Skip to main content
Erschienen in: Respiratory Research 1/2023

Open Access 01.12.2023 | Correspondence

Exhaled biomarkers in adults with non-productive cough

verfasst von: Össur Ingi Emilsson, Spela Kokelj, Jörgen Östling, Anna-Carin Olin

Erschienen in: Respiratory Research | Ausgabe 1/2023

Abstract

Background

Chronic cough is a common condition but disease mechanisms are not fully understood. Our aim was to study respiratory biomarkers from the small airways in individuals with non-productive cough.

Methods

A cohort of 107 participants answered detailed questionnaires, performed spirometry, exhaled NO measurement, impulse oscillometry, gave blood samples and particles in exhaled air (PEx) samples. Current smokers (N = 38) were excluded. A total of 14 participants reported non-productive cough (cases). A total of 55 participants reported no cough (control group). PEx samples, containing exhaled particles derived from small airways, were collected and analysed with the SOMAscan proteomics platform.

Results

Participants with non-productive cough had similar age, sex, BMI, and inflammation markers in blood tests, as participants without cough. The proteomics analysis found 75 proteins significantly altered among participants with chronic cough compared to controls, after adjusting for sex and investigator performing the PExA measurement (all with p-value < 0.05 and q-value ≤ 0.13, thereof 21 proteins with a q-value < 0.05). These proteins were mostly involved in immune and inflammatory responses, complement and coagulation system, but also tight junction proteins and proteins involved in neuroinflammatory responses.

Conclusions

This exploratory study on proteomics of exhaled particles among individuals with chronic cough found alterations in relative abundance of 75 proteins. The proteins identified are implicated in both pathways known to be implicated in cough, but also potentially new pathways. Further studies are needed to explore the importance of these findings.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
PEx
Particles in exhaled air (samples)
PExA
Particles in exhaled air (method / equipment)
GLP
Good laboratory practice
RFU
Relative fluorescent unit
LOD
Limit of detection
FVC
Forced vital capacity
FEV1
Forced expired volume in one second
TNF
Tumour necrosis factor
IOS
Impulse oscillometry
FeNO
Fractional exhaled nitric oxide
R5
Resistance at 5 Hz
R20
Resistance at 20 Hz
AX
Area under the reactance curve
STRING
Search Tool for the Retrieval of INteracting Genes/proteins
NOTCH3
Neurogenic locus notch homolog protein 3
ESAM
Endothelial cell-selective adhesion molecule

Background

Chronic cough is a common condition in the general population with many possible causes, but often difficult to treat [1]. In recent years, advances have been made in understanding the origin of cough, resulting for example in the identification of the cough hypersensitivity syndrome [2]. Numerous neuroreceptors in the airways have been identified as being able to induce cough [3]. However, drugs that block these receptors have often been unsuccessful, with the exception of P2X3 inhibitors which have shown some promise [4]. A better understanding of the mechanisms responsible for chronic cough and mechanisms responsible for initiating the cough reflex is therefore needed to be able to better treat this debilitating condition.
The sensory nerves initiating the cough reflex have various locations. They are well known to be present in the larynx and proximal airways, but have also been shown to be present in more distal airways [5, 6]. Also, a study performing bronchial provocation test using hypertonic saline on patients with chronic cough found a significant change in small airway function as measured by impulse oscillometry [7]. These findings indicate that small airway disease may associate with chronic cough, even though this is not extensively studied.
Several mechanisms may interact to increase the cough susceptibility in addition to upregulated airway sensory nerves. Epithelial barrier function may be impaired through oxidative stress, which in turn may potentially make the underlying respiratory nerves more susceptible to external stimuli [811].
The immune system has also been suggested to play a role in the pathogenesis of chronic cough, through interaction with the nervous system [12]. For example, eosinophils may stimulate vagal C-fibers which are important in the cough reflex. Also, increased concentrations in induced sputum samples of inflammatory biomarkers such as histamine, prostaglandin D2 and E2 have been reported in idiopathic cough, which may be protussive mediators [1214]. However, as induced sputum mainly stems from the larger airways, it is unknown if the same processes are at play in the distal airways.
Identifying biomarkers that are easy to measure and reflect cough mechanisms would be highly valuable for better evaluation of patients with chronic cough [15]. A novel method for collecting samples of the small airways respiratory tract lining fluid non-invasively has been developed and validated, a method called Particles in Exhaled Air (PExA). PEx samples have never been analysed among individuals with chronic cough.
The aim of this exploratory study was to evaluate the proteomic profile of the small airways, collected non-invasively in the form of exhaled particles, among individuals with chronic cough.

Methods

A total of 107 subjects were recruited from our previous studies or by an advertisement in a daily paper, and examined in 2016–17. The cohort consisted of 38 current smokers, 47 former smokers and 22 healthy never smokers. Current smokers were excluded from this study. The inclusion criterion for never smoking controls was post-bronchodilation FEV1/FVC > 0.70. Subjects were defined as current smokers if they had smoked on a regular daily basis for at least one year at the time of the examination. Former smokers were defined as those that had not smoked in the last 12 months, but had smoked on a regular daily basis prior to that. Those who had never smoked on a regular daily basis were classified as never smokers.
Participants provided written informed consent prior to the measurements and the Regional Ethics Committee at the University of Gothenburg approved the study (442-17 and 390-06).
All subjects answered a detailed questionnaire on medical history and symptoms, and performed spirometry, impulse oscillometry (IOS) and fractional exhaled nitric oxide (FeNO). Exhaled particles were collected using the PExA method. Blood samples were obtained and analysed for hsCRP and white blood cell differential count.
All subjects were instructed to withdraw from short-acting bronchodilators and long-acting bronchodilators at least 6 h and 24 h prior to the examination, respectively.
As current smoking has been found to have a significant effect on the small airway protein profile [16], current smokers were excluded from further analysis.

