Skip to main content
Erschienen in: Lasers in Medical Science 5/2022

23.01.2022 | Original Article

Fe3O4@Au core–shell hybrid nanocomposite for MRI-guided magnetic targeted photo-chemotherapy

verfasst von: Tahereh Khani, Zahra Alamzadeh, Abolfazl Sarikhani, Mahdie Mousavi, Mehri Mirrahimi, Mousa Tabei, Rasoul Irajirad, Ziaeddin Abed, Jaber Beik

Erschienen in: Lasers in Medical Science | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten

Abstract

The combination of multiple therapeutic and diagnostic functions is fast becoming a key feature in the area of clinical oncology. The advent of nanotechnology promises multifunctional nanoplatforms with the potential to deliver multiple therapeutics while providing diagnostic information simultaneously. In this study, novel iron oxide-gold core–shell hybrid nanocomposites (Fe3O4@Au HNCs) coated with alginate hydrogel carrying doxorubicin (DOX) were constructed for targeted photo-chemotherapy and magnetic resonance imaging (MRI). The magnetic core enables the HNCs to be detected through MRI and targeted towards the tumor using an external magnetic field, a method known as magnetic drug targeting (MDT). The Au shell could respond to light in the near-infrared (NIR) region, generating a localized heating for photothermal therapy (PTT) of the tumor. The cytotoxicity assay showed that the treatment of CT26 colon cancer cells with the DOX-loaded HNCs followed by laser irradiation induced a significantly higher cell death as opposed to PTT and chemotherapy alone. The in vivo MRI study proved MDT to be an effective strategy for targeting the HNCs to the tumor, thereby enhancing their intratumoral concentration. The antitumor study revealed that the HNCs can successfully combine chemotherapy and PTT, resulting in superior therapeutic outcome. Moreover, the use of MDT following the injection of HNCs caused a more extensive tumor shrinkage as compared to non-targeted group. Therefore, the as-prepared HNCs could be a promising nanoplatform for image-guided targeted combination therapy of cancer.
Literatur
1.
Zurück zum Zitat Beik J, Khateri M, Khosravi Z, Kamrava SK, Kooranifar S, Ghaznavi H, Shakeri-Zadeh A (2019) Gold nanoparticles in combinatorial cancer therapy strategies. Coord Chem Rev 387:299–324CrossRef Beik J, Khateri M, Khosravi Z, Kamrava SK, Kooranifar S, Ghaznavi H, Shakeri-Zadeh A (2019) Gold nanoparticles in combinatorial cancer therapy strategies. Coord Chem Rev 387:299–324CrossRef
2.
Zurück zum Zitat Mirrahimi M, Beik J, Mirrahimi M, Alamzadeh Z, Teymouri S, Mahabadi VP, Eslahi N, Tazehmahalleh FE, Ghaznavi H, Shakeri-Zadeh A (2020) Triple combination of heat, drug and radiation using alginate hydrogel co-loaded with gold nanoparticles and cisplatin for locally synergistic cancer therapy. Int J Biol Macromol 158:617–626CrossRef Mirrahimi M, Beik J, Mirrahimi M, Alamzadeh Z, Teymouri S, Mahabadi VP, Eslahi N, Tazehmahalleh FE, Ghaznavi H, Shakeri-Zadeh A (2020) Triple combination of heat, drug and radiation using alginate hydrogel co-loaded with gold nanoparticles and cisplatin for locally synergistic cancer therapy. Int J Biol Macromol 158:617–626CrossRef
3.
Zurück zum Zitat Tian G, Zhang X, Gu Z, Zhao Y (2015) Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy. Adv Mater 27:7692–7712CrossRef Tian G, Zhang X, Gu Z, Zhao Y (2015) Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy. Adv Mater 27:7692–7712CrossRef
4.
