Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 1/2016

23.04.2016

Exercise resistance across the prediabetes phenotypes: Impact on insulin sensitivity and substrate metabolism

verfasst von: Steven K. Malin, Zhenqi Liu, Eugene J. Barrett, Arthur Weltman

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

Prediabetes is a heterogeneous term that encompasses different origins of insulin resistance and insulin secretion that contribute to distinct patterns of hyperglycemia. In fact, prediabetes is an umbrella term that characterizes individuals at high risk for developing type 2 diabetes (T2D) and/or cardiovascular disease (CVD). Based on current definitions there are at least 3 distinct phenotypes of prediabetes: impaired fasting glucose (IFG), impaired glucose tolerant (IGT), or the combination of both (IFG + IGT). Each phenotype is clinically relevant as they are uniquely recognized as having different levels of risk for progressing to T2D and CVD. Herein, we discuss the underlying pathophysiology that characterizes IFG, IGT and the combination, as well as examine how some of these phenotypes appear resistant to traditional exercise interventions. We propose that substrate metabolism differences between the prediabetes phenotypes may be a unifying mechanism that explains the inter-subject variation in response to exercise seen across obese, metabolic syndrome, pre-diabetic and T2D patients in the current literature. Ultimately, a better understanding of the pathophysiologic mechanisms that govern disturbances responsible for fasting vs. postprandial hyperglycemia and the combination of both is important for designing optimal and personalized exercise treatment strategies that treat and prevent hyperglycemia and CVD risk.
Literatur
1.
Zurück zum Zitat Maruthur NM. The growing prevalence of type 2 diabetes: Increased incidence or improved survival? Curr Diab Rep. 2013;13(6):786–94.PubMedCrossRef Maruthur NM. The growing prevalence of type 2 diabetes: Increased incidence or improved survival? Curr Diab Rep. 2013;13(6):786–94.PubMedCrossRef
2.
Zurück zum Zitat Standards of medical care in diabetes-2015: summary of revisions. Diabetes Care 2015; 38 Suppl: S4. Standards of medical care in diabetes-2015: summary of revisions. Diabetes Care 2015; 38 Suppl: S4.
3.
Zurück zum Zitat Faerch K, Borch Johnsen K, Holst JJ, et al. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: Does it matter for prevention and treatment of type 2 diabetes? Diabetologia. 2009;52(9):1714–23.PubMedCrossRef Faerch K, Borch Johnsen K, Holst JJ, et al. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: Does it matter for prevention and treatment of type 2 diabetes? Diabetologia. 2009;52(9):1714–23.PubMedCrossRef
4.
Zurück zum Zitat Holloway GP, Bonen A, Spriet LL. Regulation of skeletal muscle mitochondrial fatty acid metabolism in lean and obese individuals. Am J Clin Nutr. 2009;89(1):455S–62S.PubMedCrossRef Holloway GP, Bonen A, Spriet LL. Regulation of skeletal muscle mitochondrial fatty acid metabolism in lean and obese individuals. Am J Clin Nutr. 2009;89(1):455S–62S.PubMedCrossRef
5.
Zurück zum Zitat Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.PubMedCrossRef Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.PubMedCrossRef
6.
Zurück zum Zitat Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.PubMedCrossRef Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.PubMedCrossRef
7.
Zurück zum Zitat Church TS, Blair SN, Cocreham S, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: A randomized controlled trial. JAMA. 2010;304(20):2253–62.PubMedPubMedCentralCrossRef Church TS, Blair SN, Cocreham S, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: A randomized controlled trial. JAMA. 2010;304(20):2253–62.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Dube JJ, Allison K, Rousson V, et al. Exercise dose and insulin sensitivity: Relevance for diabetes prevention. Med Sci Sports Exerc. 2012;44(5):793–9.PubMedPubMedCentralCrossRef Dube JJ, Allison K, Rousson V, et al. Exercise dose and insulin sensitivity: Relevance for diabetes prevention. Med Sci Sports Exerc. 2012;44(5):793–9.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Rynders CA, Weltman A. High-intensity exercise training for the prevention of type 2 diabetes mellitus. Phys Sportsmed. 2014;42(1):7–14.PubMedCrossRef Rynders CA, Weltman A. High-intensity exercise training for the prevention of type 2 diabetes mellitus. Phys Sportsmed. 2014;42(1):7–14.PubMedCrossRef
10.
Zurück zum Zitat Houmard JA, Tanner CJ, Slentz CA, et al. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol. 2004;96(1):101.PubMedCrossRef Houmard JA, Tanner CJ, Slentz CA, et al. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol. 2004;96(1):101.PubMedCrossRef
11.
Zurück zum Zitat Malin SK, Solomon TPJ, Blaszczak A, Finnegan S, Filion J, Kirwan JP. Pancreatic beta cell function increases in a linear dose-response manner following exercise training in adults with prediabetes. Am J Physiol Endocrinol Metabol. 2013;305(10):E1248–54.CrossRef Malin SK, Solomon TPJ, Blaszczak A, Finnegan S, Filion J, Kirwan JP. Pancreatic beta cell function increases in a linear dose-response manner following exercise training in adults with prediabetes. Am J Physiol Endocrinol Metabol. 2013;305(10):E1248–54.CrossRef
12.
Zurück zum Zitat Abdul-Ghani MA, DeFronzo RA. Pathophysiology of prediabetes. Curr Diab Rep. 2009;9(3):193–9.PubMedCrossRef Abdul-Ghani MA, DeFronzo RA. Pathophysiology of prediabetes. Curr Diab Rep. 2009;9(3):193–9.PubMedCrossRef
13.
Zurück zum Zitat Faerch K, Vaag A, Holst JJ, et al. Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action. Diabetologia. 2008;51(5):853–61.PubMedCrossRef Faerch K, Vaag A, Holst JJ, et al. Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action. Diabetologia. 2008;51(5):853–61.PubMedCrossRef
14.
