug expression and lymph node metastasis

The rate of positive lymph node metastasis was 36.5% in the low group, 60.8% in the mid group, and 79.1% in the high Slug expression group, thus displaying a tendency to increase with increasing Slug expression (Table 3). Positive lymph node ratio calculated by dividing number of metastatic LNs by number of retrieved LNs was significantly higher in the high Slug group. The high Slug group also showed a high proportion of positive lymphatic invasion.
Table 3
Association of lymphatic metastasis and Slug expression
Measures
Total patients (N = 459)
Low (n = 104)
Mid (n = 130)
High (n = 225)
P
Lymph node metastasis (pN)
 Negative
164 (35.7%)
66 (63.5%)
51 (39.2%)
47 (20.9%)
<0.001
 Positive
295 (64.3%)
38 (36.5%)
79 (60.8%)
178 (79.1%)
 
  N1
98 (21.4%)
20 (19.2%)
30 (23.1%)
48 (21.3%)
 
  N2
99 (21.6%)
15 (14.4%)
26 (20.0%)
58 (25.8%)
 
  N3
98 (21.4%)
3 (2.9%)
23 (17.7%)
72 (32.0%)
 
   N3a
94 (20.5%)
3 (2.9%)
20 (15.4%)
71 (31.6%)
 
   N3b
4 (0.9%)
0 (0.0%)
3 (2.3%)
1 (0.4%)
 
Number of metastatic lymph nodes
3.7 ± 4.9 (0–42)
1.2 ± 2.3 (0–12)
3.6 ± 5.8 (0–42)
4.9 ± 4.7 (0–25)
<0.001
Number of retrieved lymph nodes
42.4 ± 15.4 (6–106)
39.5 ± 13.3 (14–78)
44.9 ± 16.1* (8–97)
42.4 ± 15.8 (6–106)
0.028
Positive lymph node ratio
0.09 ± 0.12
0.03 ± 0.06
0.08 ± 0.12
0.12 ± 0.13
<0.001
Lymphatic invasiona
 Negative
154 (33.6%)
59 (57.3%)
45 (34.9%)
50 (22.2%)
<0.001
 Positive
303 (66.0%)
44 (42.7%)
84 (65.1%)
175 (77.8%)
 
* p < 0.05; when compared with “low Slug composite score group” using the ANOVA test with post-hoc Tukey-HSD test
aLymphatic invasion could not be evaluated in 2 cases
In a multivariate logistic regression analysis for lymph node metastasis, Slug composite score was identified as an independent predictive factor for lymph node metastasis even after adjusting for age, tumor size, tumor depth, and Lauren classification (Table 4). Compared with patients with low Slug score, the adjusted odds ratio in the high Slug group was 3.42 (95% confidence interval = 1.74–6.69). Tumor size and depth were also identified as predictive factors for lymph node metastasis.
Table 4
Multivariate analysis showing independence of the effect on lymph node metastasis
 
Number of patients
Odds ratio
95% CI
P
Age
 
1.01
0.99–1.04
0.277
Tumor size
 
1.12
1.00–1.25
0.049
Tumor depth (pT)
 T1
120 (26.1%)
1 (ref)
  
 T2
62 (13.5%)
17.14
7.70–38.17
<0.001
 T3
121 (26.4%)
33.99
14.87–77.71
<0.001
 T4
156 (34.0%)
13.35
6.22–28.64
<0.001
Lauren classification
 Intestinal
174 (37.9%)
1 (ref)
  
 Diffuse + Mixed
285 (62.1%)
1.07
0.61–1.88
0.825
Slug composite score
 Low
104 (22.7%)
1 (ref)
1.09–1.76
 
 Mid
130 (28.3%)
1.33
0.67–2.63
0.413
 High
225 (49.0%)
3.42
1.74–6.69
<0.001
The recurrence rates of gastric cancer were compared between the three Slug groups (Fig. 2). Patients with high Slug score had the highest tumor recurrence rate. The rate of recurrence was significantly higher in the high Slug group than in the low (P < 0.001) and mid (P = 0.006) Slug groups. There was no statistically significant difference between the low and mid Slug groups (P = 0.280).