Non-productive cough

Non-productive cough was defined as a positive reply to the question “Have you during the last 12 months had dry cough, i.e. cough without sputum?” Altogether 24 participants answered “Yes” and 83 answered “No”. Of the 24 participants with non-productive cough, 10 were current smokers, and therefore 14 were eligible for the main analysis.
Of the 83 participants without cough, 28 were current smokers, and therefore 55 were eligible for the main analysis.

Lung function and asthma definition

The participants performed spirometry using the Spirare spirometer (Spirare, Stockholm, Sweden). Reversibility test was performed using 400 µg of salbutamol in accordance with the ATS/ERS criteria [17]. Forced vital capacity (FVC), forced expired volume in one second (FEV1) an FEV1/FVC ratio were expressed as a percentage of the reference value (% pred) according to Brisman et al. (note the corrigendum) [18].
The participants also performed IOS using a Jaeger Masterscreen system (CareFusion, Würzburg, Germany) before and after bronchodilation with 400 µg of salbutamol in accordance with the ERS task force criteria [19]. The mean values of resistance at 5 Hz and 20 Hz (R5 and R20), frequency dependence of resistance (R5-R20) and area under the reactance curve (AX), were calculated and expressed as % predicted according to Kjellberg et al. [20]
Asthma was defined as a positive reply to the question “Do you have a physician-diagnosed asthma?”.

Particles in exhaled air

Exhaled particles (PEx) were collected using the PExA instrument version 1.0 (PExA AB, Gothenburg, Sweden), as previously described [21, 22]. The measured particle sizes cover diameters between 0.41 and 2.98 µm. Subjects inhaled HEPA-filtered air for a minimum of three breaths before the sampling in order to remove particles from ambient air. All participants wore a nose clip throughout the procedure. A standardized breathing manoeuvre was used [23, 24], starting with an exhalation at normal flow rate to residual volume, breath holding for 5 s, followed by a maximal inhalation to total lung capacity, immediately followed by a normal exhalation to functional residual capacity. Between breathing manoeuvres, the subject breathed particle-free air tidally for 30 to 60 s. Each sampling session continued until 120 ng of exhaled particles were collected. After collection the sample holder was transferred to a clean air room and the substrate was cut out with a scalpel from the sample holder area and placed in Millipore Ultrafree-MC LH Centrifugal Filter insert (FC30LH25) and stored at – 80 °C for subsequent extraction and SOMAscan analysis. True blank samples were generated by applying the same sample handling procedure as for real samples but without collecting PEx sample from the study subjects.

SOMAscan proteomic analysis and processing of data

The SOMAscan (SomaLogic Inc, Boulder, USA) proteomics platform that uses slow off-rate modified DNA aptamers can simultaneously quantify more than 1300 human proteins in blood samples. SOMAscan analysis of PEx samples and processing of data has been previously described in detail [16]. In short, prior to SOMAscan analysis, the volume of sample buffer was adjusted to reach the same concentration of PEx in all samples in order to normalize the samples for the differences in the collected amount of PEx. Intra-plate and inter-plate normalization were performed by SomaLogic according to their SOMAscan assay good laboratory practice (GLP) data quality-control procedures. Limit of detection (LOD) was calculated as the relative fluorescent unit (RFU) mean plus 3 standard deviations based on two blank samples. For the primary analysis, proteins with (RFU) values > LOD in more than 50% of the samples were considered for further analyses. For a secondary analysis, proteins above the LOD among more than 50% of those with non-productive cough, but among less than 50% of those without cough, were identified.

Statistical analysis

As mentioned above, active smoking can have a significant effect on the small airway protein profile, and therefore current smokers were excluded from the primary analysis.
Statistical analyses of the protein data were performed using general linear model-based statistics (Qlucore Omics Explorer 3.8 software, Qlucore AB, Lund, Sweden). SOMAscan data was log2 transformed before the analysis to achieve normal distribution. General linear model, with each variable normalized to mean 0 and variance of 1, was used to determine differences in protein abundance between subjects with and without non-productive cough. The analysis was adjusted for the investigator performing the PExA measurements, as well as the sex of the subjects.
To identify which biological pathways the identified proteins were mostly involved in through protein–protein interactions, a STRING (Search Tool for the Retrieval of INteracting Genes/proteins) analysis was performed using an online available tool [25].
In keeping with the exploratory nature of this study, protein differences between groups with a p-value < 0.05 were considered to be of interest. A q-value was also calculated using the Benjamini–Hochberg correction for multiple testing adjustment. Statistical analysis of clinical and demographic data was performed using IBM SPSS Statistics for Windows, version 28 (IBM Corp., Armonk, N.Y., USA) with the significance level set to p < 0.05.