Zurück zum Zitat Tonjes A, Fasshauer M, Kratzsch J, et al. Adipokine pattern in subjects with impaired fasting glucose and impaired glucose tolerance in comparison to normal glucose tolerance and diabetes. PLoS One. 2010;5(11):e13911–1. Tonjes A, Fasshauer M, Kratzsch J, et al. Adipokine pattern in subjects with impaired fasting glucose and impaired glucose tolerance in comparison to normal glucose tolerance and diabetes. PLoS One. 2010;5(11):e13911–1.
15.
Zurück zum Zitat Barrett EJ, Liu Z. The endothelial cell: An "early responder" in the development of insulin resistance. Rev Endocr Metab Disord. 2013;14(1):21–7.PubMedPubMedCentralCrossRef Barrett EJ, Liu Z. The endothelial cell: An "early responder" in the development of insulin resistance. Rev Endocr Metab Disord. 2013;14(1):21–7.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Weyer C, Bogardus C, Pratley RE. Metabolic characteristics of individuals with impaired fasting glucose and/or impaired glucose tolerance. Diabetes. 1999;48(11):2197–203.PubMedCrossRef Weyer C, Bogardus C, Pratley RE. Metabolic characteristics of individuals with impaired fasting glucose and/or impaired glucose tolerance. Diabetes. 1999;48(11):2197–203.PubMedCrossRef
17.
Zurück zum Zitat Perreault L, Bergman BC, Playdon M, et al. Impaired fasting glucose with or without impaired glucose tolerance: progressive or parallel states of prediabetes? Am J Physiol Endocrinol Metabol. 2008;295(2):E428–35.CrossRef Perreault L, Bergman BC, Playdon M, et al. Impaired fasting glucose with or without impaired glucose tolerance: progressive or parallel states of prediabetes? Am J Physiol Endocrinol Metabol. 2008;295(2):E428–35.CrossRef
18.
Zurück zum Zitat Bock G, Dalla Man C, Campioni M, et al. Pathogenesis of pre-diabetes: Mechanisms of fasting and postprandial hyperglycemia in people with impaired fasting glucose and/or impaired glucose tolerance. Diabetes. 2006;55(12):3536–49.PubMedCrossRef Bock G, Dalla Man C, Campioni M, et al. Pathogenesis of pre-diabetes: Mechanisms of fasting and postprandial hyperglycemia in people with impaired fasting glucose and/or impaired glucose tolerance. Diabetes. 2006;55(12):3536–49.PubMedCrossRef
19.
Zurück zum Zitat Baron AD, Schaeffer L, Shragg P, et al. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes. 1987;36(3):274–83.PubMedCrossRef Baron AD, Schaeffer L, Shragg P, et al. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes. 1987;36(3):274–83.PubMedCrossRef
20.
Zurück zum Zitat Jani R, Molina M, Matsuda M, et al. Decreased non-insulin-dependent glucose clearance contributes to the rise in fasting plasma glucose in the nondiabetic range. Diabetes Care. 2008;31(2):311–5.PubMedCrossRef Jani R, Molina M, Matsuda M, et al. Decreased non-insulin-dependent glucose clearance contributes to the rise in fasting plasma glucose in the nondiabetic range. Diabetes Care. 2008;31(2):311–5.PubMedCrossRef
21.
Zurück zum Zitat Perreault L, Faerch K, Kerege AA, et al. Hepatic glucose sensing is impaired, but can be normalized, in people with impaired fasting glucose. J Clin Endocrinol Metab. 2014;99(7):E1154–62.PubMedPubMedCentralCrossRef Perreault L, Faerch K, Kerege AA, et al. Hepatic glucose sensing is impaired, but can be normalized, in people with impaired fasting glucose. J Clin Endocrinol Metab. 2014;99(7):E1154–62.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Kanat M, Norton L, Winnier D, et al. Impaired early- but not late-phase insulin secretion in subjects with impaired fasting glucose. Acta Diabetol. 2011;48(3):209–17.PubMedCrossRef Kanat M, Norton L, Winnier D, et al. Impaired early- but not late-phase insulin secretion in subjects with impaired fasting glucose. Acta Diabetol. 2011;48(3):209–17.PubMedCrossRef
23.
Zurück zum Zitat Abdul Ghani M, Jenkinson CP, Richardson D, et al. Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: Results from the veterans administration genetic epidemiology study. Diabetes. 2006;55(5):1430–5.PubMedCrossRef Abdul Ghani M, Jenkinson CP, Richardson D, et al. Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: Results from the veterans administration genetic epidemiology study. Diabetes. 2006;55(5):1430–5.PubMedCrossRef
25.
Zurück zum Zitat Godsland IF, Jeffs JA, Johnston DG. Loss of beta cell function as fasting glucose increases in the non-diabetic range. Diabetologia. 2004;47(7):1157–66.PubMedCrossRef Godsland IF, Jeffs JA, Johnston DG. Loss of beta cell function as fasting glucose increases in the non-diabetic range. Diabetologia. 2004;47(7):1157–66.PubMedCrossRef
26.
Zurück zum Zitat Meyer C, Pimenta W, Woerle HJ, et al. Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care. 2006;29(8):1909–14.PubMedCrossRef Meyer C, Pimenta W, Woerle HJ, et al. Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care. 2006;29(8):1909–14.PubMedCrossRef
27.
Zurück zum Zitat Abdul-Ghani MA, Matsuda M, Balas B, et al. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care. 2007;30(1):89–94.PubMedCrossRef Abdul-Ghani MA, Matsuda M, Balas B, et al. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care. 2007;30(1):89–94.PubMedCrossRef
28.
Zurück zum Zitat Kanat M, Mari A, Norton L, et al. Distinct beta-cell defects in impaired fasting glucose and impaired glucose tolerance. Diabetes. 2012;61(2):447–53.PubMedPubMedCentralCrossRef Kanat M, Mari A, Norton L, et al. Distinct beta-cell defects in impaired fasting glucose and impaired glucose tolerance. Diabetes. 2012;61(2):447–53.PubMedPubMedCentralCrossRef
29.
30.