Slug expression and survival

Overall survival rates were determined with respect to the Slug composite score using the log rank test (Fig. 3). The 5-year overall survival rate was significantly worse in the high Slug group compared with the mid (61.5% versus 72.4%; P = 0.017) and low (61.5% versus 84.6%; P < 0.001) Slug groups. The low Slug group had the best 5-year overall survival rate. In multivariable Cox regression analysis including age, gender, TNM stage, Lauren classification, and Slug composite score, Slug score was not significantly associated with overall survival, whereas age and TNM stage remained independent prognostic factors (Additional file 1: Table S1).

Subgroup analysis of T1 tumors

We conducted a subgroup analysis of T1 tumors (Table 5). Negative Slug expression was defined as <5% positive tumor cells or no/weak staining intensity. Tumor depth and size were not significantly different between negative and positive Slug expression. Approximately 60% of cases with negative Slug expression were signet ring cell carcinoma.
Table 5
Subgroup analysis of T1 tumor according to Slug expression
 
Total
Slug expression
P
 
Negative (n = 13)
Positive (n = 107)
Tumor depth
 T1a
56
6 (46.2%)
50 (46.7%)
0.969
 T1b
64
7 (53.8%)
57 (53.5%)
 
Tumor size
3.0 ± 1.9
2.7 ± 2.0
3.0 ± 1.9
0.670
Histology
 Adenocarcinoma, WD
25
0 (0.0%)
25 (23.4%)
0.001a
 Adenocarcinoma, MD
37
3 (23.1%)
34 (31.8%)
 
 Adenocarcinoma, PD
31
2 (15.4%)
29 (27.1%)
 
 Signet ring cell cancer
27
8 (61.5%)
19 (17.8%)
 
Lymph node metastasis
 Negative
103
13 (100%)
90 (84.1%)
0.210b
 Positive
17
0 (0.0%)
17 (15.9%)
 
WD well differentiated, MD moderately differentiated, PD poorly differentiated
aLinear-by-linear association
bFisher’s exact test
The rate of lymph node metastasis in T1 tumor was 14.2% (17/120). Patients with negative Slug expression showed no lymph node metastasis (0/13), whereas those with positive Slug expression showed 15.9% (17/107) lymph node metastasis, with a negative predictive value of 100%.

Discussion

The present study aimed to determine the relationship between Slug expression and prognosis in patients with gastric cancer. High Slug expression according to our composite score was observed in about 50% of gastric cancer tissues. We demonstrated that the expression of Slug is associated with tumor progression and poor prognosis in gastric cancer. Especially, Slug expression was highly correlated with various indicators reflecting lymphatic progression such as lymph node metastasis, lymphatic invasion, and positive lymph node ratio. As it is reasonable to consider that advanced cancer has greater migrating activity and invasiveness than EGC, this finding supports the hypothesis that Slug, one of the important EMT drivers, is involved in lymphatic metastasis of gastric cancer through the EMT process. In the case of T1 tumor confirmed after surgical resection, negative Slug expression might exclude lymph node metastasis of EGC.
To the best of our knowledge, there is only one previous study that investigated Slug protein expression in gastric cancer tissues by immunohistochemical staining [27]. In that study, 30% of tissues showed positive Slug expression, defined as detectable immunoreaction in the perinuclear and other cytoplasmic regions of more than 10% of the cancer cells. This is in contrast to findings from the current study showing that about 75% of gastric cancer patients had mid to high Slug expression. A possible explanation for this finding is that many more advanced cancers were included in our study compared to the previous study; approximately 60% of patients in the previous study were stage I, compared with only about 30% in our study. In another previous study based on mRNA expression of Slug by real-time quantitative RT-PCR, 58% of gastric cancer patients showed Slug upregulation in the tumor, which is in close agreement with our finding [26]. Moreover, the tendency for Slug expression to be associated with advanced pTNM stages was observed in both studies [26, 27]. The correlation of Slug expression with increased tumor size and perineural invasion was newly identified in the present study.