Results

Cohort characteristics

The participants’ baseline characteristics are presented in Table 1. In summary, participants with non-productive cough had a similar age, BMI, CRP, blood eosinophils, IOS, and FeNO, as participants without cough. Also, spirometry results were largely similar, except for a slightly higher FVC percent predicted among participants with non-productive cough, compared with participants without cough, however the p-value did not reach the level of statistical significance (Table 1). Asthma was present in one of 14 participants with non-productive cough.
Table 1
General characteristics and clinical data of the subjects included in the study
 
Subjects without chronic non-productive cough (n = 55)
Subjects with chronic non-productive cough (n = 14)
p-value
Age (years)
59 (53–67)
61 (53–67)
0.654
Sex (F/M)
30/25
8/6
0.862
BMI (kg/m2)
25.5 (23.7—27.6)
26.4 (24.9–28.7)
0.251
Former smokers, N (%)
36 (65%)
11 (78%)
0.347
Pack-years
15 (0–26)
(18 (3–40)
0.342
Asthma diagnosis, N (%)
2 (4%)
1 (7%)
0.566
hsCRP (mg/L)
0.91 (0.61–1.40)
1.75 (0.52–3.70)
0.180
Eosinophils (109 cells/L)
0.10 (0.10–0.20)
(0.10 (0.08–0.20)
0.505
FeNO (ppb)
17 (13–28)
15 (12–21)
0.396
FVC % preda
95.9 (89.0–100.3)
104.1 (91.2–109.1)
0.054
FEV1% preda
93.4 (85.2–97.2)
97.0 (85.9–105.7)
0.495
FEV1/FVCa
76.4 (71.2–79.8)
75.9 (66.1–78.1)
0.249
R5 Hz (kPa/(L/s))a
0.330 (0.270–0.390)
0.305 (0.285–0.398)
0.987
R5 Hz % preda
94.0 (83.9–107.3)
93.8 (84.6–105.9)
0.867
R5-R20 (kPa/(L/s))a
0.043 (0.025–0.063)
0.022 (0.015–0.072)
0.472
R5-R20% preda
75.8 (45.2–128.8)
42.5 (29.7–129.0)
0.453
AX (kPa/L)a
0.213 (0.105–0.328)
0.143 (0.092–0.401)
0.710
AX % preda
83.6 (46.6–145.1)
65.1 (44.8–165.7)
0.685
Data is displayed as median and interquartile range (IQR), unless specified otherwise. P-values are based on a nonparametric Mann-Wthitney test for continuous data and Chi-square test for categorical data
apost-bronchodilation