Zurück zum Zitat Faerch K, Johansen NB, Witte DR, et al. Relationship between insulin resistance and beta-cell dysfunction in subphenotypes of prediabetes and type 2 diabetes. J Clin Endocrinol Metab. 2015;100(2):707–16.PubMedCrossRef Faerch K, Johansen NB, Witte DR, et al. Relationship between insulin resistance and beta-cell dysfunction in subphenotypes of prediabetes and type 2 diabetes. J Clin Endocrinol Metab. 2015;100(2):707–16.PubMedCrossRef
31.
Zurück zum Zitat Faerch K, Witte DR, Tabak AG, et al. Trajectories of cardiometabolic risk factors before diagnosis of three subtypes of type 2 diabetes: A post-hoc analysis of the longitudinal Whitehall II cohort study. Lancet Diabetes Endocrinol. 2013;1(1):43–51.PubMedCrossRef Faerch K, Witte DR, Tabak AG, et al. Trajectories of cardiometabolic risk factors before diagnosis of three subtypes of type 2 diabetes: A post-hoc analysis of the longitudinal Whitehall II cohort study. Lancet Diabetes Endocrinol. 2013;1(1):43–51.PubMedCrossRef
32.
Zurück zum Zitat Eggleston EM, Jahn LA, Barrett EJ. Early microvascular recruitment modulates subsequent insulin-mediated skeletal muscle glucose metabolism during lipid infusion. Diabetes Care. 2013;36(1):104–10.PubMedPubMedCentralCrossRef Eggleston EM, Jahn LA, Barrett EJ. Early microvascular recruitment modulates subsequent insulin-mediated skeletal muscle glucose metabolism during lipid infusion. Diabetes Care. 2013;36(1):104–10.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Vincent MA, Clerk LH, Lindner JR, et al. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metabol. 2006;290(6):E1191–7.CrossRef Vincent MA, Clerk LH, Lindner JR, et al. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metabol. 2006;290(6):E1191–7.CrossRef
35.
Zurück zum Zitat Hallmark R, Patrie JT, Liu Z, et al. The effect of exercise intensity on endothelial function in physically inactive lean and obese adults. PLoS One. 2014;9(1):e85450.PubMedPubMedCentralCrossRef Hallmark R, Patrie JT, Liu Z, et al. The effect of exercise intensity on endothelial function in physically inactive lean and obese adults. PLoS One. 2014;9(1):e85450.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Swift DL, Weltman JY, Patrie JT, et al. Predictors of improvement in endothelial function after exercise training in a diverse sample of postmenopausal women. J Women's Health. 2014;23(3):260–6.CrossRef Swift DL, Weltman JY, Patrie JT, et al. Predictors of improvement in endothelial function after exercise training in a diverse sample of postmenopausal women. J Women's Health. 2014;23(3):260–6.CrossRef
37.
Zurück zum Zitat Rattigan S. Exercise and insulin-mediated capillary recruitment in muscle. Exerc Sport Sci Rev. 2005;33(1):43–8.PubMed Rattigan S. Exercise and insulin-mediated capillary recruitment in muscle. Exerc Sport Sci Rev. 2005;33(1):43–8.PubMed
38.
Zurück zum Zitat Raitakari M, Knuuti MJ, Ruotsalainen U, et al. Insulin increases blood volume in human skeletal muscle: Studies using [15O]CO and positron emission tomography. Am J Phys. 1995;269(6):E1000–5. Raitakari M, Knuuti MJ, Ruotsalainen U, et al. Insulin increases blood volume in human skeletal muscle: Studies using [15O]CO and positron emission tomography. Am J Phys. 1995;269(6):E1000–5.
39.
Zurück zum Zitat Vollenweider P, Tappy L, Randin D, et al. Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. J Clin Invest. 1993;92(1):147–54.PubMedPubMedCentralCrossRef Vollenweider P, Tappy L, Randin D, et al. Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. J Clin Invest. 1993;92(1):147–54.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Taddei S, Virdis A, Mattei P, et al. Effect of insulin on acetylcholine-induced vasodilation in normotensive subjects and patients with essential hypertension. Circulation. 1995;92(10):2911–8.PubMedCrossRef Taddei S, Virdis A, Mattei P, et al. Effect of insulin on acetylcholine-induced vasodilation in normotensive subjects and patients with essential hypertension. Circulation. 1995;92(10):2911–8.PubMedCrossRef
41.
Zurück zum Zitat Steinberg HO, Brechtel G, Johnson A, et al. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994;94(3):1172–9.PubMedPubMedCentralCrossRef Steinberg HO, Brechtel G, Johnson A, et al. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994;94(3):1172–9.PubMedPubMedCentralCrossRef
42.
43.
Zurück zum Zitat Pitteloud N, Mootha VK, Dwyer AA, et al. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care. 2005;28(7):1636–42.PubMedCrossRef Pitteloud N, Mootha VK, Dwyer AA, et al. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care. 2005;28(7):1636–42.PubMedCrossRef
44.
Zurück zum Zitat Vasconsuelo A, Milanesi L, Boland R. Actions of 17beta-estradiol and testosterone in the mitochondria and their implications in aging. Ageing Res Rev. 2013;12(4):907–17.PubMedCrossRef Vasconsuelo A, Milanesi L, Boland R. Actions of 17beta-estradiol and testosterone in the mitochondria and their implications in aging. Ageing Res Rev. 2013;12(4):907–17.PubMedCrossRef
45.
Zurück zum Zitat Faerch K, Vaag A. Metabolic inflexibility is a common feature of impaired fasting glycaemia and impaired glucose tolerance. Acta Diabetol. 2011;48(4):349–53.PubMedCrossRef Faerch K, Vaag A. Metabolic inflexibility is a common feature of impaired fasting glycaemia and impaired glucose tolerance. Acta Diabetol. 2011;48(4):349–53.PubMedCrossRef
46.
Zurück zum Zitat Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes. 2003;52(9):2191–7.PubMedCrossRef Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes. 2003;52(9):2191–7.PubMedCrossRef
47.
Zurück zum Zitat Kulkarni SS, Salehzadeh F, Fritz T, et al. Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus. Metabolism. 2012;61(2):175–85.PubMedCrossRef Kulkarni SS, Salehzadeh F, Fritz T, et al. Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus. Metabolism. 2012;61(2):175–85.PubMedCrossRef
48.
