Skip to main content
Erschienen in: Experimental Brain Research 1/2010

01.05.2010 | Research Article

Finger interaction in a three-dimensional pressing task

verfasst von: Shweta Kapur, Jason Friedman, Vladimir M. Zatsiorsky, Mark L. Latash

Erschienen in: Experimental Brain Research | Ausgabe 1/2010

Einloggen, um Zugang zu erhalten

Abstract

Accurate control of forces produced by the fingers is essential for performing object manipulation. This study examines the indices of finger interaction when accurate time profiles of force are produced in different directions, while using one of the fingers or all four fingers of the hand. We hypothesized that patterns of unintended force production among shear force components may involve features not observed in the earlier studies of vertical force production. In particular, we expected to see unintended forces generated by non-task fingers not in the direction of the instructed force but in the opposite direction as well as substantial force production in directions orthogonal to the instructed direction. We also tested a hypothesis that multi-finger synergies, quantified using the framework of the uncontrolled manifold hypothesis, will help reduce across-trials variance of both total force magnitude and direction. Young, healthy subjects were required to produce accurate ramps of force in five different directions by pressing on force sensors with the fingers of the right (dominant) hand. The index finger induced the smallest unintended forces in non-task fingers. The little finger showed the smallest unintended forces when it was a non-task finger. Task fingers showed substantial force production in directions orthogonal to the intended force direction. During four-finger tasks, individual force vectors typically pointed off the task direction, with these deviations nearly perfectly matched to produce a resultant force in the task direction. Multi-finger synergy indices reflected strong co-variation in the space of finger modes (commands to fingers) that reduced variability of the total force magnitude and direction across trials. The synergy indices increased in magnitude over the first 30% of the trial time and then stayed at a nearly constant level. The synergy index for stabilization of total force magnitude was higher for shear force components when compared to the downward pressing force component. The results suggest complex interactions between enslaving and synergic force adjustments, possibly reflecting the experience with everyday prehensile tasks. For the first time, the data document multi-finger synergies stabilizing both shear force magnitude and force vector direction. These synergies may play a major role in stabilizing the hand action during object manipulation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Danion F, Schöner G, Latash ML, Li S, Scholz JP, Zatsiorsky VM (2003) A force mode hypothesis for finger interaction during multi-finger force production tasks. Biol Cybern 88:91–98CrossRefPubMed Danion F, Schöner G, Latash ML, Li S, Scholz JP, Zatsiorsky VM (2003) A force mode hypothesis for finger interaction during multi-finger force production tasks. Biol Cybern 88:91–98CrossRefPubMed
Zurück zum Zitat de Freitas PB, Jaric S (2009) Force coordination in static manipulation tasks performed using standard and non-standard grasping techniques. Exp Brain Res 194:605–618CrossRefPubMed de Freitas PB, Jaric S (2009) Force coordination in static manipulation tasks performed using standard and non-standard grasping techniques. Exp Brain Res 194:605–618CrossRefPubMed