Proteomics results

All in all, 203 proteins were detected in at least 50% of the 107 samples. Results from the analysis of the proteomics profile found 75 proteins significantly altered among participants with non-productive cough compared to controls, after adjusting for sex and investigator performing the PExA measurement (all with p-value < 0.05 and q-value ≤ 0.13, Table 2, Figs. 1 and 2). Thereof, 21 proteins had a q-value < 0.05. The five proteins with the most significant difference (p ≤ 0.0008, q ≤ 0.028) between participants with and without non-productive cough were adhesion G protein-coupled receptor E2 (fold change 0.64, p < 0.0001, q = 0.005), endothelial cell-selective adhesion molecule (ESAM) (fold change 0.79, p = 0.0002, q = 0.015), complement factor H (fold change 2.35, p = 0.0002, q = 0.015), polymeric immunoglobulin receptor (fold change 0.51, p = 0.0008, q = 0.028), and complement factor B (fold change 1.64, p = 0.0008, q = 0.028) (Table 2). The protein kallikrein was also significantly more common among participants with non-productive cough (fold change 1.81, p = 0.002, q = 0.04). Further details are seen in Table 2 and Fig. 1.
Table 2
Proteins differing between participants with non-productive cough and participants without cough (with p-value < 0.05)
Protein
Entrez Gene Symbol
p-value
q-value
Fold change
Adhesion G protein-coupled receptor E2
ADGRE2
2.70E−05
0.005
0.64
Endothelial cell-selective adhesion molecule
ESAM
1.90E04
0.015
0.79
Complement factor H
CFH
2.28E−04
0.015
2.35
Polymeric immunoglobulin receptor
PIGR
7.60E−04
0.028
0.51
Complement factor B
CFB
7.82E−04
0.028
1.64
Inhibin beta A chain:Inhibin beta B chain heterodimer
INHBA, INHBB
8.19E04
0.028
0.84
Inter-alpha-trypsin inhibitor heavy chain H4
ITIH4
1.36E−03
0.036
1.80
Inhibin beta A chain
INHBA
1.42E03
0.036
0.76
Hepatocyte growth factor receptor
MET
1.72E03
0.039
0.85
Plasma kallikrein
KLKB1
2.25E−03
0.040
1.81
Prothrombin
F2
2.29E−03
0.040
1.81
Granulins
GRN
2.46E−03
0.040
0.63
Immunoglobulin A
IGHA1, IGHA2
2.54E−03
0.040
1.68
Contactin-1
CNTN1
2.79E03
0.040
0.70
Fatty acid-binding protein, heart
FABP3
3.11E−03
0.041
0.62
Complement component C6
C6
3.51E−03
0.041
1.56
Interleukin-6 receptor subunit beta
IL6ST
3.63E03
0.041
0.80
Fibrinogen
FGA, FGB, FGG
3.67E−03
0.041
1.75
Complement C2
C2
4.16E03
0.043
0.80
Vitamin K-dependent protein C
PROC
4.46E03
0.043
1.45
kininogen-1
FSTL3
4.48E03
0.043
0.81
Macrophage mannose receptor 1
MRC1
6.13E03
0.057
0.71
Collectin-12
COLEC12
6.87E03
0.061
0.81
Complement C1q subcomponent
C1QA, C1QB, C1QC
8.02E−03
0.065
1.64
Lumican
LUM
8.53E03
0.065
1.33
Alpha-2-macroglobulin
A2M
8.76E03
0.065
1.26
14–3-3 protein zeta/delta
YWHAZ
8.85E03
0.065
0.78
Coagulation factor IX
F9
8.94E−03
0.065
1.71
Plasminogen
PLG
9.96E−03
0.070
1.79
Tumor necrosis factor receptor superfamily member 1A
TNFRSF1A
0.011
0.072
0.87
C-X-C motif chemokine 16
CXCL16
0.011
0.072
0.66
Beta-2-microglobulin
B2M
0.012
0.072
0.77
Small ubiquitin-related modifier 3
SUMO3
0.012
0.072
0.84
Serum amyloid P-component
APCS
0.012
0.072
1.76
Hepatocyte growth factor activator
HGFAC
0.014
0.082
1.52
Immunoglobulin G
IGHG
0.016
0.082
1.57
Resistin
RETN
0.016
0.082
0.78
Hemopexin
HPX
0.017
0.082
1.53
Immunoglobulin G (2)
IGHG
0.017
0.082
1.47
Fibronectin Fragment 3
FN1
0.017
0.082
1.42
Complement decay-accelerating factor
CD55
0.017
0.082
0.74
C3a anaphylatoxin des Arginine
C3
0.017
0.082
1.45
Carboxypeptidase B2
CPB2
0.018
0.082
1.46
Histidine-rich glycoprotein
HRG
0.018
0.082
1.29
Coagulation factor IXab
F9
0.019
0.084
1.48
Protein FAM3B
FAM3B
0.019
0.084
0.80
Transgelin-2
TAGLN2
0.020
0.084
0.76
Angiogenin
ANG
0.020
0.084
1.35
Complement component C9
C9
0.020
0.084
1.32
Afamin
AFM
0.021
0.085
1.33
Complement factor I
CFI
0.023
0.092
1.24
Transforming growth factor beta receptor type 3
TGFBR3
0.025
0.096
0.87
Fibronectin Fragment 4
FN1
0.025
0.096
1.29
Properdin
CFP
0.025
0.096
1.40
Coagulation factor Xa
F10
0.027
0.099
1.76
Kininogen-1
KNG1
0.030
0.107
1.55
Fibronectin
FN1
0.030
0.107
1.56
14–3-3 protein beta/alpha
YWHAB
0.032
0.112
0.82
Complement C3d fragment
C3
0.033
0.114
1.24
Translationally-controlled tumor protein
TPT1
0.034
0.115
0.83
Complement C3
C3
0.035
0.117
1.28
Follistatin-related protein 1
FSTL1
0.036
0.118
0.84
C–C motif chemokine 18
CCL18
0.037
0.118
1.41
Haptoglobin
HP
0.039
0.122
1.70
Alpha-1-antichymotrypsin
SERPINA3
0.039
0.122
1.29
Malate dehydrogenase, cytoplasmic
MDH1
0.042
0.126
0.77
Scavenger receptor class F member 1
SCARF1
0.042
0.126
0.86
Adiponectin
ADIPOQ
0.044
0.126
1.40
Testican-2
SPOCK2
0.044
0.126
0.83
Complement component C7
C7
0.044
0.126
1.21
Neurexin-3-beta
NRXN3
0.045
0.126
0.83
Immunoglobulin D
IGHD
0.046
0.126
1.25
Extracellular matrix protein 1
ECM1
0.046
0.126
1.37
Insulin-like growth factor-binding protein 4
IGFBP4
0.047
0.126
1.24
L-lactate dehydrogenase B chain
LDHB
0.047
0.126
0.78
Proteins in bold have a fold change above 1.5 or below 0.7
Additional 6 proteins were identified above the LOD among more than half of those with non-productive cough, but in fewer subjects without cough. The proteins Tenascin-C, immunoglobulin M, and Neurogenic locus notch homolog protein 3 (NOTCH3) had a difference of more than 20 percentage points. Further details are given in Table 3.
Table 3
Proteins in PEx more frequently above LOD among those with non-productive cough
Protein
Entrez Gene Symbol
Subjects with chronic non-productive cough
Subjects without chronic non-productive cough
% of samples with RFU value > LOD
% of samples with RFU value > LOD
Neurogenic locus notch homolog protein 3
NOTCH3
50.0
21.8
Immunoglobulin M
IGHM
64.3
38.2
Tenascin-C
TNC
71.4
45.5
Metalloproteinase inhibitor 1
 
64
45
Tryptase beta-2
 
64
45
Mast/stem cell growth factor receptor Kit
 
57
45
Proteins identified above the LOD among more than half of those with non-productive cough, but among less than half of those without cough
A sensitivity analysis including current smokers, with adjustment for smoking status, found no significant differences in the findings described above (results not shown).

STRING analysis results

The STRING analysis identified mostly proteins associated with pathways regulating the immune and inflammatory responses, as well as with complement activation and coagulation (Fig. 3).