Zurück zum Zitat He C, Lu J, Lin W (2015) Hybrid nanoparticles for combination therapy of cancer. J Control Release 219:224–236CrossRef He C, Lu J, Lin W (2015) Hybrid nanoparticles for combination therapy of cancer. J Control Release 219:224–236CrossRef
5.
Zurück zum Zitat Beik J, Shiran MB, Abed Z, Shiri I, Ghadimi-Daresajini A, Farkhondeh F, Ghaznavi H, Shakeri-Zadeh A (2018) Gold nanoparticle-induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor-bearing mice. Med Phys 45:4306–4314CrossRef Beik J, Shiran MB, Abed Z, Shiri I, Ghadimi-Daresajini A, Farkhondeh F, Ghaznavi H, Shakeri-Zadeh A (2018) Gold nanoparticle-induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor-bearing mice. Med Phys 45:4306–4314CrossRef
6.
Zurück zum Zitat Beik J, Alamzadeh Z, Mirrahimi M, Sarikhani A, Ardakani TS, Asadi M, Irajirad R, Mirrahimi M, Mahabadi VP, Eslahi N (2021) Multifunctional theranostic graphene oxide nanoflakes as MR imaging agents with enhanced photothermal and radiosensitizing properties. ACS Appl Bio Mater 4:4280–4291CrossRef Beik J, Alamzadeh Z, Mirrahimi M, Sarikhani A, Ardakani TS, Asadi M, Irajirad R, Mirrahimi M, Mahabadi VP, Eslahi N (2021) Multifunctional theranostic graphene oxide nanoflakes as MR imaging agents with enhanced photothermal and radiosensitizing properties. ACS Appl Bio Mater 4:4280–4291CrossRef
7.
Zurück zum Zitat Asadi M, Beik J, Hashemian R, Laurent S, Farashahi A, Mobini M, Ghaznavi H, Shakeri-Zadeh A (2019) MRI-based numerical modeling strategy for simulation and treatment planning of nanoparticle-assisted photothermal therapy. Physica Med 66:124–132CrossRef Asadi M, Beik J, Hashemian R, Laurent S, Farashahi A, Mobini M, Ghaznavi H, Shakeri-Zadeh A (2019) MRI-based numerical modeling strategy for simulation and treatment planning of nanoparticle-assisted photothermal therapy. Physica Med 66:124–132CrossRef
8.
Zurück zum Zitat Khademi S, Sarkar S, Kharrazi S, Amini SM, Shakeri-Zadeh A, Ay MR, Ghadiri H (2018) Evaluation of size, morphology, concentration, and surface effect of gold nanoparticles on X-ray attenuation in computed tomography. Physica Med 45:127–133CrossRef Khademi S, Sarkar S, Kharrazi S, Amini SM, Shakeri-Zadeh A, Ay MR, Ghadiri H (2018) Evaluation of size, morphology, concentration, and surface effect of gold nanoparticles on X-ray attenuation in computed tomography. Physica Med 45:127–133CrossRef
9.
Zurück zum Zitat Keshavarz M, Moloudi K, Paydar R, Abed Z, Beik J, Ghaznavi H, Shakeri-Zadeh A (2018) Alginate hydrogel co-loaded with cisplatin and gold nanoparticles for computed tomography image-guided chemotherapy. J Biomater Appl 33:161–169CrossRef Keshavarz M, Moloudi K, Paydar R, Abed Z, Beik J, Ghaznavi H, Shakeri-Zadeh A (2018) Alginate hydrogel co-loaded with cisplatin and gold nanoparticles for computed tomography image-guided chemotherapy. J Biomater Appl 33:161–169CrossRef
10.
Zurück zum Zitat Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamrava SK (2016) Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. J Control Release 235:205–221CrossRef Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamrava SK (2016) Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. J Control Release 235:205–221CrossRef
11.