Zurück zum Zitat Malin SK, Viskochil R, Oliver C, et al. Mild fasting hyperglycemia shifts fuel reliance towards fat during exercise in adults with impaired glucose tolerance. J Appl Physiol 2013. Malin SK, Viskochil R, Oliver C, et al. Mild fasting hyperglycemia shifts fuel reliance towards fat during exercise in adults with impaired glucose tolerance. J Appl Physiol 2013.
49.
Zurück zum Zitat Malin SK, Haus JM, Solomon TPJ, Blaszczak A, Kashyap SR, Kirwan JP. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin resistant phenotypes. Am J Physiol Endocrinol Metabol. 2013;305(10):E1292–8.CrossRef Malin SK, Haus JM, Solomon TPJ, Blaszczak A, Kashyap SR, Kirwan JP. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin resistant phenotypes. Am J Physiol Endocrinol Metabol. 2013;305(10):E1292–8.CrossRef
50.
Zurück zum Zitat Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100(14):8466–71.PubMedPubMedCentralCrossRef Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100(14):8466–71.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Aas V, Hessvik NP, Wettergreen M, et al. Chronic hyperglycemia reduces substrate oxidation and impairs metabolic switching of human myotubes. Biochim Biophys Acta. 2011;1812(1):94–105.PubMedCrossRef Aas V, Hessvik NP, Wettergreen M, et al. Chronic hyperglycemia reduces substrate oxidation and impairs metabolic switching of human myotubes. Biochim Biophys Acta. 2011;1812(1):94–105.PubMedCrossRef
52.
Zurück zum Zitat Roden M. Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes. 2005;29(Suppl 2):S111–5.CrossRef Roden M. Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes. 2005;29(Suppl 2):S111–5.CrossRef
53.
Zurück zum Zitat Boushel R, Gnaiger E, Schjerling P, et al. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia. 2007;50(4):790–6.PubMedPubMedCentralCrossRef Boushel R, Gnaiger E, Schjerling P, et al. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia. 2007;50(4):790–6.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944–50.PubMedCrossRef Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944–50.PubMedCrossRef
56.
Zurück zum Zitat Johannsen DL, Conley KE, Bajpeyi S, et al. Ectopic lipid accumulation and reduced glucose tolerance in elderly adults are accompanied by altered skeletal muscle mitochondrial activity. J Clin Endocrinol Metab. 2012;97(1):242–50.PubMedPubMedCentralCrossRef Johannsen DL, Conley KE, Bajpeyi S, et al. Ectopic lipid accumulation and reduced glucose tolerance in elderly adults are accompanied by altered skeletal muscle mitochondrial activity. J Clin Endocrinol Metab. 2012;97(1):242–50.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Ukropcova B, McNeil M, Sereda O, et al. Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor. J Clin Invest. 2005;115(7):1934–41.PubMedPubMedCentralCrossRef Ukropcova B, McNeil M, Sereda O, et al. Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor. J Clin Invest. 2005;115(7):1934–41.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Osler M, Fritz T, Caidahl K, et al. Changes in gene expression in responders and nonresponders to a low-intensity walking intervention. Diabetes Care. 2015;38(6):1154–60.PubMedCrossRef Osler M, Fritz T, Caidahl K, et al. Changes in gene expression in responders and nonresponders to a low-intensity walking intervention. Diabetes Care. 2015;38(6):1154–60.PubMedCrossRef
59.
Zurück zum Zitat Rynders CA, Weltman JY, Jiang B, et al. Effects of exercise intensity on postprandial improvement in glucose disposal and insulin sensitivity in prediabetic adults. J Clin Endocrinol Metab. 2014;99(1):220–8.PubMedPubMedCentralCrossRef Rynders CA, Weltman JY, Jiang B, et al. Effects of exercise intensity on postprandial improvement in glucose disposal and insulin sensitivity in prediabetic adults. J Clin Endocrinol Metab. 2014;99(1):220–8.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Karstoft K, Winding K, Knudsen SH, et al. The Effects of Free-Living Interval-Walking Training on Glycemic Control, Body Composition, and Physical Fitness in Type 2 Diabetes Patients: A randomized, controlled trial. Diabetes Care 2012. Karstoft K, Winding K, Knudsen SH, et al. The Effects of Free-Living Interval-Walking Training on Glycemic Control, Body Composition, and Physical Fitness in Type 2 Diabetes Patients: A randomized, controlled trial. Diabetes Care 2012.
61.
Zurück zum Zitat Jung ME, Bourne JE, Beauchamp MR, et al. High-intensity interval training as an efficacious alternative to moderate-intensity continuous training for adults with prediabetes. J Diabetes Res. 2015;2015:191595.PubMedPubMedCentralCrossRef Jung ME, Bourne JE, Beauchamp MR, et al. High-intensity interval training as an efficacious alternative to moderate-intensity continuous training for adults with prediabetes. J Diabetes Res. 2015;2015:191595.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Davis CL, Pollock NK, Waller JL, et al. Exercise dose and diabetes risk in overweight and obese children: A randomized controlled trial. JAMA. 2012;308(11):1103–12.PubMedPubMedCentralCrossRef Davis CL, Pollock NK, Waller JL, et al. Exercise dose and diabetes risk in overweight and obese children: A randomized controlled trial. JAMA. 2012;308(11):1103–12.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Hamer M, Stamatakis E. Low-dose physical activity attenuates cardiovascular disease mortality in men and women with clustered metabolic risk factors. Circ Cardiovasc Qual Outcomes. 2012;5(4):494–9.PubMedCrossRef Hamer M, Stamatakis E. Low-dose physical activity attenuates cardiovascular disease mortality in men and women with clustered metabolic risk factors. Circ Cardiovasc Qual Outcomes. 2012;5(4):494–9.PubMedCrossRef
64.
Zurück zum Zitat Malin SK, Braun B. Impact of metformin on exercise-induced metabolic adaptations to lower type 2 diabetes risk. Exerc Sport Sci Rev. 2016;44(1):4–11.PubMedCrossRef Malin SK, Braun B. Impact of metformin on exercise-induced metabolic adaptations to lower type 2 diabetes risk. Exerc Sport Sci Rev. 2016;44(1):4–11.PubMedCrossRef
65.