Discussion

In this first explorative study on exhaled biomarkers from peripheral airways of individuals with a non-productive cough, we found through proteomics analysis that 75 proteins were significantly altered, compared to individuals without cough. The magnitude of associations, and the common pathways involved for the identified proteins, suggest that these findings represent true associations between altered biochemical processes in the distal airways and non-productive cough.
Various immune system pathways have been suggested to be involved in the pathogenesis of cough, both eosinophilic (Th2 inflammation), neutrophilic, and lymphocytic [12], suggesting that there are different pathological mechanisms involved and that chronic cough is a heterogenous disease. Currently, it is unclear which of these pathways are most important, or if they mostly associate with certain subgroups of patients with chronic cough. Certain biomarkers may be related to the phenotype of cough, when identifiable. Indeed, a previous study found substance P to be specifically elevated in exhaled breath condensate of patients with gastroesophageal reflux and cough [11], and patients with chronic cough and elevated fractional exhaled nitric oxide (FeNO, reflecting eosinophilic inflammation) respond better to inhaled corticosteroids than those with low FeNO [15].
We did not identify any study on airway proteomics in chronic cough. In our data, we found Tenascin-C, a biomarker associated with chronic inflammation [26], to be more commonly identified in PEx among participants with non-productive cough, and Contactin-1 to be elevated in PEx. Contactin-1 is implicated in asthma pathogenesis, as a signal molecule in airway epithelium-derived exosomes, inducing a Th2 inflammation [27]. Thus, we found some support for a role of Th2 inflammation in chronic cough.
We also found NOTCH3 to be more often identified above the limit of detection in PEx samples among participants with cough compared to those without (50% vs 22%, respectively). NOTCH3 is centrally involved in epithelial homeostasis and regeneration [28], but its role in chronic cough has not been studied.
The complement system, a part of the innate immune system, and the coagulation system are known to crosstalk [29]. Both the coagulation- and complement systems are also known to be affected in some airway diseases, such as asthma [30]. In our study, we found numerous proteins involved in both the complement and coagulation systems to be affected, suggesting a role for the innate immune system in non-productive cough. Indeed, as cough is essentially a first-line mechanism to clear debris from the airways, it is perhaps not surprising that the innate immune system—a first-line immune response system—may affect the cough reflex.
The complement system has not been extensively studied in chronic cough. In one study on COPD patients, the complement factors C3 and C4 were found to be lower in serum among those with cough and expectoration [31]. We did not identify other studies on chronic cough and complement activation. Further studies are needed to further explore the role of the complement and coagulation systems in cough.
Fibrinogen was found to be increased, a protein which is both implicated in formation of extracellular matrix, and involved in inflammation and coagulation in the blood [32, 33]. Fibrinogen has previously been described to be increased in blood samples among patients with asthma and cough, compared to patients with asthma but without cough [32]. Also, the extracellular matrix protein fibronectin was increased among those with non-productive cough, a protein that also has been implicated in the pathogenesis of lung fibrosis [34, 35].
Some proteins identified deserve specific attention with regard to the cough hypersensitivity theory. For example, plasma kallikrein, which we found to be elevated, is a protein that cleaves kininogen to form bradykinin. Bradykinin is well known to be implicated in chronic cough [36]. Other studies have also indicated this possible association, where plasma kallikrein may be implicated in inducing cough through activating bradykinins [37, 38]. Furthermore, the kallikrein-kinin system (including bradykinin) has been implicated to play a role in neuroinflammation, both centrally as in Alzheimer's disease, as well as affect the peripheral nervous system. Our data therefore support the cough hypersensitivity theory as a plausible mechanism in chronic cough.
Another interesting aspect is the potential impairment of tight junctions, which may lead to increased permeability and susceptibility of airway nerve receptors to external stimuli [8, 9]. In our data, the protein ESAM, which contributes to the integrity of tight junctions [39], was significantly lowered in PEx samples of participants with non-productive cough. Unfortunately, many of the tight junction proteins analysed in the SOMAscan platform were below the detection limit in the present study. We did not identify other studies directly addressing epithelial permeability in chronic cough, but the issue has been discussed in asthma, where increased epithelial permeability is suggested to be a part of the pathogenesis [8].

Strengths and weaknesses

Some of the novelties and main strengths of this study are the combination of a non-invasive collection of non-diluted biosamples from the small airways, and the unbiased proteomic approach. However, some methodological issues need to be discussed. First of all, the sample size is small and an independent validation cohort is needed to confirm our findings. We also observed variability in the protein-profile depending on the investigator performing the PEx sampling, possibly explained by differences in how the breathing maneuver was performed, and as a result the statistical analysis had to be adjusted accordingly. Choosing to include proteins in the analysis with RFU values > LOD in more than 50% of samples could be considered another possible limitation. However, due to the exploratory nature of the study, we chose to select 50% as the limit instead of other commonly used percentages such as 70–80%, to open the analytical window and explore proteins that could potentially be missed otherwise. For that same reason and also due to the small sample size, a more inclusive approach was chosen and differences in protein abundance were considered significant at p-value < 0.05.
Some potentially interesting biomarkers, such as the neuroinflammatory marker Substance P which is implicated in cough [12], were not among the proteins analysed by the SOMAscan platform. Also, in part because of the relatively low sample volume, some proteins were not easily identified, such as Cadherin-1 which was only detected above LOD in 6% of all samples.
Because of the exploratory nature of this study, strong conclusions cannot be made, even though the results show interesting findings. The clear differences in abundance of many proteins between participants with non-productive cough and those without cough, merit larger studies to validate these findings, preferably including clinical patients with chronic cough.

Conclusions

In this exploratory study on the proteomic profile in distal airway samples from individuals with non-productive cough, we found significant associations between non-productive cough and altered abundance of 75 proteins, in biological samples that originate from distal airways. Interestingly, many of these proteins are involved in pathways regulating the immune and inflammatory responses, as well as complement activation, coagulation, neuroinflammation, and epithelial junction integrity. Further studies are needed to validate these findings, and to explore the role of these altered pathways in the pathology of cough.

Acknowledgements

We would like to thank the research nurses and the biomedical technicians at Occupational and environmental medicine unit at University of Gothenburg for clinical work and technical support. We would also like to extend our appreciation to all subjects for their participation in the present study.

Declarations

Participants provided written informed consent prior to the measurements and the Regional Ethics Committee at the University of Gothenburg approved the study (442-17 and 390-06).
Not applicable.