Zurück zum Zitat Flanagan JR, Wing AM (1993) Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res 95:131–143CrossRefPubMed Flanagan JR, Wing AM (1993) Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res 95:131–143CrossRefPubMed
Zurück zum Zitat Gao F, Latash ML, Zatsiorsky VM (2005) Control of finger force direction in the flexion–extension plane. Exp Brain Res 161:307–315CrossRefPubMed Gao F, Latash ML, Zatsiorsky VM (2005) Control of finger force direction in the flexion–extension plane. Exp Brain Res 161:307–315CrossRefPubMed
Zurück zum Zitat Gorniak SL, Duarte M, Latash ML (2008) Do synergies improve accuracy? A study of speed-accuracy trade-offs during finger force production. Mot Control 12:151–172 Gorniak SL, Duarte M, Latash ML (2008) Do synergies improve accuracy? A study of speed-accuracy trade-offs during finger force production. Mot Control 12:151–172
Zurück zum Zitat Gorniak SL, Zatsiorsky VM, Latash ML (2009) Hierarchical control of static prehension: II. Multi-digit synergies. Exp Brain Res 194:1–15CrossRefPubMed Gorniak SL, Zatsiorsky VM, Latash ML (2009) Hierarchical control of static prehension: II. Multi-digit synergies. Exp Brain Res 194:1–15CrossRefPubMed
Zurück zum Zitat Gysin P, Kaminski TR, Gordon AM (2003) Coordination of fingertip forces in object transport during locomotion. Exp Brain Res 149:371–379PubMed Gysin P, Kaminski TR, Gordon AM (2003) Coordination of fingertip forces in object transport during locomotion. Exp Brain Res 149:371–379PubMed
Zurück zum Zitat Ingram JN, Körding KP, Howard IS, Wolpert DM (2008) The statistics of natural hand movements. Exp Brain Res 188:223–236CrossRefPubMed Ingram JN, Körding KP, Howard IS, Wolpert DM (2008) The statistics of natural hand movements. Exp Brain Res 188:223–236CrossRefPubMed
Zurück zum Zitat Jaric S, Russell EM, Collins JJ, Marwaha R (2005) Coordination of hand grip and load forces in uni- and bidirectional static force production tasks. Neurosci Lett 381:51–56CrossRefPubMed Jaric S, Russell EM, Collins JJ, Marwaha R (2005) Coordination of hand grip and load forces in uni- and bidirectional static force production tasks. Neurosci Lett 381:51–56CrossRefPubMed
Zurück zum Zitat Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56:550–564CrossRefPubMed Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56:550–564CrossRefPubMed
Zurück zum Zitat Johnston JA, Winges SA, Santello M (2009) Neural control of hand muscles during prehension. Adv Exp Med Biol 629:577–596CrossRefPubMed Johnston JA, Winges SA, Santello M (2009) Neural control of hand muscles during prehension. Adv Exp Med Biol 629:577–596CrossRefPubMed
Zurück zum Zitat Kilbreath SL, Gandevia SC (1994) Limited independent flexion of the thumb and fingers in human subjects. J Physiol 479:487–497PubMed Kilbreath SL, Gandevia SC (1994) Limited independent flexion of the thumb and fingers in human subjects. J Physiol 479:487–497PubMed
Zurück zum Zitat Kim SW, Shim JK, Zatsiorsky VM, Latash ML (2008) Finger interdependence: linking the kinetic and kinematic variables. Hum Move Sci 27:408–422CrossRef Kim SW, Shim JK, Zatsiorsky VM, Latash ML (2008) Finger interdependence: linking the kinetic and kinematic variables. Hum Move Sci 27:408–422CrossRef
Zurück zum Zitat Latash ML, Zatsiorsky VM (2009) Multi-finger prehension: control of a redundant motor system. Adv Exp Med Biol 629:597–618CrossRefPubMed Latash ML, Zatsiorsky VM (2009) Multi-finger prehension: control of a redundant motor system. Adv Exp Med Biol 629:597–618CrossRefPubMed