Zurück zum Zitat Beik J, Asadi M, Mirrahimi M, Abed Z, Farashahi A, Hashemian R, Ghaznavi H, Shakeri-Zadeh A (2019) An image-based computational modeling approach for prediction of temperature distribution during photothermal therapy. Appl Phys B 125:1–13CrossRef Beik J, Asadi M, Mirrahimi M, Abed Z, Farashahi A, Hashemian R, Ghaznavi H, Shakeri-Zadeh A (2019) An image-based computational modeling approach for prediction of temperature distribution during photothermal therapy. Appl Phys B 125:1–13CrossRef
12.
Zurück zum Zitat Beik J, Khademi S, Attaran N, Sarkar S, Shakeri-Zadeh A, Ghaznavi H, Ghadiri H (2017) A nanotechnology-based strategy to increase the efficiency of cancer diagnosis and therapy: folate-conjugated gold nanoparticles. Curr Med Chem 24:4399–4416CrossRef Beik J, Khademi S, Attaran N, Sarkar S, Shakeri-Zadeh A, Ghaznavi H, Ghadiri H (2017) A nanotechnology-based strategy to increase the efficiency of cancer diagnosis and therapy: folate-conjugated gold nanoparticles. Curr Med Chem 24:4399–4416CrossRef
13.
Zurück zum Zitat Hashemian AR, Eshghi H, Mansoori GA, Shakeri-Zadeh A, Mehdizadeh AR (2009) Folate-conjugated gold nanoparticles (synthesis, characterization and design for cancer cells nanotechnology-based targeting). Int J Nanosci Nanotechnol 5(1):25–34 Hashemian AR, Eshghi H, Mansoori GA, Shakeri-Zadeh A, Mehdizadeh AR (2009) Folate-conjugated gold nanoparticles (synthesis, characterization and design for cancer cells nanotechnology-based targeting). Int J Nanosci Nanotechnol 5(1):25–34
14.
Zurück zum Zitat Shakeri-Zadeh A, Eshghi H, Mansoori GA, Hashemian AR (2009) Gold nanoparticles conjugated with folic acid using mercaptohexanol as the linker. Journal Nanotechnology Progress International 1 Shakeri-Zadeh A, Eshghi H, Mansoori GA, Hashemian AR (2009) Gold nanoparticles conjugated with folic acid using mercaptohexanol as the linker. Journal Nanotechnology Progress International 1
15.
Zurück zum Zitat Movahedi MM, Mehdizadeh A, Koosha F, Eslahi N, Mahabadi VP, Ghaznavi H, Shakeri-Zadeh A (2018) Investigating the photo-thermo-radiosensitization effects of folate-conjugated gold nanorods on KB nasopharyngeal carcinoma cells. Photodiagnosis Photodyn Ther 24:324–331 Movahedi MM, Mehdizadeh A, Koosha F, Eslahi N, Mahabadi VP, Ghaznavi H, Shakeri-Zadeh A (2018) Investigating the photo-thermo-radiosensitization effects of folate-conjugated gold nanorods on KB nasopharyngeal carcinoma cells. Photodiagnosis Photodyn Ther 24:324–331
16.
Zurück zum Zitat Alamzadeh Z, Beik J, Mirrahimi M, Shakeri-Zadeh A, Ebrahimi F, Komeili A, Ghalandari B, Ghaznavi H, Kamrava SK, Moustakis C (2020) Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. European Journal of Pharmaceutical Sciences 145:105235CrossRef Alamzadeh Z, Beik J, Mirrahimi M, Shakeri-Zadeh A, Ebrahimi F, Komeili A, Ghalandari B, Ghaznavi H, Kamrava SK, Moustakis C (2020) Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. European Journal of Pharmaceutical Sciences 145:105235CrossRef
17.
Zurück zum Zitat Mirrahimi M, Abed Z, Beik J, Shiri I, Dezfuli AS, Mahabadi VP, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A (2019) A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacol Res 143:178–185CrossRef Mirrahimi M, Abed Z, Beik J, Shiri I, Dezfuli AS, Mahabadi VP, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A (2019) A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacol Res 143:178–185CrossRef
18.