Competing interests

ÖE: Has received honoraria from MSD, not related to this article. SK: No conflicts of interests. JÖ: Reports personal fees from PExA AB during the conduct of the study and was employed by PExA AB while writing the manuscript, but not during the planning and completion of the study. ACO: Is a chair-holder and a board member of PExA AB.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Morice AH, Millqvist E, Belvisi MG, et al. Expert opinion on the cough hypersensitivity syndrome in respiratory medicine. Eur Respir J. 2014;44(5):1132–48.CrossRefPubMed Morice AH, Millqvist E, Belvisi MG, et al. Expert opinion on the cough hypersensitivity syndrome in respiratory medicine. Eur Respir J. 2014;44(5):1132–48.CrossRefPubMed
3.
Zurück zum Zitat Long L, Yao H, Tian J, et al. Heterogeneity of cough hypersensitivity mediated by TRPV1 and TRPA1 in patients with chronic refractory cough. Respir Res. 2019;20(1):112.CrossRefPubMedPubMedCentral Long L, Yao H, Tian J, et al. Heterogeneity of cough hypersensitivity mediated by TRPV1 and TRPA1 in patients with chronic refractory cough. Respir Res. 2019;20(1):112.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat McGarvey LP, Birring SS, Morice AH, et al. Efficacy and safety of gefapixant, a P2X(3) receptor antagonist, in refractory chronic cough and unexplained chronic cough (COUGH-1 and COUGH-2): results from two double-blind, randomised, parallel-group, placebo-controlled, phase 3 trials. Lancet. 2022;399(10328):909–23.CrossRefPubMed McGarvey LP, Birring SS, Morice AH, et al. Efficacy and safety of gefapixant, a P2X(3) receptor antagonist, in refractory chronic cough and unexplained chronic cough (COUGH-1 and COUGH-2): results from two double-blind, randomised, parallel-group, placebo-controlled, phase 3 trials. Lancet. 2022;399(10328):909–23.CrossRefPubMed
5.
Zurück zum Zitat Mazzone SB, Tian L, Moe AAK, Trewella MW, Ritchie ME, McGovern AE. Transcriptional profiling of individual airway projecting vagal sensory neurons. Mol Neurobiol. 2020;57(2):949–63.CrossRefPubMed Mazzone SB, Tian L, Moe AAK, Trewella MW, Ritchie ME, McGovern AE. Transcriptional profiling of individual airway projecting vagal sensory neurons. Mol Neurobiol. 2020;57(2):949–63.CrossRefPubMed
6.
Zurück zum Zitat Taylor-Clark TE. Molecular identity, anatomy, gene expression and function of neural crest vs placode-derived nociceptors in the lower airways. Neurosci Lett. 2021;742: 135505.CrossRefPubMed Taylor-Clark TE. Molecular identity, anatomy, gene expression and function of neural crest vs placode-derived nociceptors in the lower airways. Neurosci Lett. 2021;742: 135505.CrossRefPubMed
7.
Zurück zum Zitat Johansson EL, Ternesten-Hasseus E, Gustafsson P, Pullerits T, Arvidsson M, Millqvist E. Small and large airway reactions to osmotic stimuli in asthma and chronic idiopathic cough. Pulm Pharmacol Ther. 2018;49:112–8.CrossRefPubMed Johansson EL, Ternesten-Hasseus E, Gustafsson P, Pullerits T, Arvidsson M, Millqvist E. Small and large airway reactions to osmotic stimuli in asthma and chronic idiopathic cough. Pulm Pharmacol Ther. 2018;49:112–8.CrossRefPubMed
8.
Zurück zum Zitat Gon Y, Hashimoto S. Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergol Int. 2018;67(1):12–7.CrossRefPubMed Gon Y, Hashimoto S. Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergol Int. 2018;67(1):12–7.CrossRefPubMed
9.
Zurück zum Zitat Zholos AV. TRP channels in respiratory pathophysiology: the role of oxidative, chemical irritant and temperature stimuli. Curr Neuropharmacol. 2015;13(2):279–91.CrossRefPubMedPubMedCentral Zholos AV. TRP channels in respiratory pathophysiology: the role of oxidative, chemical irritant and temperature stimuli. Curr Neuropharmacol. 2015;13(2):279–91.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Takeda N, Takemura M, Kanemitsu Y, et al. Effect of anti-reflux treatment on gastroesophageal reflux-associated chronic cough: Implications of neurogenic and neutrophilic inflammation. J Asthma. 2020;57(11):1202–10.CrossRefPubMed Takeda N, Takemura M, Kanemitsu Y, et al. Effect of anti-reflux treatment on gastroesophageal reflux-associated chronic cough: Implications of neurogenic and neutrophilic inflammation. J Asthma. 2020;57(11):1202–10.CrossRefPubMed
11.
Zurück zum Zitat Emilsson OI, Benediktsdottir B, Olafsson I, et al. Respiratory symptoms, sleep-disordered breathing and biomarkers in nocturnal gastroesophageal reflux. Respir Res. 2016;17(1):115.CrossRefPubMedPubMedCentral Emilsson OI, Benediktsdottir B, Olafsson I, et al. Respiratory symptoms, sleep-disordered breathing and biomarkers in nocturnal gastroesophageal reflux. Respir Res. 2016;17(1):115.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Tamasauskiene L, Sitkauskiene B. Immune system in the pathogenesis of chronic cough. Immunol Lett. 2020;218:40–3.CrossRefPubMed Tamasauskiene L, Sitkauskiene B. Immune system in the pathogenesis of chronic cough. Immunol Lett. 2020;218:40–3.CrossRefPubMed