We focused on the association of lymphatic metastasis and Slug expression because Slug can activate the EMT process. For this purpose, we used the Slug composite score to produce a more continuous scale (low, mid, and high Slug groups) instead of dichotomizing the patient groups. As expected, higher Slug expression was associated with more prevalent lymph node metastasis and lymphatic invasion. In addition, the positive lymph node ratio gradually increased with increasing Slug score. This ratio represents lymph node metastasis density [31]. Much study has focused on this ratio because it has global prognostic relevance in gastric cancer regardless of stage in multivariable analysis and is more sophisticated than conventional nodal metastasis in TNM staging for predicting prognosis [32]. In addition, we demonstrated that Slug expression is an independent prognostic factor for lymph node metastasis in gastric cancer patients even after adjustment for well-known prognostic factors including tumor size and depth of tumor invasion.
The current study indicates that Slug expression correlates well with overall survival as well as tumor recurrence. The high Slug expression group had the worst long-term survival rate and the highest tumor recurrence rate. These results correspond well with previous studies, in which positive Slug expression was associated with distant metastasis and poor postoperative 5-year survival [26, 27]. To our knowledge, this is the first report of long-term survival and recurrence data according to Slug expression and suggests that EMT signaling with involvement of Slug could affect long-term prognosis after gastrectomy of gastric cancer patients.
In a subgroup analysis of T1 tumors, we documented that Slug expression is associated with unexpected lymph node metastasis in EGC. EGC is defined as gastric cancer that invades no more deeply than the submucosa, irrespective of lymph node metastasis [33]. It has been reported that about 10–15% of patients with EGC have lymph node metastasis [1, 34, 35]. Precise prediction of lymph node metastasis status in EGC is a very important issue because ESD has become increasingly popular as a minimally invasive treatment for EGC [36]. We applied strict criteria for negative Slug expression in order to increase the negative predictive value because false negative results could be fatal when making the decision between surgical resection and ESD. In our study, all patients with T1 tumor and negative Slug expression showed no lymph node metastasis even though some of them had submucosal tumor invasion (T1b) or undifferentiated (poorly differentiated or signet ring cell) type histology. Tumor depth beyond submucosa and histological differentiation are well known independent risk factors for lymph node metastasis of EGC [37, 38]. Interestingly, 8 of 13 Slug negative T1 tumors were signet ring cell cancer. A previous study showed that signet ring foci of 8 patients with hereditary diffuse gastric cancer had a low proliferative index and there was no evidence for EMT [39]. This finding corresponds well with our result.
Our study has some strengths. First, a relatively large number of patients were randomly selected from consecutive patients undergoing surgery for gastric cancer for TMA and analyzed. Moreover, we present a novel finding regarding greater than 5-year survival and tumor recurrence according to Slug expression. In addition, this is the first report to document the significance of Slug expression in EGC.