Zurück zum Zitat Guo W, Wong S, Li M, et al. Testosterone plus low-intensity physical training in late life improves functional performance, skeletal muscle mitochondrial biogenesis, and mitochondrial quality control in male mice. PLoS One. 2012;7(12):e51180.PubMedPubMedCentralCrossRef Guo W, Wong S, Li M, et al. Testosterone plus low-intensity physical training in late life improves functional performance, skeletal muscle mitochondrial biogenesis, and mitochondrial quality control in male mice. PLoS One. 2012;7(12):e51180.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Gregg EW, Chen H, Wagenknecht LE, et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308(23):2489–96.PubMedPubMedCentralCrossRef Gregg EW, Chen H, Wagenknecht LE, et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308(23):2489–96.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Look AHEAD. Research group, Wing RR, Bolin P, et al. cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369(2):145–54.CrossRef Look AHEAD. Research group, Wing RR, Bolin P, et al. cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369(2):145–54.CrossRef
68.
Zurück zum Zitat Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing diabetes prevention study: A 20-year follow-up study. Lancet. 2008;371(9626):1783–9.PubMedCrossRef Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing diabetes prevention study: A 20-year follow-up study. Lancet. 2008;371(9626):1783–9.PubMedCrossRef
69.
Zurück zum Zitat Group DPPR, Knowler WC, Fowler SE, et al. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet. 2009;374(9702):1677–86.CrossRef Group DPPR, Knowler WC, Fowler SE, et al. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet. 2009;374(9702):1677–86.CrossRef
70.
71.
Zurück zum Zitat Yates T, Khunti K, Bull F, et al. The role of physical activity in the management of impaired glucose tolerance: A systematic review. Diabetologia. 2007;50(6):1116–26.PubMedPubMedCentralCrossRef Yates T, Khunti K, Bull F, et al. The role of physical activity in the management of impaired glucose tolerance: A systematic review. Diabetologia. 2007;50(6):1116–26.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Malin SK, Kirwan JP. Fasting hyperglycaemia blunts the reversal of impaired glucose tolerance after exercise training in obese older adults. Diabetes Obes Metab. 2012;14(9):835–41.PubMedPubMedCentralCrossRef Malin SK, Kirwan JP. Fasting hyperglycaemia blunts the reversal of impaired glucose tolerance after exercise training in obese older adults. Diabetes Obes Metab. 2012;14(9):835–41.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Sigal RJ, Kenny GP, Boulé NG, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: A randomized trial. Ann Intern Med. 2007;147(6):357–69.PubMedCrossRef Sigal RJ, Kenny GP, Boulé NG, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: A randomized trial. Ann Intern Med. 2007;147(6):357–69.PubMedCrossRef
74.
Zurück zum Zitat Balducci S, Zanuso S, Nicolucci A, et al. Effect of an intensive exercise intervention strategy on modifiable cardiovascular risk factors in subjects with type 2 diabetes mellitus: A randomized controlled trial: the Italian diabetes and exercise study (IDES). Arch Intern Med. 2010;170(20):1794–803.PubMedCrossRef Balducci S, Zanuso S, Nicolucci A, et al. Effect of an intensive exercise intervention strategy on modifiable cardiovascular risk factors in subjects with type 2 diabetes mellitus: A randomized controlled trial: the Italian diabetes and exercise study (IDES). Arch Intern Med. 2010;170(20):1794–803.PubMedCrossRef
75.
Zurück zum Zitat Ebbert JO, Elrashidi MY, Jensen MD. Managing overweight and obesity in adults to reduce cardiovascular disease risk. Curr Atheroscler Rep. 2014;16(10):445.PubMedPubMedCentralCrossRef Ebbert JO, Elrashidi MY, Jensen MD. Managing overweight and obesity in adults to reduce cardiovascular disease risk. Curr Atheroscler Rep. 2014;16(10):445.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Coen PM, Tanner CJ, Helbling NL, et al. Clinical trial demonstrates exercise following bariatric surgery improves insulin sensitivity. J Clin Invest. 2015;125(1):248–57.PubMedPubMedCentralCrossRef Coen PM, Tanner CJ, Helbling NL, et al. Clinical trial demonstrates exercise following bariatric surgery improves insulin sensitivity. J Clin Invest. 2015;125(1):248–57.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Kashyap SR, Bhatt DL, Wolski K, et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: Analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36(8):2175–82.PubMedPubMedCentralCrossRef Kashyap SR, Bhatt DL, Wolski K, et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: Analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36(8):2175–82.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Malin SK, Gerber R, Chipkin SR, et al. Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes. Diabetes Care. 2012;35(1):131–6.PubMedPubMedCentralCrossRef Malin SK, Gerber R, Chipkin SR, et al. Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes. Diabetes Care. 2012;35(1):131–6.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Sacks FM, Carey VJ, Anderson CA, et al. Effects of high vs low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity: The OmniCarb randomized clinical trial. JAMA. 2014;312(23):2531–41.PubMedPubMedCentralCrossRef Sacks FM, Carey VJ, Anderson CA, et al. Effects of high vs low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity: The OmniCarb randomized clinical trial. JAMA. 2014;312(23):2531–41.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Kozey Keadle S, Lyden K, Staudenmayer J, et al. The independent and combined effects of exercise training and reducing sedentary behavior on cardiometabolic risk factors. Appl Physiol Nutr Metab. 2014;39(7):770–80.PubMedCrossRef Kozey Keadle S, Lyden K, Staudenmayer J, et al. The independent and combined effects of exercise training and reducing sedentary behavior on cardiometabolic risk factors. Appl Physiol Nutr Metab. 2014;39(7):770–80.PubMedCrossRef
81.