13.
Zurück zum Zitat Birring SS, Parker D, Brightling CE, Bradding P, Wardlaw AJ, Pavord ID. Induced sputum inflammatory mediator concentrations in chronic cough. Am J Respir Crit Care Med. 2004;169(1):15–9.CrossRefPubMed Birring SS, Parker D, Brightling CE, Bradding P, Wardlaw AJ, Pavord ID. Induced sputum inflammatory mediator concentrations in chronic cough. Am J Respir Crit Care Med. 2004;169(1):15–9.CrossRefPubMed
14.
Zurück zum Zitat Jatakanon A, Lalloo UG, Lim S, Chung KF, Barnes PJ. Increased neutrophils and cytokines, TNF-alpha and IL-8, in induced sputum of non-asthmatic patients with chronic dry cough. Thorax. 1999;54(3):234–7.CrossRefPubMedPubMedCentral Jatakanon A, Lalloo UG, Lim S, Chung KF, Barnes PJ. Increased neutrophils and cytokines, TNF-alpha and IL-8, in induced sputum of non-asthmatic patients with chronic dry cough. Thorax. 1999;54(3):234–7.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Mazzone SB, Chung KF, McGarvey L. The heterogeneity of chronic cough: a case for endotypes of cough hypersensitivity. Lancet Respir Med. 2018;6(8):636–46.CrossRefPubMed Mazzone SB, Chung KF, McGarvey L. The heterogeneity of chronic cough: a case for endotypes of cough hypersensitivity. Lancet Respir Med. 2018;6(8):636–46.CrossRefPubMed
16.
18.
Zurück zum Zitat Brisman J, Kim JL, Olin AC, Torén K, Bake B. Spirometric reference equations for Swedish adults. Clin Physiol Funct Imaging. 2017;37(6):640–5.CrossRefPubMed Brisman J, Kim JL, Olin AC, Torén K, Bake B. Spirometric reference equations for Swedish adults. Clin Physiol Funct Imaging. 2017;37(6):640–5.CrossRefPubMed
20.
Zurück zum Zitat Kjellberg S, Houltz BK, Zetterström O, Robinson PD, Gustafsson PM. Clinical characteristics of adult asthma associated with small airway dysfunction. Respir Med. 2016;117:92–102.CrossRefPubMed Kjellberg S, Houltz BK, Zetterström O, Robinson PD, Gustafsson PM. Clinical characteristics of adult asthma associated with small airway dysfunction. Respir Med. 2016;117:92–102.CrossRefPubMed
21.
Zurück zum Zitat Bredberg A, Gobom J, Almstrand AC, et al. Exhaled endogenous particles contain lung proteins. Clin Chem. 2012;58(2):431–40.CrossRefPubMed Bredberg A, Gobom J, Almstrand AC, et al. Exhaled endogenous particles contain lung proteins. Clin Chem. 2012;58(2):431–40.CrossRefPubMed
22.
Zurück zum Zitat Almstrand AC, Ljungstrom E, Lausmaa J, Bake B, Sjovall P, Olin AC. Airway monitoring by collection and mass spectrometric analysis of exhaled particles. Anal Chem. 2009;81(2):662–8.CrossRefPubMed Almstrand AC, Ljungstrom E, Lausmaa J, Bake B, Sjovall P, Olin AC. Airway monitoring by collection and mass spectrometric analysis of exhaled particles. Anal Chem. 2009;81(2):662–8.CrossRefPubMed
23.
Zurück zum Zitat Almstrand AC, Bake B, Ljungstrom E, et al. Effect of airway opening on production of exhaled particles. J Appl Physiol. 2010;108(3):584–8.CrossRefPubMed Almstrand AC, Bake B, Ljungstrom E, et al. Effect of airway opening on production of exhaled particles. J Appl Physiol. 2010;108(3):584–8.CrossRefPubMed
24.
Zurück zum Zitat Holmgren H, Gerth E, Ljungström E, et al. Effects of breath holding at low and high lung volumes on amount of exhaled particles. Respir Physiol Neurobiol. 2013;185(2):228–34.CrossRefPubMed Holmgren H, Gerth E, Ljungström E, et al. Effects of breath holding at low and high lung volumes on amount of exhaled particles. Respir Physiol Neurobiol. 2013;185(2):228–34.CrossRefPubMed
25.
Zurück zum Zitat Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-d613.CrossRefPubMed Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-d613.CrossRefPubMed
26.
Zurück zum Zitat Midwood KS, Chiquet M, Tucker RP, Orend G. Tenascin-C at a glance. J Cell Sci. 2016;129(23):4321–7.PubMed Midwood KS, Chiquet M, Tucker RP, Orend G. Tenascin-C at a glance. J Cell Sci. 2016;129(23):4321–7.PubMed
27.
Zurück zum Zitat Zhang M, Yu Q, Tang W, et al. Epithelial exosomal contactin-1 promotes monocyte-derived dendritic cell-dominant T-cell responses in asthma. J Allergy Clin Immunol. 2021;148(6):1545–58.CrossRefPubMed Zhang M, Yu Q, Tang W, et al. Epithelial exosomal contactin-1 promotes monocyte-derived dendritic cell-dominant T-cell responses in asthma. J Allergy Clin Immunol. 2021;148(6):1545–58.CrossRefPubMed
28.
Zurück zum Zitat Kiyokawa H, Morimoto M. Notch signaling in the mammalian respiratory system, specifically the trachea and lungs, in development, homeostasis, regeneration, and disease. Dev Growth Differ. 2020;62(1):67–79.CrossRefPubMed Kiyokawa H, Morimoto M. Notch signaling in the mammalian respiratory system, specifically the trachea and lungs, in development, homeostasis, regeneration, and disease. Dev Growth Differ. 2020;62(1):67–79.CrossRefPubMed