Conclusions

Our data demonstrated that high expression of Slug in gastric cancer tissue was associated with higher tumor recurrence rate and poor long-term survival. In particular, in cases with lymph node metastasis Slug expression was an independent predictive factor regardless of tumor size or depth of tumor invasion. Negative Slug expression showed high negative predictive value for lymph node metastasis in EGC, which could have potential for future use in discriminating patients with EGC at high risk of lymph node metastasis.

Acknowledgements

Not applicable

Funding

This study was supported by Research Fund of College of Medicine, The Catholic University of Korea, by a program of Catholic Medical Center Research Foundation made in 2014, and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science, ICT & Future Planning) (NRF-2016R1C1B2015185).

Availability of data and materials

Attributing to the privacy of patients, the patient information is publicly inaccessible.
The study with human samples was approved by the Ethics Committee of the Catholic University of Korea (KC14SISI0158). We clarify that all clinical samples described here were gained from patients who had given written informed consent.
Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefPubMed Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefPubMed
2.
Zurück zum Zitat Mizoue T, Yoshimura T, Tokui N, et al. Prospective study of screening for stomach cancer in Japan. Int J Cancer. 2003;106(1):103–7.CrossRefPubMed Mizoue T, Yoshimura T, Tokui N, et al. Prospective study of screening for stomach cancer in Japan. Int J Cancer. 2003;106(1):103–7.CrossRefPubMed
3.
Zurück zum Zitat Suh M, Choi KS, Lee YY, et al. Cancer screening in Korea, 2012: results from the Korean National Cancer Screening Survey. Asian Pac J Cancer Prev. 2013;14(11):6459–63.CrossRefPubMed Suh M, Choi KS, Lee YY, et al. Cancer screening in Korea, 2012: results from the Korean National Cancer Screening Survey. Asian Pac J Cancer Prev. 2013;14(11):6459–63.CrossRefPubMed
4.
Zurück zum Zitat Isomoto H, Shikuwa S, Yamaguchi N, et al. Endoscopic submucosal dissection for early gastric cancer: a large-scale feasibility study. Gut. 2009;58(3):331–6.CrossRefPubMed Isomoto H, Shikuwa S, Yamaguchi N, et al. Endoscopic submucosal dissection for early gastric cancer: a large-scale feasibility study. Gut. 2009;58(3):331–6.CrossRefPubMed
5.
Zurück zum Zitat Gotoda T, Yanagisawa A, Sasako M, et al. Incidence of lymph node metastasis from early gastric cancer: estimation with a large number of cases at two large centers. Gastric Cancer. 2000;3(4):219–25.CrossRefPubMed Gotoda T, Yanagisawa A, Sasako M, et al. Incidence of lymph node metastasis from early gastric cancer: estimation with a large number of cases at two large centers. Gastric Cancer. 2000;3(4):219–25.CrossRefPubMed
6.
Zurück zum Zitat Kunisaki C, Akiyama H, Nomura M, et al. Significance of long-term follow-up of early gastric cancer. Ann Surg Oncol. 2006;13(3):363–9.CrossRefPubMed Kunisaki C, Akiyama H, Nomura M, et al. Significance of long-term follow-up of early gastric cancer. Ann Surg Oncol. 2006;13(3):363–9.CrossRefPubMed
7.
Zurück zum Zitat Ye BD, Kim SG, Lee JY, et al. Predictive factors for lymph node metastasis and endoscopic treatment strategies for undifferentiated early gastric cancer. J Gastroenterol Hepatol. 2008;23(1):46–50.PubMed Ye BD, Kim SG, Lee JY, et al. Predictive factors for lymph node metastasis and endoscopic treatment strategies for undifferentiated early gastric cancer. J Gastroenterol Hepatol. 2008;23(1):46–50.PubMed
8.
Zurück zum Zitat Yamashita K, Sakuramoto S, Kikuchi S, et al. Validation of staging systems for gastric cancer. Gastric Cancer. 2008;11(2):111–8.CrossRefPubMed Yamashita K, Sakuramoto S, Kikuchi S, et al. Validation of staging systems for gastric cancer. Gastric Cancer. 2008;11(2):111–8.CrossRefPubMed
9.
Zurück zum Zitat Kikuchi S, Futawatari N, Sakuramoto S, et al. Comparison of staging between the old (6th edition) and new (7th edition) TNM classifications in advanced gastric cancer. Anticancer Res. 2011;31(6):2361–5.PubMed Kikuchi S, Futawatari N, Sakuramoto S, et al. Comparison of staging between the old (6th edition) and new (7th edition) TNM classifications in advanced gastric cancer. Anticancer Res. 2011;31(6):2361–5.PubMed
10.
Zurück zum Zitat Nashimoto A, Akazawa K, Isobe Y, et al. Gastric cancer treated in 2002 in Japan: 2009 annual report of the JGCA nationwide registry. Gastric Cancer. 2013;16(1):1–27.CrossRefPubMed Nashimoto A, Akazawa K, Isobe Y, et al. Gastric cancer treated in 2002 in Japan: 2009 annual report of the JGCA nationwide registry. Gastric Cancer. 2013;16(1):1–27.CrossRefPubMed