Zurück zum Zitat Solomon TPJ, Malin SK, Karstoft K, et al. The influence of hyperglycemia on the therapeutic effect of exercise on glycemic control in patients with type 2 diabetes mellitus. JAMA Internal Medicine 2013. Solomon TPJ, Malin SK, Karstoft K, et al. The influence of hyperglycemia on the therapeutic effect of exercise on glycemic control in patients with type 2 diabetes mellitus. JAMA Internal Medicine 2013.
82.
Zurück zum Zitat Bouchard C, Blair SN, Church TS, et al. Adverse metabolic response to regular exercise: Is it a rare or common occurrence? PLoS One. 2012;7(5):e37887–7. Bouchard C, Blair SN, Church TS, et al. Adverse metabolic response to regular exercise: Is it a rare or common occurrence? PLoS One. 2012;7(5):e37887–7.
83.
Zurück zum Zitat Green DJ, Eijsvogels T, Bouts YM, et al. Exercise training and artery function in humans: Nonresponse and its relationship to cardiovascular risk factors. J Appl Physiol. 2014;117(4):345–52.PubMedCrossRef Green DJ, Eijsvogels T, Bouts YM, et al. Exercise training and artery function in humans: Nonresponse and its relationship to cardiovascular risk factors. J Appl Physiol. 2014;117(4):345–52.PubMedCrossRef
84.
Zurück zum Zitat Thalacker-Mercer A, Stec M, Cui X, et al. Cluster analysis reveals differential transcript profiles associated with resistance training-induced human skeletal muscle hypertrophy. Physiol Genomics. 2013;45(12):499–507.PubMedPubMedCentralCrossRef Thalacker-Mercer A, Stec M, Cui X, et al. Cluster analysis reveals differential transcript profiles associated with resistance training-induced human skeletal muscle hypertrophy. Physiol Genomics. 2013;45(12):499–507.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Boule NG, Weisnagel SJ, Lakka TA, et al. Effects of exercise training on glucose homeostasis: The HERITAGE Family Study. Diabetes Care. 2005;28(1):108–14.PubMedCrossRef Boule NG, Weisnagel SJ, Lakka TA, et al. Effects of exercise training on glucose homeostasis: The HERITAGE Family Study. Diabetes Care. 2005;28(1):108–14.PubMedCrossRef
86.
Zurück zum Zitat Bouchard C, Sarzynski MA, Rice TK, et al. Genomic predictors of the maximal O(2) uptake response to standardized exercise training programs. J Appl Physiol (1985). 2011;110(5):1160–70. Bouchard C, Sarzynski MA, Rice TK, et al. Genomic predictors of the maximal O(2) uptake response to standardized exercise training programs. J Appl Physiol (1985). 2011;110(5):1160–70.
87.
Zurück zum Zitat Holloszy JO, Schultz J, Kusnierkiewicz J, et al. Effects of exercise on glucose tolerance and insulin resistance. Brief review and some preliminary results. Acta Medica Scandinavica. Supplementum. 1986;711:55–65. Holloszy JO, Schultz J, Kusnierkiewicz J, et al. Effects of exercise on glucose tolerance and insulin resistance. Brief review and some preliminary results. Acta Medica Scandinavica. Supplementum. 1986;711:55–65.
88.
Zurück zum Zitat Kelley DE, Goodpaster BH. Effects of exercise on glucose homeostasis in type 2 diabetes mellitus. Med Sci Sports Exerc. 2001;33(6 Suppl):S495.PubMedCrossRef Kelley DE, Goodpaster BH. Effects of exercise on glucose homeostasis in type 2 diabetes mellitus. Med Sci Sports Exerc. 2001;33(6 Suppl):S495.PubMedCrossRef
89.
Zurück zum Zitat Perreault L, Pan Q, Mather K, et al. Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: Results from the diabetes prevention program outcomes study. Lancet. 2012;379(9833):2243–51.PubMedPubMedCentralCrossRef Perreault L, Pan Q, Mather K, et al. Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: Results from the diabetes prevention program outcomes study. Lancet. 2012;379(9833):2243–51.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Dela F, von Linstow ME, Mikines KJ, et al. Physical training may enhance beta-cell function in type 2 diabetes. Am J Physiol Endocrinol Metabol. 2004;287(5):E1024–31.CrossRef Dela F, von Linstow ME, Mikines KJ, et al. Physical training may enhance beta-cell function in type 2 diabetes. Am J Physiol Endocrinol Metabol. 2004;287(5):E1024–31.CrossRef
91.
Zurück zum Zitat Faria G, Preto J, Almeida AB, et al. Fasting glycemia: a good predictor of weight loss after RYGB. Surg Obes Relat Dis. 2014;10(3):419–24.PubMedCrossRef Faria G, Preto J, Almeida AB, et al. Fasting glycemia: a good predictor of weight loss after RYGB. Surg Obes Relat Dis. 2014;10(3):419–24.PubMedCrossRef
92.
Zurück zum Zitat Jurowich C, Thalheimer A, Hartmann D, et al. Improvement of type 2 diabetes mellitus (T2DM) after bariatric surgery–who fails in the early postoperative course? Obes Surg. 2012;22(10):1521–6.PubMedCrossRef Jurowich C, Thalheimer A, Hartmann D, et al. Improvement of type 2 diabetes mellitus (T2DM) after bariatric surgery–who fails in the early postoperative course? Obes Surg. 2012;22(10):1521–6.PubMedCrossRef
93.
Zurück zum Zitat Wang GF, Yan YX, Xu N, et al. Predictive factors of type 2 diabetes mellitus remission following bariatric surgery: A meta-analysis. Obes Surg. 2015;25(2):199–208.PubMedPubMedCentralCrossRef Wang GF, Yan YX, Xu N, et al. Predictive factors of type 2 diabetes mellitus remission following bariatric surgery: A meta-analysis. Obes Surg. 2015;25(2):199–208.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat McCullough PA, Gallagher MJ, Dejong AT, et al. Cardiorespiratory fitness and short-term complications after bariatric surgery. Chest. 2006;130(2):517–25.PubMedCrossRef McCullough PA, Gallagher MJ, Dejong AT, et al. Cardiorespiratory fitness and short-term complications after bariatric surgery. Chest. 2006;130(2):517–25.PubMedCrossRef
95.