Zurück zum Zitat Liu J, Detrembleur C, De Pauw-Gillet MC, Mornet S, Jérôme C, Duguet E (2015) Gold nanorods coated with mesoporous silica shell as drug delivery system for remote near infrared light-activated release and potential phototherapy. Small 11:2323–2332CrossRef Liu J, Detrembleur C, De Pauw-Gillet MC, Mornet S, Jérôme C, Duguet E (2015) Gold nanorods coated with mesoporous silica shell as drug delivery system for remote near infrared light-activated release and potential phototherapy. Small 11:2323–2332CrossRef
19.
Zurück zum Zitat Li L, Jiang W, Luo K, Song H, Lan F, Wu Y, Gu Z (2013) Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3:595CrossRef Li L, Jiang W, Luo K, Song H, Lan F, Wu Y, Gu Z (2013) Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3:595CrossRef
20.
Zurück zum Zitat Gao Z, Ma T, Zhao E, Docter D, Yang W, Stauber RH, Gao M (2016) Small is smarter: nano MRI contrast agents–advantages and recent achievements. Small 12:556–576CrossRef Gao Z, Ma T, Zhao E, Docter D, Yang W, Stauber RH, Gao M (2016) Small is smarter: nano MRI contrast agents–advantages and recent achievements. Small 12:556–576CrossRef
21.
Zurück zum Zitat Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM (2018) Magnetic drug delivery: where the field is going. Front Chem 6:619CrossRef Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM (2018) Magnetic drug delivery: where the field is going. Front Chem 6:619CrossRef
22.
Zurück zum Zitat Liu Y-L, Chen D, Shang P, Yin D-C (2019) A review of magnet systems for targeted drug delivery. J Control Release 302:90–104CrossRef Liu Y-L, Chen D, Shang P, Yin D-C (2019) A review of magnet systems for targeted drug delivery. J Control Release 302:90–104CrossRef
23.
Zurück zum Zitat Safari A, Sarikhani A, Shahbazi-Gahrouei D, Alamzadeh Z, Beik J, Dezfuli AS, Mahabadi VP, Tohfeh M, Shakeri-Zadeh A (2020) Optimal scheduling of the nanoparticle-mediated cancer photo-thermo-radiotherapy. Photodiagnosis and Photodynamic Therapy 32:102061CrossRef Safari A, Sarikhani A, Shahbazi-Gahrouei D, Alamzadeh Z, Beik J, Dezfuli AS, Mahabadi VP, Tohfeh M, Shakeri-Zadeh A (2020) Optimal scheduling of the nanoparticle-mediated cancer photo-thermo-radiotherapy. Photodiagnosis and Photodynamic Therapy 32:102061CrossRef
24.
Zurück zum Zitat Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17:6782–6786CrossRef Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17:6782–6786CrossRef
25.
Zurück zum Zitat van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13:1173–1184CrossRef van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13:1173–1184CrossRef
26.
Zurück zum Zitat Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56CrossRef Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56CrossRef
27.
Zurück zum Zitat Huilgol N (2019) Hyperthermic oncology from bench to bedside. Journal of Radiation and Cancer Research 10:186–186CrossRef Huilgol N (2019) Hyperthermic oncology from bench to bedside. Journal of Radiation and Cancer Research 10:186–186CrossRef
28.
Zurück zum Zitat Hettinga JVE, Konings AWT, Kampinga HH (1997) Reduction of cellular cisplatin resistance by hyperthermia—a review. Int J Hyperth 13:439–457CrossRef Hettinga JVE, Konings AWT, Kampinga HH (1997) Reduction of cellular cisplatin resistance by hyperthermia—a review. Int J Hyperth 13:439–457CrossRef
29.