12.
Zurück zum Zitat Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.CrossRefPubMed Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.CrossRefPubMed
15.
Zurück zum Zitat Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005;132(14):3151–61.CrossRefPubMed Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005;132(14):3151–61.CrossRefPubMed
16.
Zurück zum Zitat Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28.CrossRefPubMed Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28.CrossRefPubMed
17.
Zurück zum Zitat Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002;62(6):1613–8.PubMed Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002;62(6):1613–8.PubMed
18.
Zurück zum Zitat Bolos V, Peinado H, Perez-Moreno MA, et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116(Pt 3):499–511.CrossRefPubMed Bolos V, Peinado H, Perez-Moreno MA, et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116(Pt 3):499–511.CrossRefPubMed
19.
Zurück zum Zitat Gupta PB, Kuperwasser C, Brunet JP, et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet. 2005;37(10):1047–54.CrossRefPubMedPubMedCentral Gupta PB, Kuperwasser C, Brunet JP, et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet. 2005;37(10):1047–54.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Phillips S, Kuperwasser CSLUG. Critical regulator of epithelial cell identity in breast development and cancer. Cell Adhes Migr. 2014;8(6):578–87.CrossRef Phillips S, Kuperwasser CSLUG. Critical regulator of epithelial cell identity in breast development and cancer. Cell Adhes Migr. 2014;8(6):578–87.CrossRef
21.
Zurück zum Zitat Liu T, Zhang X, Shang M, et al. Dysregulated expression of Slug, vimentin, and E-cadherin correlates with poor clinical outcome in patients with basal-like breast cancer. J Surg Oncol. 2013;107(2):188–94.CrossRefPubMed Liu T, Zhang X, Shang M, et al. Dysregulated expression of Slug, vimentin, and E-cadherin correlates with poor clinical outcome in patients with basal-like breast cancer. J Surg Oncol. 2013;107(2):188–94.CrossRefPubMed
22.
Zurück zum Zitat Hotz B, Arndt M, Dullat S, et al. Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res. 2007;13(16):4769–76.CrossRefPubMed Hotz B, Arndt M, Dullat S, et al. Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res. 2007;13(16):4769–76.CrossRefPubMed
23.
Zurück zum Zitat Uchikado Y, Natsugoe S, Okumura H, et al. Slug Expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res. 2005;11(3):1174–80.PubMed Uchikado Y, Natsugoe S, Okumura H, et al. Slug Expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res. 2005;11(3):1174–80.PubMed
24.
Zurück zum Zitat Storci G, Sansone P, Trere D, et al. The basal-like breast carcinoma phenotype is regulated by SLUG gene expression. J Pathol. 2008;214(1):25–37.CrossRefPubMed Storci G, Sansone P, Trere D, et al. The basal-like breast carcinoma phenotype is regulated by SLUG gene expression. J Pathol. 2008;214(1):25–37.CrossRefPubMed
25.
Zurück zum Zitat Yao C, Su L, Shan J, et al. IGF/STAT3/NANOG/Slug Signaling Axis Simultaneously Controls Epithelial-Mesenchymal Transition and Stemness Maintenance in Colorectal Cancer. Stem Cells. 2016;34(4):820–31.CrossRefPubMed Yao C, Su L, Shan J, et al. IGF/STAT3/NANOG/Slug Signaling Axis Simultaneously Controls Epithelial-Mesenchymal Transition and Stemness Maintenance in Colorectal Cancer. Stem Cells. 2016;34(4):820–31.CrossRefPubMed
26.
Zurück zum Zitat Castro Alves C, Rosivatz E, Schott C, et al. Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin. J Pathol. 2007;211(5):507–15.CrossRefPubMed Castro Alves C, Rosivatz E, Schott C, et al. Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin. J Pathol. 2007;211(5):507–15.CrossRefPubMed
27.
Zurück zum Zitat Uchikado Y, Okumura H, Ishigami S, et al. Increased Slug and decreased E-cadherin expression is related to poor prognosis in patients with gastric cancer. Gastric Cancer. 2011;14(1):41–9.CrossRefPubMed Uchikado Y, Okumura H, Ishigami S, et al. Increased Slug and decreased E-cadherin expression is related to poor prognosis in patients with gastric cancer. Gastric Cancer. 2011;14(1):41–9.CrossRefPubMed
28.
Zurück zum Zitat Washington K. 7th edition of the AJCC cancer staging manual: stomach. Ann Surg Oncol. 2010;17(12):3077–9.CrossRefPubMed Washington K. 7th edition of the AJCC cancer staging manual: stomach. Ann Surg Oncol. 2010;17(12):3077–9.CrossRefPubMed
29.