Zurück zum Zitat Hennis PJ, Meale PM, Hurst RA, et al. Cardiopulmonary exercise testing predicts postoperative outcome in patients undergoing gastric bypass surgery. Br J Anaesth. 2012;109(4):566–71.PubMedCrossRef Hennis PJ, Meale PM, Hurst RA, et al. Cardiopulmonary exercise testing predicts postoperative outcome in patients undergoing gastric bypass surgery. Br J Anaesth. 2012;109(4):566–71.PubMedCrossRef
96.
Zurück zum Zitat Khanna V, Malin SK, Bena J, et al. Adults with long-duration type 2 diabetes have blunted glycemic and ß-cell function improvements after bariatric surgery. Obesity. 2015;23(3):523–6.PubMedPubMedCentralCrossRef Khanna V, Malin SK, Bena J, et al. Adults with long-duration type 2 diabetes have blunted glycemic and ß-cell function improvements after bariatric surgery. Obesity. 2015;23(3):523–6.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Malin SK, Bena J, Abood B, et al. Attenuated improvements in adiponectin and fat loss characterize type 2 diabetes non-remission status after bariatric surgery. Diabetes Obes Metabol. 2014;6(12):1230–8.CrossRef Malin SK, Bena J, Abood B, et al. Attenuated improvements in adiponectin and fat loss characterize type 2 diabetes non-remission status after bariatric surgery. Diabetes Obes Metabol. 2014;6(12):1230–8.CrossRef
98.
Zurück zum Zitat Gavin TP, Ernst JM, Caudill SE, et al. Insulin sensitivity is related to glycemic control in type 2 diabetes and diabetes remission after roux-en Y gastric bypass. Surgery. 2014;155(6):1036–43.PubMedCrossRef Gavin TP, Ernst JM, Caudill SE, et al. Insulin sensitivity is related to glycemic control in type 2 diabetes and diabetes remission after roux-en Y gastric bypass. Surgery. 2014;155(6):1036–43.PubMedCrossRef
99.
Zurück zum Zitat Yates T, Davies MJ, Edwardson C, et al. Adverse responses and physical activity: Secondary analysis of the PREPARE trial. Med Sci Sports Exerc. 2014;46(8):1617–23.PubMedCrossRef Yates T, Davies MJ, Edwardson C, et al. Adverse responses and physical activity: Secondary analysis of the PREPARE trial. Med Sci Sports Exerc. 2014;46(8):1617–23.PubMedCrossRef
100.
Zurück zum Zitat Van Dijk JW, Manders RJ, Canfora EE, et al. Exercise and 24-h glycemic control: Equal effects for all type 2 diabetes patients? Med Sci Sports Exerc. 2013;45(4):628–35.PubMedCrossRef Van Dijk JW, Manders RJ, Canfora EE, et al. Exercise and 24-h glycemic control: Equal effects for all type 2 diabetes patients? Med Sci Sports Exerc. 2013;45(4):628–35.PubMedCrossRef
101.
Zurück zum Zitat Solomon TPJ, Malin SK, Karstoft K, Kashyap SR, Haus JM, Kirwan JP. Pancreatic β-cell function is a stronger predictor of changes in glycemic control after an aerobic exercise intervention than insulin sensitivity. J Clin Endocrinol Metab. 2013;98(10):4176–86.PubMedPubMedCentralCrossRef Solomon TPJ, Malin SK, Karstoft K, Kashyap SR, Haus JM, Kirwan JP. Pancreatic β-cell function is a stronger predictor of changes in glycemic control after an aerobic exercise intervention than insulin sensitivity. J Clin Endocrinol Metab. 2013;98(10):4176–86.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Eikenberg JD, Savla J, Marinik EL, et al. Prediabetes phenotype influences improvements in glucose homeostasis with resistance training. PLoS One. 2016;11(2):e0148009.PubMedPubMedCentralCrossRef Eikenberg JD, Savla J, Marinik EL, et al. Prediabetes phenotype influences improvements in glucose homeostasis with resistance training. PLoS One. 2016;11(2):e0148009.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Johannsen NM, Sparks LM, Zhang Z, et al. Determinants of the changes in glycemic control with exercise training in type 2 diabetes: A randomized trial. PLoS One. 2013;8(6):e62973.PubMedPubMedCentralCrossRef Johannsen NM, Sparks LM, Zhang Z, et al. Determinants of the changes in glycemic control with exercise training in type 2 diabetes: A randomized trial. PLoS One. 2013;8(6):e62973.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Layne AS, Nasrallah S, South MA, et al. Impaired muscle AMPK activation in the metabolic syndrome may attenuate improved insulin action after exercise training. J Clin Endocrinol Metab. 2011;96(6):1815–26.PubMedPubMedCentralCrossRef Layne AS, Nasrallah S, South MA, et al. Impaired muscle AMPK activation in the metabolic syndrome may attenuate improved insulin action after exercise training. J Clin Endocrinol Metab. 2011;96(6):1815–26.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat De Filippis E, Alvarez G, Berria R, et al. Insulin-resistant muscle is exercise resistant: evidence for reduced response of nuclear-encoded mitochondrial genes to exercise. Am J Physiol Endocrinol Metabol. 2008;294(3):E607–14.CrossRef De Filippis E, Alvarez G, Berria R, et al. Insulin-resistant muscle is exercise resistant: evidence for reduced response of nuclear-encoded mitochondrial genes to exercise. Am J Physiol Endocrinol Metabol. 2008;294(3):E607–14.CrossRef
106.
Zurück zum Zitat Heilbronn LK, Gan SK, Turner N, et al. Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab. 2007;92(4):1467–73.PubMedCrossRef Heilbronn LK, Gan SK, Turner N, et al. Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab. 2007;92(4):1467–73.PubMedCrossRef
107.
