Skip to main content
Erschienen in: Experimental Brain Research 1/2003

01.11.2003 | Research Note

Expansion of receptive fields in motor cortex by local blockade of GABAA receptors

verfasst von: Charles Capaday, Douglas D. Rasmusson

Erschienen in: Experimental Brain Research | Ausgabe 1/2003

Einloggen, um Zugang zu erhalten

Abstract

Experiments were done in α-choralose anesthetized cats to determine whether local disinhibition would expand the sensory receptive field (RF) of motor cortical neurons. Most of the neurons (n = 17) responded only to a rapid high velocity "tap" of the paw or forearm, often requiring movement of a joint, while four cells responded to light touch of the skin. The receptive field of single neurons was re-examined after microiontophoretic ejection of bicuculline (BIC). In all 21 neurons examined, BIC produced an expansion of the RF (mean 4 times before drug). Expansion was seen most often in the proximal-distal axis (17 neurons) but was also commonly seen in the mediolateral axis (9 neurons). The expansion was usually restricted to the dorsal or ventral surface that the original RF was on; in only three neurons in which the pre-drug RF was on the dorsal surface of the paw did the expansion include part or the entire ventral surface. Response thresholds could only be tested in those neurons with touch RFs and showed no evidence of a change within the original RF of these cells. Local disinhibition has previously been shown to allow for the functional linking of motor cortical points, a mechanism that may be involved in the recruitment of movement related muscle synergies. The present results suggest that this may be also accompanied by expansion of the receptive fields. Such a receptive field expansion may be of functional value since motor cortical output neurons would receive sensory input integrated over a larger area of the limb. The role of local inhibitory control of sensory inputs to motor cortex neurons may thus be different than that in sensory cortex where it is thought to restrict receptive field size.
Literatur
Zurück zum Zitat Alloway KD, Rosenthal P, Burton H (1989) Quantitative measurements of receptive field changes during antagonism of GABAergic transmission in primary somatosensory cortex of cats. Exp Brain Res 78:514–532PubMed Alloway KD, Rosenthal P, Burton H (1989) Quantitative measurements of receptive field changes during antagonism of GABAergic transmission in primary somatosensory cortex of cats. Exp Brain Res 78:514–532PubMed
Zurück zum Zitat Amassian VE (1979) The use of contact placing in analytical and synthetic studies of the higher sensory motor control system. In: Asanuma H, Wilson VJ (eds) Integration in the nervous system. Igaku-Shoin, New York, pp 279–304 Amassian VE (1979) The use of contact placing in analytical and synthetic studies of the higher sensory motor control system. In: Asanuma H, Wilson VJ (eds) Integration in the nervous system. Igaku-Shoin, New York, pp 279–304
Zurück zum Zitat Armstrong DM, Drew T (1984) Topographical localization in the motor cortex of the cat for somatic afferent responses and evoked movements. J Physiol 350:33–54PubMed Armstrong DM, Drew T (1984) Topographical localization in the motor cortex of the cat for somatic afferent responses and evoked movements. J Physiol 350:33–54PubMed
Zurück zum Zitat Armstrong-James M, Millar J (1979) Carbon fiber microelectrodes. J. Neurosci Methods 1:279–287PubMed Armstrong-James M, Millar J (1979) Carbon fiber microelectrodes. J. Neurosci Methods 1:279–287PubMed
Zurück zum Zitat Asanuma H, Stoney SD, Abzug C (1968) Relationship between afferent input and motor outflow in cat motor sensory cortex. J Neurophysiol 31:670–681PubMed Asanuma H, Stoney SD, Abzug C (1968) Relationship between afferent input and motor outflow in cat motor sensory cortex. J Neurophysiol 31:670–681PubMed
Zurück zum Zitat Asanuma H, Larsen K, Yumiya H (1980) Peripheral input pathways to the monkey motor cortex. Exp Brain Res 38:349–355PubMed Asanuma H, Larsen K, Yumiya H (1980) Peripheral input pathways to the monkey motor cortex. Exp Brain Res 38:349–355PubMed