Zurück zum Zitat Latash ML, Scholz JF, Danion F, Schöner G (2001) Structure of motor variability in marginally redundant multi-finger force production tasks. Exp Brain Res 141:153–165CrossRefPubMed Latash ML, Scholz JF, Danion F, Schöner G (2001) Structure of motor variability in marginally redundant multi-finger force production tasks. Exp Brain Res 141:153–165CrossRefPubMed
Zurück zum Zitat Latash ML, Scholz JF, Danion F, Schöner G (2002a) Finger coordination during discrete and oscillatory force production tasks. Exp Brain Res 146:412–432 Latash ML, Scholz JF, Danion F, Schöner G (2002a) Finger coordination during discrete and oscillatory force production tasks. Exp Brain Res 146:412–432
Zurück zum Zitat Latash ML, Li S, Danion F, Zatsiorsky VM (2002b) Central mechanisms of finger interaction during one- and two-hand force production at distal and proximal phalanges. Brain Res 924:198–208CrossRefPubMed Latash ML, Li S, Danion F, Zatsiorsky VM (2002b) Central mechanisms of finger interaction during one- and two-hand force production at distal and proximal phalanges. Brain Res 924:198–208CrossRefPubMed
Zurück zum Zitat Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Mot Control 11:275–307 Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Mot Control 11:275–307
Zurück zum Zitat Latash ML, Friedman J, Kim SW, Feldman AG, Zatsiorsky VM (2010) Prehension synergies and control with referent hand configurations. Exp Brain Res (in press) Latash ML, Friedman J, Kim SW, Feldman AG, Zatsiorsky VM (2010) Prehension synergies and control with referent hand configurations. Exp Brain Res (in press)
Zurück zum Zitat Leijnse JN, Snijders CJ, Bonte JE, Landsmeer JM, Kalker JJ, Van Der Meulen JC, Sonneveld GJ, Hovius SE (1993) The hand of the musician: the kinematics of the bidigital finger system with anatomical restrictions. J Biomech 10:1169–1179CrossRef Leijnse JN, Snijders CJ, Bonte JE, Landsmeer JM, Kalker JJ, Van Der Meulen JC, Sonneveld GJ, Hovius SE (1993) The hand of the musician: the kinematics of the bidigital finger system with anatomical restrictions. J Biomech 10:1169–1179CrossRef
Zurück zum Zitat Leijnse JN, Carter S, Gupta A, McCabe S (2008) Anatomic basis for individuated surface EMG and homogeneous electrostimulation with neuroprostheses of the extensor digitorum communis. J Neurophysiol 100:64–75CrossRefPubMed Leijnse JN, Carter S, Gupta A, McCabe S (2008) Anatomic basis for individuated surface EMG and homogeneous electrostimulation with neuroprostheses of the extensor digitorum communis. J Neurophysiol 100:64–75CrossRefPubMed
Zurück zum Zitat Li ZM, Latash ML, Newell KM, Zatsiorsky VM (1998a) Motor redundancy during maximal voluntary contraction in four-finger tasks. Exp Brain Res 122:71–78CrossRefPubMed Li ZM, Latash ML, Newell KM, Zatsiorsky VM (1998a) Motor redundancy during maximal voluntary contraction in four-finger tasks. Exp Brain Res 122:71–78CrossRefPubMed
Zurück zum Zitat Li ZM, Latash ML, Zatsiorsky VM (1998b) Force sharing among fingers as a model of the redundancy problem. Exp Brain Res 119:276–286CrossRefPubMed Li ZM, Latash ML, Zatsiorsky VM (1998b) Force sharing among fingers as a model of the redundancy problem. Exp Brain Res 119:276–286CrossRefPubMed
Zurück zum Zitat Li S, Danion F, Latash ML, Li Z-M, Zatsiorsky VM (2000) Characteristics of finger force production during one- and two-hand tasks. Hum Move Sci 19:897–924CrossRef Li S, Danion F, Latash ML, Li Z-M, Zatsiorsky VM (2000) Characteristics of finger force production during one- and two-hand tasks. Hum Move Sci 19:897–924CrossRef