Zurück zum Zitat Hu B, El Hajj N, Sittler S, et al. Gastric cancer: Classification, histology and application of molecular pathology. J Gastrointest Oncol. 2012;3(3):251–61.PubMedPubMedCentral Hu B, El Hajj N, Sittler S, et al. Gastric cancer: Classification, histology and application of molecular pathology. J Gastrointest Oncol. 2012;3(3):251–61.PubMedPubMedCentral
30.
Zurück zum Zitat Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a Histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.CrossRefPubMed Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a Histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.CrossRefPubMed
31.
Zurück zum Zitat Yamashita K, Ooki A, Sakuramoto S, et al. Lymph node metastasis density (ND)-factor association with malignant degree and ND40 as “non-curative factor” in gastric cancer. Anticancer Res. 2008;28(1b):435–41.PubMed Yamashita K, Ooki A, Sakuramoto S, et al. Lymph node metastasis density (ND)-factor association with malignant degree and ND40 as “non-curative factor” in gastric cancer. Anticancer Res. 2008;28(1b):435–41.PubMed
32.
Zurück zum Zitat Yamashita K, Hosoda K, Ema A, et al. Lymph node ratio as a novel and simple prognostic factor in advanced gastric cancer. Eur J Surg Oncol. 2016;42(9):1253–60.CrossRefPubMed Yamashita K, Hosoda K, Ema A, et al. Lymph node ratio as a novel and simple prognostic factor in advanced gastric cancer. Eur J Surg Oncol. 2016;42(9):1253–60.CrossRefPubMed
33.
Zurück zum Zitat Sano T, Aiko T. New Japanese classifications and treatment guidelines for gastric cancer: revision concepts and major revised points. Gastric Cancer. 2011;14(2):97–100.CrossRefPubMed Sano T, Aiko T. New Japanese classifications and treatment guidelines for gastric cancer: revision concepts and major revised points. Gastric Cancer. 2011;14(2):97–100.CrossRefPubMed
34.
Zurück zum Zitat Roviello F, Rossi S, Marrelli D, et al. Number of lymph node metastases and its prognostic significance in early gastric cancer: a multicenter Italian study. J Surg Oncol. 2006;94(4):275–80. discussion 4CrossRefPubMed Roviello F, Rossi S, Marrelli D, et al. Number of lymph node metastases and its prognostic significance in early gastric cancer: a multicenter Italian study. J Surg Oncol. 2006;94(4):275–80. discussion 4CrossRefPubMed
35.
Zurück zum Zitat Pelz J, Merkel S, Horbach T, et al. Determination of nodal status and treatment in early gastric cancer. Eur J Surg Oncol. 2004;30(9):935–41.CrossRefPubMed Pelz J, Merkel S, Horbach T, et al. Determination of nodal status and treatment in early gastric cancer. Eur J Surg Oncol. 2004;30(9):935–41.CrossRefPubMed
36.
Zurück zum Zitat Soetikno R, Kaltenbach T, Yeh R, et al. Endoscopic mucosal resection for early cancers of the upper gastrointestinal tract. J Clin Oncol. 2005;23(20):4490–8.CrossRefPubMed Soetikno R, Kaltenbach T, Yeh R, et al. Endoscopic mucosal resection for early cancers of the upper gastrointestinal tract. J Clin Oncol. 2005;23(20):4490–8.CrossRefPubMed
37.
Zurück zum Zitat Hyung WJ, Cheong JH, Kim J, et al. Application of minimally invasive treatment for early gastric cancer. J Surg Oncol. 2004;85(4):181–5. discussion 6CrossRefPubMed Hyung WJ, Cheong JH, Kim J, et al. Application of minimally invasive treatment for early gastric cancer. J Surg Oncol. 2004;85(4):181–5. discussion 6CrossRefPubMed
38.
Zurück zum Zitat Kunisaki C, Takahashi M, Nagahori Y, et al. Risk factors for lymph node metastasis in histologically poorly differentiated type early gastric cancer. Endoscopy. 2009;41(6):498–503.CrossRefPubMed Kunisaki C, Takahashi M, Nagahori Y, et al. Risk factors for lymph node metastasis in histologically poorly differentiated type early gastric cancer. Endoscopy. 2009;41(6):498–503.CrossRefPubMed
39.
Zurück zum Zitat Barber ME, Save V, Carneiro F, et al. Histopathological and molecular analysis of gastrectomy specimens from hereditary diffuse gastric cancer patients has implications for endoscopic surveillance of individuals at risk. J Pathol. 2008;216(3):286–94.CrossRefPubMed Barber ME, Save V, Carneiro F, et al. Histopathological and molecular analysis of gastrectomy specimens from hereditary diffuse gastric cancer patients has implications for endoscopic surveillance of individuals at risk. J Pathol. 2008;216(3):286–94.CrossRefPubMed
Metadaten
Titel
Evaluation of Slug expression is useful for predicting lymph node metastasis and survival in patients with gastric cancer
verfasst von
Han Hee Lee
Sung Hak Lee
Kyo Young Song
Sae Jung Na
Joo Hyun O
Jae Myung Park
Eun Sun Jung
Myung-Gyu Choi
Cho Hyun Park
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2017
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3668-8

Weitere Artikel der Ausgabe 1/2017

BMC Cancer 1/2017 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.