Zurück zum Zitat Nolan CJ, Ruderman NB, Kahn SE, et al. Insulin resistance as a physiological defense against metabolic stress: Implications for the management of subsets of type 2 diabetes. Diabetes. 2015;64(3):673–86.PubMedPubMedCentralCrossRef Nolan CJ, Ruderman NB, Kahn SE, et al. Insulin resistance as a physiological defense against metabolic stress: Implications for the management of subsets of type 2 diabetes. Diabetes. 2015;64(3):673–86.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Mittra S, Bansal VS, Bhatnagar PK. From a glucocentric to a lipocentric approach towards metabolic syndrome. Drug Discov Today. 2008;13(5–6):211–8.PubMedCrossRef Mittra S, Bansal VS, Bhatnagar PK. From a glucocentric to a lipocentric approach towards metabolic syndrome. Drug Discov Today. 2008;13(5–6):211–8.PubMedCrossRef
109.
Zurück zum Zitat van de Weijer T, Sparks LM, Phielix E, et al. Relationships between mitochondrial function and metabolic flexibility in type 2 diabetes mellitus. PLoS One. 2013;8(2):e51648–8. van de Weijer T, Sparks LM, Phielix E, et al. Relationships between mitochondrial function and metabolic flexibility in type 2 diabetes mellitus. PLoS One. 2013;8(2):e51648–8.
110.
Zurück zum Zitat Braun B, Sharoff C, Chipkin SR, et al. Effects of insulin resistance on substrate utilization during exercise in overweight women. J Appl Physiol. 2004;97(3):991–7.PubMedCrossRef Braun B, Sharoff C, Chipkin SR, et al. Effects of insulin resistance on substrate utilization during exercise in overweight women. J Appl Physiol. 2004;97(3):991–7.PubMedCrossRef
111.
Zurück zum Zitat Brandon AE, Hoy AJ, Wright LE, et al. The evolution of insulin resistance in muscle of the glucose infused rat. Arch Biochem Biophys. 2011;509(2):133–41.PubMedPubMedCentralCrossRef Brandon AE, Hoy AJ, Wright LE, et al. The evolution of insulin resistance in muscle of the glucose infused rat. Arch Biochem Biophys. 2011;509(2):133–41.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Kang J, Kelley DE, Robertson RJ, et al. Substrate utilization and glucose turnover during exercise of varying intensities in individuals with NIDDM. Med Sci Sport Exerc. 1999;31(1):82.CrossRef Kang J, Kelley DE, Robertson RJ, et al. Substrate utilization and glucose turnover during exercise of varying intensities in individuals with NIDDM. Med Sci Sport Exerc. 1999;31(1):82.CrossRef
113.
Zurück zum Zitat Kanaley JA, Cryer PE, Jensen MD. Fatty acid kinetic responses to exercise. Effects of obesity, body fat distribution, and energy-restricted diet. J Clin Invest. 1993;92(1):255–61.PubMedPubMedCentralCrossRef Kanaley JA, Cryer PE, Jensen MD. Fatty acid kinetic responses to exercise. Effects of obesity, body fat distribution, and energy-restricted diet. J Clin Invest. 1993;92(1):255–61.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Goodpaster BH, Wolfe RR, Kelley DE. Effects of obesity on substrate utilization during exercise. Obes Res. 2002;10(7):575–84.PubMedCrossRef Goodpaster BH, Wolfe RR, Kelley DE. Effects of obesity on substrate utilization during exercise. Obes Res. 2002;10(7):575–84.PubMedCrossRef
115.
Zurück zum Zitat Horowitz JF, Klein S. Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity. J Appl Physiol. 2000;89(6):2276–82.PubMed Horowitz JF, Klein S. Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity. J Appl Physiol. 2000;89(6):2276–82.PubMed
116.
Zurück zum Zitat Sparks LM, Johannsen NM, Church TS, et al. Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes. J Clin Endocrinol Metab. 2013;98(4):1694–702.PubMedPubMedCentralCrossRef Sparks LM, Johannsen NM, Church TS, et al. Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes. J Clin Endocrinol Metab. 2013;98(4):1694–702.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Stephens NA, Xie H, Johannsen NM, et al. A transcriptional signature of "exercise resistance" in skeletal muscle of individuals with type 2 diabetes mellitus. Metabolism. 2015;64(9):999–1004.PubMedCrossRef Stephens NA, Xie H, Johannsen NM, et al. A transcriptional signature of "exercise resistance" in skeletal muscle of individuals with type 2 diabetes mellitus. Metabolism. 2015;64(9):999–1004.PubMedCrossRef
118.
Zurück zum Zitat Galgani JE, Vasquez K, Watkins G, et al. Enhanced skeletal muscle lipid oxidative efficiency in insulin-resistant vs. insulin-sensitive nondiabetic, nonobese humans. J Clin Endocrinol Metab. 2013;98(4):E646–53.PubMedCrossRef Galgani JE, Vasquez K, Watkins G, et al. Enhanced skeletal muscle lipid oxidative efficiency in insulin-resistant vs. insulin-sensitive nondiabetic, nonobese humans. J Clin Endocrinol Metab. 2013;98(4):E646–53.PubMedCrossRef
119.
Zurück zum Zitat Lessard SJ, Rivas DA, Alves-Wagner AB, et al. Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks. Diabetes. 2013;62(8):2717–27.PubMedPubMedCentralCrossRef Lessard SJ, Rivas DA, Alves-Wagner AB, et al. Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks. Diabetes. 2013;62(8):2717–27.PubMedPubMedCentralCrossRef
Metadaten
Titel
Exercise resistance across the prediabetes phenotypes: Impact on insulin sensitivity and substrate metabolism
verfasst von
Steven K. Malin
Zhenqi Liu
Eugene J. Barrett
Arthur Weltman
Publikationsdatum
23.04.2016
Verlag
Springer US
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 1/2016
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-016-9352-5

Weitere Artikel der Ausgabe 1/2016

Reviews in Endocrine and Metabolic Disorders 1/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Das Risiko für Vorhofflimmern in der Bevölkerung steigt

02.05.2024 Vorhofflimmern Nachrichten

Das Risiko, im Lauf des Lebens an Vorhofflimmern zu erkranken, ist in den vergangenen 20 Jahren gestiegen: Laut dänischen Zahlen wird es drei von zehn Personen treffen. Das hat Folgen weit über die Schlaganfallgefährdung hinaus.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.