Zurück zum Zitat Li ZM, Pfaeffle HJ, Sotereanos DG, Goitz RJ, Woo SL-Y (2003) Multi-directional strength and force envelope of the index finger. Clin Biomech 18:908–915CrossRef Li ZM, Pfaeffle HJ, Sotereanos DG, Goitz RJ, Woo SL-Y (2003) Multi-directional strength and force envelope of the index finger. Clin Biomech 18:908–915CrossRef
Zurück zum Zitat Li ZM, Dun S, Harkness DA, Brininger TL (2004) Motion enslaving among multiple fingers of the human hand. Mot Control 8:1–15 Li ZM, Dun S, Harkness DA, Brininger TL (2004) Motion enslaving among multiple fingers of the human hand. Mot Control 8:1–15
Zurück zum Zitat Li ZM, Kuxhaus L, Fisk JA, Christophel TH (2005) Coupling between wrist flexion–extension and radial-ulnar deviation. Clin Biomech 20:177–183CrossRef Li ZM, Kuxhaus L, Fisk JA, Christophel TH (2005) Coupling between wrist flexion–extension and radial-ulnar deviation. Clin Biomech 20:177–183CrossRef
Zurück zum Zitat Milner TE, Dhaliwal SS (2002) Activation of intrinsic and extrinsic finger muscles in relation to the fingertip force vector. Exp Brain Res 146:197–204CrossRefPubMed Milner TE, Dhaliwal SS (2002) Activation of intrinsic and extrinsic finger muscles in relation to the fingertip force vector. Exp Brain Res 146:197–204CrossRefPubMed
Zurück zum Zitat Ohtsuki T (1981) Inhibition of individual fingers during grip strength exertion. Ergonomics 24:21–36CrossRefPubMed Ohtsuki T (1981) Inhibition of individual fingers during grip strength exertion. Ergonomics 24:21–36CrossRefPubMed
Zurück zum Zitat Pataky TC, Latash ML, Zatsiorsky VM (2007) Finger interaction during maximal radial and ulnar deviation efforts: experimental data and linear neural network modeling. Exp Brain Res 179:301–312CrossRefPubMed Pataky TC, Latash ML, Zatsiorsky VM (2007) Finger interaction during maximal radial and ulnar deviation efforts: experimental data and linear neural network modeling. Exp Brain Res 179:301–312CrossRefPubMed
Zurück zum Zitat Poliakov AV, Schieber MH (1999) Limited functional grouping of neurons in the motor cortex hand area during individuated finger movements: a cluster analysis. J Neurophysiol 82:3488–3505PubMed Poliakov AV, Schieber MH (1999) Limited functional grouping of neurons in the motor cortex hand area during individuated finger movements: a cluster analysis. J Neurophysiol 82:3488–3505PubMed
Zurück zum Zitat Reilly KT, Hammond GR (2006) Intrinsic hand muscles and digit independence on the preferred and non-preferred hands of humans. Exp Brain Res 173:564–571CrossRefPubMed Reilly KT, Hammond GR (2006) Intrinsic hand muscles and digit independence on the preferred and non-preferred hands of humans. Exp Brain Res 173:564–571CrossRefPubMed
Zurück zum Zitat Rouiller EM (1996) Multiple hand representations in the motor cortical areas. In: Wing AM, Haggard P, Flanagan JR (eds) Hand and brain. The neurophysiology and psychology of hand movements. Academic Press, San Diego, pp 99–124 Rouiller EM (1996) Multiple hand representations in the motor cortical areas. In: Wing AM, Haggard P, Flanagan JR (eds) Hand and brain. The neurophysiology and psychology of hand movements. Academic Press, San Diego, pp 99–124
Zurück zum Zitat Santello M, Fuglevand AJ (2004) Role of across-muscle motor unit synchrony for the coordination of forces. Exp Brain Res 159:501–508CrossRefPubMed Santello M, Fuglevand AJ (2004) Role of across-muscle motor unit synchrony for the coordination of forces. Exp Brain Res 159:501–508CrossRefPubMed
Zurück zum Zitat Santello M, Soechting JF (2000) Force synergies for multifingered grasping. Exp Brain Res 133:457–467CrossRefPubMed Santello M, Soechting JF (2000) Force synergies for multifingered grasping. Exp Brain Res 133:457–467CrossRefPubMed