Zurück zum Zitat Capaday C, Richardson MP, Rothwell JC, Brooks DJ (2000) Long-term changes of GABAergic function in the sensorimotor cortex of amputees. A combined magnetic stimulation and 11C-flumazenil PET study [in process citation]. Exp Brain Res 133:552–556PubMed Capaday C, Richardson MP, Rothwell JC, Brooks DJ (2000) Long-term changes of GABAergic function in the sensorimotor cortex of amputees. A combined magnetic stimulation and 11C-flumazenil PET study [in process citation]. Exp Brain Res 133:552–556PubMed
Zurück zum Zitat Chapman CE, Bushnell MC (1987) Sensory perception during movement in man. Exp Brain Res 68:516–524PubMed Chapman CE, Bushnell MC (1987) Sensory perception during movement in man. Exp Brain Res 68:516–524PubMed
Zurück zum Zitat Chapman CE, Jiang W, Lamarre Y (1988) Modulation of lemniscal input during conditioned arm movements in the monkey. Exp Brain Res 72:316–334PubMed Chapman CE, Jiang W, Lamarre Y (1988) Modulation of lemniscal input during conditioned arm movements in the monkey. Exp Brain Res 72:316–334PubMed
Zurück zum Zitat Chowdhury SA, Rasmusson DD (2002) Comparison of receptive field expansion produced by GABAB and GABAA receptor antagonists in raccoon primary somatosensory cortex. Exp Brain Res 144:114–121PubMed Chowdhury SA, Rasmusson DD (2002) Comparison of receptive field expansion produced by GABAB and GABAA receptor antagonists in raccoon primary somatosensory cortex. Exp Brain Res 144:114–121PubMed
Zurück zum Zitat Feine JS, Chapman CE, Lund JP, Duncan GH, Bushnell MC (1990) The perception of painful and nonpainful stimuli during voluntary motor activity in man. Somatosens Mot Res 7:113–124PubMed Feine JS, Chapman CE, Lund JP, Duncan GH, Bushnell MC (1990) The perception of painful and nonpainful stimuli during voluntary motor activity in man. Somatosens Mot Res 7:113–124PubMed
Zurück zum Zitat Ghez C, Pisa M (1972) Inhibition of afferent transmission in cuneate nucleus during voluntary movement in the cat. Brain Res 40:145–155CrossRefPubMed Ghez C, Pisa M (1972) Inhibition of afferent transmission in cuneate nucleus during voluntary movement in the cat. Brain Res 40:145–155CrossRefPubMed
Zurück zum Zitat Hassler R, Muhs-Clement K (1964) Architektonischer Aufbau des sensomotorishen und parietalen Cortex der Katze. J Hirnforschung 6:377–420 Hassler R, Muhs-Clement K (1964) Architektonischer Aufbau des sensomotorishen und parietalen Cortex der Katze. J Hirnforschung 6:377–420
Zurück zum Zitat Hicks TP, Dykes RW (1983) Receptive field size for certain neurons in primary somatosensory cortex is determined by GABA-mediated intracortical inhibition. Brain Res 274:160–164PubMed Hicks TP, Dykes RW (1983) Receptive field size for certain neurons in primary somatosensory cortex is determined by GABA-mediated intracortical inhibition. Brain Res 274:160–164PubMed
Zurück zum Zitat Jones EG (1993) GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex 3:361–372PubMed Jones EG (1993) GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex 3:361–372PubMed
Zurück zum Zitat Knott GW, Quairiaux C, Genoud C, Welker E (2002) Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34:265–273PubMed Knott GW, Quairiaux C, Genoud C, Welker E (2002) Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34:265–273PubMed
Zurück zum Zitat Lamarre Y, Spidalieri G, Chapman CE (1985) Activity of areas 4 and 7 neurons during movements triggered by visual, auditory, and somesthetic stimuli in the monkey: movement-related versus stimulus-related responses. Exp Brain Res 10:196–210 Lamarre Y, Spidalieri G, Chapman CE (1985) Activity of areas 4 and 7 neurons during movements triggered by visual, auditory, and somesthetic stimuli in the monkey: movement-related versus stimulus-related responses. Exp Brain Res 10:196–210
Zurück zum Zitat Land PW, de Blas AL, Reddy N (1995) Immunocytochemical localization of GABAA receptors in rat somatosensory cortex and effects of tactile deprivation. Somatosens Mot Res 12:127–141PubMed Land PW, de Blas AL, Reddy N (1995) Immunocytochemical localization of GABAA receptors in rat somatosensory cortex and effects of tactile deprivation. Somatosens Mot Res 12:127–141PubMed
