Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 1/2018

10.07.2017 | Original Article

Finger-attachment device for the feedback of gripping and pulling force in a manipulating system for brain tumor resection

verfasst von: Hiroyuki Chinbe, Takeshi Yoneyama, Tetsuyou Watanabe, Katsuyoshi Miyashita, Mitsutoshi Nakada

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Development and evaluation of an effective attachment device for a bilateral brain tumor resection robotic surgery system based on the sensory performance of the human index finger in order to precisely detect gripping- and pulling-force feedback.

Methods

First, a basic test was conducted to investigate the performance of the human index finger in the gripping- and pulling-force feedback system. Based on the test result, a new finger-attachment device was designed and constructed. Then, discrimination tests were conducted to assess the pulling force and the feedback on the hardness of the gripped material.

Results

The results of the basic test show the application of pulling force on the side surface of the finger has an advantage to distinguish the pulling force when the gripping force is applied on the finger-touching surface. Based on this result, a finger-attachment device that applies a gripping force on the finger surface and pulling force on the side surface of the finger was developed. By conducting a discrimination test to assess the hardness of the gripped material, an operator can distinguish whether the gripped material is harder or softer than a normal brain tissue. This will help in confirming whether the gripped material is a tumor. By conducting a discrimination test to assess the pulling force, an operator can distinguish the pulling-force resistance when attempting to pull off the soft material. Pulling-force feedback may help avoid the breaking of blood pipes when they are trapped in the gripper or attached to the gripped tissue.