Zurück zum Zitat Wang L, Lin X, Wang J, Hu Z, Ji Y, Hou S, Zhao Y, Wu X, Chen C (2014) Novel Insights into combating cancer chemotherapy resistance using a plasmonic nanocarrier: enhancing drug sensitiveness and accumulation simultaneously with localized mild photothermal stimulus of femtosecond pulsed laser. Adv Func Mater 24:4229–4239CrossRef Wang L, Lin X, Wang J, Hu Z, Ji Y, Hou S, Zhao Y, Wu X, Chen C (2014) Novel Insights into combating cancer chemotherapy resistance using a plasmonic nanocarrier: enhancing drug sensitiveness and accumulation simultaneously with localized mild photothermal stimulus of femtosecond pulsed laser. Adv Func Mater 24:4229–4239CrossRef
30.
Zurück zum Zitat Beik J, Asadi M, Khoei S, Laurent S, Abed Z, Mirrahimi M, Farashahi A, Hashemian R, Ghaznavi H, Shakeri-Zadeh A (2019) Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. Journal of Photochemistry and Photobiology B: Biology 199:111599CrossRef Beik J, Asadi M, Khoei S, Laurent S, Abed Z, Mirrahimi M, Farashahi A, Hashemian R, Ghaznavi H, Shakeri-Zadeh A (2019) Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. Journal of Photochemistry and Photobiology B: Biology 199:111599CrossRef
31.
Zurück zum Zitat Almalik A, Alradwan I, Kalam MA, Alshamsan A (2017) Effect of cryoprotection on particle size stability and preservation of chitosan nanoparticles with and without hyaluronate or alginate coating. Saudi pharmaceutical journal 25:861–867CrossRef Almalik A, Alradwan I, Kalam MA, Alshamsan A (2017) Effect of cryoprotection on particle size stability and preservation of chitosan nanoparticles with and without hyaluronate or alginate coating. Saudi pharmaceutical journal 25:861–867CrossRef
32.
Zurück zum Zitat Feng W, Nie W, He C, Zhou X, Chen L, Qiu K, Wang W, Yin Z (2014) Effect of pH-Responsive alginate/chitosan multilayers coating on delivery efficiency, cellular uptake and biodistribution of mesoporous silica nanoparticles based nanocarriers. ACS Appl Mater Interfaces 6:8447–8460CrossRef Feng W, Nie W, He C, Zhou X, Chen L, Qiu K, Wang W, Yin Z (2014) Effect of pH-Responsive alginate/chitosan multilayers coating on delivery efficiency, cellular uptake and biodistribution of mesoporous silica nanoparticles based nanocarriers. ACS Appl Mater Interfaces 6:8447–8460CrossRef
33.
Zurück zum Zitat Mirrahimi M, Khateri M, Beik J, Ghoreishi FS, Dezfuli AS, Ghaznavi H, Shakeri-Zadeh A (2019) Enhancement of chemoradiation by co-incorporation of gold nanoparticles and cisplatin into alginate hydrogel, Journal of Biomedical Materials Research Part B: Applied. Biomaterials 107:2658–2663 Mirrahimi M, Khateri M, Beik J, Ghoreishi FS, Dezfuli AS, Ghaznavi H, Shakeri-Zadeh A (2019) Enhancement of chemoradiation by co-incorporation of gold nanoparticles and cisplatin into alginate hydrogel, Journal of Biomedical Materials Research Part B: Applied. Biomaterials 107:2658–2663
Metadaten
Titel
Fe3O4@Au core–shell hybrid nanocomposite for MRI-guided magnetic targeted photo-chemotherapy
verfasst von
Tahereh Khani
Zahra Alamzadeh
Abolfazl Sarikhani
Mahdie Mousavi
Mehri Mirrahimi
Mousa Tabei
Rasoul Irajirad
Ziaeddin Abed
Jaber Beik
Publikationsdatum
23.01.2022
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 5/2022
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-021-03486-9

Weitere Artikel der Ausgabe 5/2022

Lasers in Medical Science 5/2022 Zur Ausgabe