Zurück zum Zitat Schneider C, Devanne H, Lavoie BA, Capaday C (2002) Neural mechanisms involved in the functional linking of motor cortical points. Exp Brain Res 146:86–94CrossRefPubMed Schneider C, Devanne H, Lavoie BA, Capaday C (2002) Neural mechanisms involved in the functional linking of motor cortical points. Exp Brain Res 146:86–94CrossRefPubMed
Zurück zum Zitat Siucinska E, Kossut M, Stewart MG (1999) GABA immunoreactivity in mouse barrel field after aversive and appetitive classical conditioning training involving facial vibrissae. Brain Res 843:62–70CrossRefPubMed Siucinska E, Kossut M, Stewart MG (1999) GABA immunoreactivity in mouse barrel field after aversive and appetitive classical conditioning training involving facial vibrissae. Brain Res 843:62–70CrossRefPubMed
Zurück zum Zitat Skangiel-Kramska J, Glazewski S, Jablonska B, Siucinska B, Kossut M (1994) Reduction of GABAA receptor binding of [3H]muscimol in the barrel field of mice after peripheral denervation: transient and long-lasting effects. Exp Brain Res 100:39–46PubMed Skangiel-Kramska J, Glazewski S, Jablonska B, Siucinska B, Kossut M (1994) Reduction of GABAA receptor binding of [3H]muscimol in the barrel field of mice after peripheral denervation: transient and long-lasting effects. Exp Brain Res 100:39–46PubMed
Zurück zum Zitat Tremere L, Hicks TP, Rasmusson DD (2001) Expansion of receptive fields in raccoon somatosensory cortex in vivo by GABAA receptor antagonism: implications for cortical reorganization. Exp Brain Res 135:447–455. DOI 410.1007/s002210000612CrossRef Tremere L, Hicks TP, Rasmusson DD (2001) Expansion of receptive fields in raccoon somatosensory cortex in vivo by GABAA receptor antagonism: implications for cortical reorganization. Exp Brain Res 135:447–455. DOI 410.1007/s002210000612CrossRef
Zurück zum Zitat Warren R, Tremblay N, Dykes RW (1989) Quantitative study of glutamic acid decarboxylase-immunoreactive neurons and cytochrome oxidase activity in normal and partially deafferented rat hindlimb somatosensory cortex. J Comp Neurol 288:583–592PubMed Warren R, Tremblay N, Dykes RW (1989) Quantitative study of glutamic acid decarboxylase-immunoreactive neurons and cytochrome oxidase activity in normal and partially deafferented rat hindlimb somatosensory cortex. J Comp Neurol 288:583–592PubMed
Zurück zum Zitat Welker E, Soriano E, Dorfl J, van der Loos H (1989) Plasticity in the barrel cortex of the adult mouse: transient increase of GAD-immunoreactivity following sensory stimulation. Exp Brain Res 78:659–664PubMed Welker E, Soriano E, Dorfl J, van der Loos H (1989) Plasticity in the barrel cortex of the adult mouse: transient increase of GAD-immunoreactivity following sensory stimulation. Exp Brain Res 78:659–664PubMed
Zurück zum Zitat Welt C, Aschoff JC, Kameda K, Brooks VB (1967) Intracortical organization of cat's motorsensory neurons. In: Purpura DP (ed) Neurophysiological basis of normal and abnormal motor activities. Raven Press, Hewlett, NY, pp 255–293 Welt C, Aschoff JC, Kameda K, Brooks VB (1967) Intracortical organization of cat's motorsensory neurons. In: Purpura DP (ed) Neurophysiological basis of normal and abnormal motor activities. Raven Press, Hewlett, NY, pp 255–293
Zurück zum Zitat Zarzecki P, Shinoda Y, Asanuma H (1978) Projection from area 3a to the motor cortex by neurons activated from group I muscle afferents. Exp Brain Res 33:269–282PubMed Zarzecki P, Shinoda Y, Asanuma H (1978) Projection from area 3a to the motor cortex by neurons activated from group I muscle afferents. Exp Brain Res 33:269–282PubMed
Metadaten
Titel
Expansion of receptive fields in motor cortex by local blockade of GABAA receptors
verfasst von
Charles Capaday
Douglas D. Rasmusson
Publikationsdatum
01.11.2003
Erschienen in
Experimental Brain Research / Ausgabe 1/2003
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-003-1634-y

Weitere Artikel der Ausgabe 1/2003

Experimental Brain Research 1/2003 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Demenzkranke durch Antipsychotika vielfach gefährdet

Demenz Nachrichten

Der Einsatz von Antipsychotika gegen psychische und Verhaltenssymptome in Zusammenhang mit Demenzerkrankungen erfordert eine sorgfältige Nutzen-Risiken-Abwägung. Neuen Erkenntnissen zufolge sind auf der Risikoseite weitere schwerwiegende Ereignisse zu berücksichtigen.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.