Zurück zum Zitat Schieber MH (1991) Individuated finger movements of rhesus monkeys: a means of quantifying the independence of the digits. J Neurophysiol 65:1381–1391PubMed Schieber MH (1991) Individuated finger movements of rhesus monkeys: a means of quantifying the independence of the digits. J Neurophysiol 65:1381–1391PubMed
Zurück zum Zitat Schieber MH, Santello M (2004) Hand function: peripheral and central constraints on performance. Appl Physiol 96:2293–2300CrossRef Schieber MH, Santello M (2004) Hand function: peripheral and central constraints on performance. Appl Physiol 96:2293–2300CrossRef
Zurück zum Zitat Schieber MH, Lang CE, Reilly KT, McNulty P, Sirigu A (2009) Selective activation of human finger muscles after stroke or amputation. Adv Exp Med Biol 629:559–575CrossRefPubMed Schieber MH, Lang CE, Reilly KT, McNulty P, Sirigu A (2009) Selective activation of human finger muscles after stroke or amputation. Adv Exp Med Biol 629:559–575CrossRefPubMed
Zurück zum Zitat Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306CrossRefPubMed Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306CrossRefPubMed
Zurück zum Zitat Shim JK, Latash ML, Zatsiorsky VM (2003) The central nervous system needs time to organize task-specific covariation of finger forces. Neurosci Lett 353:72–74CrossRefPubMed Shim JK, Latash ML, Zatsiorsky VM (2003) The central nervous system needs time to organize task-specific covariation of finger forces. Neurosci Lett 353:72–74CrossRefPubMed
Zurück zum Zitat Shim JK, Olafsdottir H, Zatsiorsky VM, Latash ML (2005) The emergence and disappearance of multi-digit synergies during force production tasks. Exp Brain Res 164:260–270CrossRefPubMed Shim JK, Olafsdottir H, Zatsiorsky VM, Latash ML (2005) The emergence and disappearance of multi-digit synergies during force production tasks. Exp Brain Res 164:260–270CrossRefPubMed
Zurück zum Zitat Shim JK, Huang J, Hooke AW, Latash ML, Zatsiorsky VM (2007) Multi-digit maximum voluntary torque production on a circular object. Ergonomics 50:660–675CrossRefPubMed Shim JK, Huang J, Hooke AW, Latash ML, Zatsiorsky VM (2007) Multi-digit maximum voluntary torque production on a circular object. Ergonomics 50:660–675CrossRefPubMed
Zurück zum Zitat Sosnoff JJ, Jordan K, Newell KM (2005) Information and force level interact in regulating force output during two and three digit grip configurations. Exp Brain Res 167:76–85CrossRefPubMed Sosnoff JJ, Jordan K, Newell KM (2005) Information and force level interact in regulating force output during two and three digit grip configurations. Exp Brain Res 167:76–85CrossRefPubMed
Zurück zum Zitat Vaillancourt DE, Slifkin AB, Newell KM (2002) Inter-digit individuation and force variability in the precision grip of young, elderly, and Parkinson’s disease participants. Mot Control 6:113–128 Vaillancourt DE, Slifkin AB, Newell KM (2002) Inter-digit individuation and force variability in the precision grip of young, elderly, and Parkinson’s disease participants. Mot Control 6:113–128
Zurück zum Zitat Valero-Cuevas FJ, Zajac FE, Burgar CG (1998) Large index fingertip forces are produced by subject-independent patterns of muscle excitation. J Biomech 31:693–703CrossRefPubMed Valero-Cuevas FJ, Zajac FE, Burgar CG (1998) Large index fingertip forces are produced by subject-independent patterns of muscle excitation. J Biomech 31:693–703CrossRefPubMed