Conclusion

The finger-attachment device that was developed for detecting gripping- and pulling-force feedback may play an important role in the development of future neurosurgery robotic systems for precise and safe resection of brain tumors.
Literatur
2.
Zurück zum Zitat Moreno-Egea A, Torralba JA, Morales G, Fernandez T, Guzman P, Hita G, Girela E, Corral M, Campillo A, Aguayo JL (2005) Laparoscopic repair of secondary lumbar hernias: open vs. laparoscopic surgery. A prospective, nonrandomized study. Cir Esp 77:159–162. doi:10.1016/S0009-739X(05)70828-9 CrossRefPubMed Moreno-Egea A, Torralba JA, Morales G, Fernandez T, Guzman P, Hita G, Girela E, Corral M, Campillo A, Aguayo JL (2005) Laparoscopic repair of secondary lumbar hernias: open vs. laparoscopic surgery. A prospective, nonrandomized study. Cir Esp 77:159–162. doi:10.​1016/​S0009-739X(05)70828-9 CrossRefPubMed
5.
Zurück zum Zitat Bodner J, Augustin F, Wykypiel H, Fish J, Muehlmann G, Wetscher G, Schmid T (2005) The da Vinci robotic system for general surgical applications: a critical interim appraisal. Swiss Med Wkly 135:674–678. doi: 10.4414/smw.2005.11022 Bodner J, Augustin F, Wykypiel H, Fish J, Muehlmann G, Wetscher G, Schmid T (2005) The da Vinci robotic system for general surgical applications: a critical interim appraisal. Swiss Med Wkly 135:674–678. doi: 10.​4414/​smw.​2005.​11022
8.
Zurück zum Zitat Doulgeris JJ, Gonzalez-Blohm SA, Filis AK, Shea TM, Aghayev K, Vrionis FD (2015) Robotics in neurosurgery: evolution, current challenges, and compromises. Cancer Control 22:352–359CrossRefPubMed Doulgeris JJ, Gonzalez-Blohm SA, Filis AK, Shea TM, Aghayev K, Vrionis FD (2015) Robotics in neurosurgery: evolution, current challenges, and compromises. Cancer Control 22:352–359CrossRefPubMed
11.
Zurück zum Zitat Goto T, Miyahara T, Toyoda K, Okamoto J, Kakizawa Y, Koyama J, Fujiie MG, Hongo K (2009) Telesurgery of microscopic micromanipulator system NeuRobot in neurosurgery: interhospital preliminary study. J Brain Dis 1:45–53PubMedPubMedCentral Goto T, Miyahara T, Toyoda K, Okamoto J, Kakizawa Y, Koyama J, Fujiie MG, Hongo K (2009) Telesurgery of microscopic micromanipulator system NeuRobot in neurosurgery: interhospital preliminary study. J Brain Dis 1:45–53PubMedPubMedCentral
13.
Zurück zum Zitat Mitsuishi M, Morita A, Sugita N, Sora S, Mochizuki R, Tanimoto K, Baek YM, Takahashi H, Harada K (2013) Master-slave robotic platform and its feasibility study for micro-neurosurgery. Int J Med Robot Comput Assist Surg 9:180–189. doi:10.1002/rcs.1434 CrossRef Mitsuishi M, Morita A, Sugita N, Sora S, Mochizuki R, Tanimoto K, Baek YM, Takahashi H, Harada K (2013) Master-slave robotic platform and its feasibility study for micro-neurosurgery. Int J Med Robot Comput Assist Surg 9:180–189. doi:10.​1002/​rcs.​1434 CrossRef
14.
Zurück zum Zitat Arata J, Tada Y, Kozuka H, Wada T, Saito Y, Ikedo N, Hayashi Y, Fujii M, Kajita Y, Mizuno M, Wakabayashi T, Yoshida J, Fujimoto H (2011) Neurosurgical robotic system for brain tumor removal. Int J Comput Assist Radiol Surg 6:375–385. doi:10.1007/s11548-010-0514-8 CrossRefPubMed Arata J, Tada Y, Kozuka H, Wada T, Saito Y, Ikedo N, Hayashi Y, Fujii M, Kajita Y, Mizuno M, Wakabayashi T, Yoshida J, Fujimoto H (2011) Neurosurgical robotic system for brain tumor removal. Int J Comput Assist Radiol Surg 6:375–385. doi:10.​1007/​s11548-010-0514-8 CrossRefPubMed
15.
Zurück zum Zitat Morita A, Sora S, Mitsuishi M, Warisawa S, Suruman K, Asai D, Arata J, Baba S, Takahashi H, Mochizuki R, Kirino T (2005) Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models. J Neurosurg 103:320–327. doi:10.3171/jns.2005.103.2.0320 CrossRefPubMed Morita A, Sora S, Mitsuishi M, Warisawa S, Suruman K, Asai D, Arata J, Baba S, Takahashi H, Mochizuki R, Kirino T (2005) Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models. J Neurosurg 103:320–327. doi:10.​3171/​jns.​2005.​103.​2.​0320 CrossRefPubMed
20.
Zurück zum Zitat Wagner CR, Stylopoulos N, Howe RD (2002) The role of force feedback in surgery: analysis of blunt dissection. In: Proceedings of the 10th symposium haptic interfaces virtual environ teleoperator syst HAPTICS 2002, pp 68–74. doi:10.1109/HAPTIC.2002.998943 Wagner CR, Stylopoulos N, Howe RD (2002) The role of force feedback in surgery: analysis of blunt dissection. In: Proceedings of the 10th symposium haptic interfaces virtual environ teleoperator syst HAPTICS 2002, pp 68–74. doi:10.​1109/​HAPTIC.​2002.​998943
21.
Zurück zum Zitat MacFarlane M, Rosen J, Hannaford B, Pellegrini C, Sinanan M (1999) Force-feedback grasper helps restore sense of touch in minimally invasive surgery. J Gastrointest Surg 3:278–285CrossRefPubMed MacFarlane M, Rosen J, Hannaford B, Pellegrini C, Sinanan M (1999) Force-feedback grasper helps restore sense of touch in minimally invasive surgery. J Gastrointest Surg 3:278–285CrossRefPubMed
22.
Zurück zum Zitat Yoneyama T, Watanabe T, Kagawa H, Hamada J, Hayashi Y, Nakada M (2011) Force detecting gripper and flexible micro manipulator for neurosurgery. In: 2011 Annual international conference of the ieee engineering in medicine and biology society. IEEE, pp 6695–6699 Yoneyama T, Watanabe T, Kagawa H, Hamada J, Hayashi Y, Nakada M (2011) Force detecting gripper and flexible micro manipulator for neurosurgery. In: 2011 Annual international conference of the ieee engineering in medicine and biology society. IEEE, pp 6695–6699
23.
27.
Zurück zum Zitat Chinbe H, Yoneyama T, Watanabe T, Nakada M (2016) Haptic threshold for pulling force feedback on surgeon’s fingertip in medical robotic systems. In: IECON 2016-42nd annual conference of the IEEE industrial electronics society. IEEE, pp 767–772 Chinbe H, Yoneyama T, Watanabe T, Nakada M (2016) Haptic threshold for pulling force feedback on surgeon’s fingertip in medical robotic systems. In: IECON 2016-42nd annual conference of the IEEE industrial electronics society. IEEE, pp 767–772
28.
Zurück zum Zitat Soza G, Grosso R, Nimsky C, Hastreiter P, Fahlbusch R, Greiner G (2005) Determination of the elasticity parameters of brain tissue with combined simulation and registration. Int J Med Robot 1:87–95. doi:10.1002/rcs.32 CrossRefPubMed Soza G, Grosso R, Nimsky C, Hastreiter P, Fahlbusch R, Greiner G (2005) Determination of the elasticity parameters of brain tissue with combined simulation and registration. Int J Med Robot 1:87–95. doi:10.​1002/​rcs.​32 CrossRefPubMed
30.
Zurück zum Zitat Hatzfeld C, Werthschütxky R (2010) Vibrotactile force perception thresholds at the fingertip. In: Haptics: generating and perceiving tangible sensations, pp 99–104. doi:10.1007/978-3-642-14064-8_15 Hatzfeld C, Werthschütxky R (2010) Vibrotactile force perception thresholds at the fingertip. In: Haptics: generating and perceiving tangible sensations, pp 99–104. doi:10.​1007/​978-3-642-14064-8_​15
Metadaten
Titel
Finger-attachment device for the feedback of gripping and pulling force in a manipulating system for brain tumor resection
verfasst von
Hiroyuki Chinbe
Takeshi Yoneyama
Tetsuyou Watanabe
Katsuyoshi Miyashita
Mitsutoshi Nakada
Publikationsdatum
10.07.2017
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 1/2018
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-017-1640-3

Weitere Artikel der Ausgabe 1/2018

International Journal of Computer Assisted Radiology and Surgery 1/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.