29.
Zurück zum Zitat Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. Complement and coagulation: strangers or partners in crime? Trends Immunol. 2007;28(4):184–92.CrossRefPubMed Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. Complement and coagulation: strangers or partners in crime? Trends Immunol. 2007;28(4):184–92.CrossRefPubMed
30.
Zurück zum Zitat de Boer JD, Majoor CJ, van’t Veer C, Bel EH, van der Poll T. Asthma and coagulation. Blood. 2012;119(14):3236–44.CrossRefPubMed de Boer JD, Majoor CJ, van’t Veer C, Bel EH, van der Poll T. Asthma and coagulation. Blood. 2012;119(14):3236–44.CrossRefPubMed
31.
Zurück zum Zitat Miller RD, Kueppers F, Offord KP. Serum concentrations of C3 and C4 of the complement system in patients with chronic obstructive pulmonary disease. J Lab Clin Med. 1980;95(2):266–71.PubMed Miller RD, Kueppers F, Offord KP. Serum concentrations of C3 and C4 of the complement system in patients with chronic obstructive pulmonary disease. J Lab Clin Med. 1980;95(2):266–71.PubMed
32.
Zurück zum Zitat Çolak Y, Afzal S, Lange P, Laursen LC, Nordestgaard BG, Dahl M. Role and impact of chronic cough in individuals with asthma from the general population. J Allergy Clin Immunol Pract. 2019;7(6):1783-1792.e1788.CrossRefPubMed Çolak Y, Afzal S, Lange P, Laursen LC, Nordestgaard BG, Dahl M. Role and impact of chronic cough in individuals with asthma from the general population. J Allergy Clin Immunol Pract. 2019;7(6):1783-1792.e1788.CrossRefPubMed
33.
Zurück zum Zitat Halper J, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Biol. 2014;802:31–47.CrossRefPubMed Halper J, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Biol. 2014;802:31–47.CrossRefPubMed
34.
Zurück zum Zitat Bradbury P, Nader CP, Cidem A, et al. Tropomyosin 2.1 collaborates with fibronectin to promote TGF-β(1)-induced contraction of human lung fibroblasts. Respir Res. 2021;22(1):129.CrossRefPubMedPubMedCentral Bradbury P, Nader CP, Cidem A, et al. Tropomyosin 2.1 collaborates with fibronectin to promote TGF-β(1)-induced contraction of human lung fibroblasts. Respir Res. 2021;22(1):129.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Schulze-Topphoff U, Prat A, Bader M, Zipp F, Aktas O. Roles of the kallikrein/kinin system in the adaptive immune system. Int Immunopharmacol. 2008;8(2):155–60.CrossRefPubMed Schulze-Topphoff U, Prat A, Bader M, Zipp F, Aktas O. Roles of the kallikrein/kinin system in the adaptive immune system. Int Immunopharmacol. 2008;8(2):155–60.CrossRefPubMed
37.
Zurück zum Zitat Dicpinigaitis PV. Angiotensin-converting enzyme inhibitor-induced cough: ACCP evidence-based clinical practice guidelines. Chest. 2006;129(1 Suppl):169s–73s.CrossRefPubMed Dicpinigaitis PV. Angiotensin-converting enzyme inhibitor-induced cough: ACCP evidence-based clinical practice guidelines. Chest. 2006;129(1 Suppl):169s–73s.CrossRefPubMed
38.
Zurück zum Zitat O’Neill J, McMahon SB, Undem BJ. Chronic cough and pain: Janus faces in sensory neurobiology? Pulm Pharmacol Ther. 2013;26(5):476–85.CrossRefPubMed O’Neill J, McMahon SB, Undem BJ. Chronic cough and pain: Janus faces in sensory neurobiology? Pulm Pharmacol Ther. 2013;26(5):476–85.CrossRefPubMed
39.
Zurück zum Zitat Kacso IM, Kacso G. Endothelial cell-selective adhesion molecule in diabetic nephropathy. Eur J Clin Invest. 2012;42(11):1227–34.CrossRefPubMed Kacso IM, Kacso G. Endothelial cell-selective adhesion molecule in diabetic nephropathy. Eur J Clin Invest. 2012;42(11):1227–34.CrossRefPubMed
Metadaten
Titel
Exhaled biomarkers in adults with non-productive cough
verfasst von
Össur Ingi Emilsson
Spela Kokelj
Jörgen Östling
Anna-Carin Olin
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Respiratory Research / Ausgabe 1/2023
Elektronische ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-023-02341-5

Weitere Artikel der Ausgabe 1/2023

Respiratory Research 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Eingreifen von Umstehenden rettet vor Erstickungstod!

15.05.2024 Fremdkörperaspiration Nachrichten

Wer sich an einem Essensrest verschluckt und um Luft ringt, benötigt vor allem rasche Hilfe. Dass Umstehende nur in jedem zweiten Erstickungsnotfall bereit waren, diese zu leisten, ist das ernüchternde Ergebnis einer Beobachtungsstudie aus Japan. Doch es gibt auch eine gute Nachricht.

Neue S3-Leitlinie zur unkomplizierten Zystitis: Auf Antibiotika verzichten?

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Schadet Ärger den Gefäßen?

14.05.2024 Arteriosklerose Nachrichten

In einer Studie aus New York wirkte sich Ärger kurzfristig deutlich negativ auf die Endothelfunktion gesunder Probanden aus. Möglicherweise hat dies Einfluss auf die kardiovaskuläre Gesundheit.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.