Zurück zum Zitat Winges SA, Kornatz KW, Santello M (2008) Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold. J Neurophysio. 99:1119–1126CrossRef Winges SA, Kornatz KW, Santello M (2008) Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold. J Neurophysio. 99:1119–1126CrossRef
Zurück zum Zitat Yokogawa R, Hara K (2002) Measurement of distribution of maximum index-fingertip force in all directions at fingertip in flexion/extension plane. J Biomech Eng 124:302–307CrossRefPubMed Yokogawa R, Hara K (2002) Measurement of distribution of maximum index-fingertip force in all directions at fingertip in flexion/extension plane. J Biomech Eng 124:302–307CrossRefPubMed
Zurück zum Zitat Zatsiorsky VM, Latash ML (2008) Multi-finger prehension: an overview. J Mot Behav 40:446–476CrossRefPubMed Zatsiorsky VM, Latash ML (2008) Multi-finger prehension: an overview. J Mot Behav 40:446–476CrossRefPubMed
Zurück zum Zitat Zatsiorsky VM, Li ZM, Latash ML (1998) Coordinated force production in multi-finger tasks: finger interaction and neural network modeling. Biol Cybern 79:139–150CrossRefPubMed Zatsiorsky VM, Li ZM, Latash ML (1998) Coordinated force production in multi-finger tasks: finger interaction and neural network modeling. Biol Cybern 79:139–150CrossRefPubMed
Zurück zum Zitat Zatsiorsky VM, Li ZM, Latash ML (2000) Enslaving effects in multi-finger force production. Exp Brain Res 131:187–195CrossRefPubMed Zatsiorsky VM, Li ZM, Latash ML (2000) Enslaving effects in multi-finger force production. Exp Brain Res 131:187–195CrossRefPubMed
Zurück zum Zitat Zatsiorsky VM, Gregory RW, Latash ML (2002) Force and torque production in static multi-finger prehension: biomechanics and Control. Part I. Biomechanics. Biol Cybern 87:50–57CrossRef Zatsiorsky VM, Gregory RW, Latash ML (2002) Force and torque production in static multi-finger prehension: biomechanics and Control. Part I. Biomechanics. Biol Cybern 87:50–57CrossRef
Zurück zum Zitat Zatsiorsky VM, Gao F, Latash ML (2003a) Finger force vectors in multi-finger prehension. J Biomech 36:1745–1749CrossRefPubMed Zatsiorsky VM, Gao F, Latash ML (2003a) Finger force vectors in multi-finger prehension. J Biomech 36:1745–1749CrossRefPubMed
Zurück zum Zitat Zatsiorsky VM, Gao F, Latash ML (2003b) Prehension synergies: effects of object geometry and prescribed torques. Exp Brain Res 148:77–87CrossRefPubMed Zatsiorsky VM, Gao F, Latash ML (2003b) Prehension synergies: effects of object geometry and prescribed torques. Exp Brain Res 148:77–87CrossRefPubMed
Metadaten
Titel
Finger interaction in a three-dimensional pressing task
verfasst von
Shweta Kapur
Jason Friedman
Vladimir M. Zatsiorsky
Mark L. Latash
Publikationsdatum
01.05.2010
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 1/2010
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-010-2213-7

Weitere Artikel der Ausgabe 1/2010

Experimental Brain Research 1/2010 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Stuhltransfusion könnte Fortschreiten von Parkinson-Symptomen bremsen

03.05.2024 Parkinson-Krankheit Nachrichten

Kann eine frühzeitige Stuhltransplantation das Fortschreiten von Parkinson-Symptomen verlangsamen? Die Ergebnisse einer randomisierten Phase-2-Studie scheinen dafür zu sprechen.

Frühe Tranexamsäure-Therapie nützt wenig bei Hirnblutungen

02.05.2024 Hirnblutung Nachrichten

Erhalten Personen mit einer spontanen Hirnblutung innerhalb von zwei Stunden nach Symptombeginn eine Tranexamsäure-Therapie, kann dies weder die Hämatomexpansion eindämmen noch die Mortalität senken.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders scheint das auf weibliche Kranke zuzutreffen, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.