Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1-2/2012

01.06.2012 | NON-THEMATIC REVIEW

Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities

verfasst von: Chia-Jui Weng, Gow-Chin Yen

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1-2/2012

Einloggen, um Zugang zu erhalten

Abstract

Cancer metastasis refers to the spread of cancer cells from the primary neoplasm to distant sites, where secondary tumors are formed, and is the major cause of death from cancer. Natural phytochemicals containing phenolic compounds have been widely demonstrated to have the capability to prevent cancer metastasis. Among phenolic compounds, flavonoids are a very large subclass, and they are abundant in food and nutraceuticals. The number of reports demonstrating that flavonoids are an effective natural inhibitor of cancer invasion and metastasis is increasing in the scientific literature. Catechin derivatives, (−)-epigallocatechin-3-gallate, (−)-epigallocatechin, (−)-epicatechin-3-gallate, and (−)-epicatechin, are the most studied compounds in this topic so far; genistein/genistin, silibinin, quercetin, and anthocyanin have also been widely investigated for their inhibitory activities on invasion/metastasis. Other flavonoids in dietary vegetable foods that are responsible for anti-invasive and anti-metastatic activities of tumors include luteolin, apigenin, myricetin, tangeretin, kaempferol, glycitein, licoricidin, daidzein, and naringenin. To effectively overcome the metastatic cascade, including cell–cell attachment, tissue-barrier degradation, migration, invasion, cell–matrix adhesion, and angiogenesis, it is essential that a bioactive compound prevent tumor cells from metastasizing. This review summarizes the effects of flavonoids on the metastatic cascade and the related proteins, the in vitro anti-invasive activity of flavonoids against cancer cells, and the effects of flavonoids on anti-angiogenic and in vivo anti-metastatic models. The available scientific evidence indicates that flavonoids are a ubiquitous dietary phenolics subclass and exert extensive in vitro anti-invasive and in vivo anti-metastatic activities.
Literatur
1.
Zurück zum Zitat Weiss, L. (1990). Metastatic inefficiency. Advances in Cancer Research, 54, 159–211.PubMed Weiss, L. (1990). Metastatic inefficiency. Advances in Cancer Research, 54, 159–211.PubMed
2.
Zurück zum Zitat Liotta, L. A., Steeg, P. S., & Stetter-Stevenson, W. G. (1991). Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell, 64, 327–336.PubMed Liotta, L. A., Steeg, P. S., & Stetter-Stevenson, W. G. (1991). Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell, 64, 327–336.PubMed
3.
Zurück zum Zitat Condeelis, J., & Segall, J. E. (2003). Intravital imaging of cell movement in tumours. Nature Reviews. Cancer, 3, 921–930.PubMed Condeelis, J., & Segall, J. E. (2003). Intravital imaging of cell movement in tumours. Nature Reviews. Cancer, 3, 921–930.PubMed
4.
Zurück zum Zitat Van Sumere, C. F. (1989). Phenols and phenolic acids. In J. B. Harborne (Ed.), Methods in plant biochemistry, volume 1 (Plant phenolics, pp. 29–74). London: Academic. Van Sumere, C. F. (1989). Phenols and phenolic acids. In J. B. Harborne (Ed.), Methods in plant biochemistry, volume 1 (Plant phenolics, pp. 29–74). London: Academic.
5.
Zurück zum Zitat Shahidi, F. (2000). Antioxidants in food and food antioxidants. Die Nahrung, 44, 158–163.PubMed Shahidi, F. (2000). Antioxidants in food and food antioxidants. Die Nahrung, 44, 158–163.PubMed
6.
Zurück zum Zitat Shahidi, F. (2002). Antioxidants in plants and oleaginous seeds. In M. J. Morello, F. Shahidi, & C. T. Ho (Eds.), Free radicals in food: Chemistry, nutrition, and health effects, ACS symposium series 807 (pp. 162–175). Washington, DC: American Chemical Society. Shahidi, F. (2002). Antioxidants in plants and oleaginous seeds. In M. J. Morello, F. Shahidi, & C. T. Ho (Eds.), Free radicals in food: Chemistry, nutrition, and health effects, ACS symposium series 807 (pp. 162–175). Washington, DC: American Chemical Society.
7.
Zurück zum Zitat Cook, N. C., & Samman, S. (1996). Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. The Journal of Nutritional Biochemistry, 7, 66–76. Cook, N. C., & Samman, S. (1996). Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. The Journal of Nutritional Biochemistry, 7, 66–76.
8.
Zurück zum Zitat Ververidis, F., Trantas, E., Douglas, C., Vollmer, G., Kretzschmar, G., & Panopoulos, N. (2007). Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health. Biotechnology Journal, 2, 1214–1234.PubMed Ververidis, F., Trantas, E., Douglas, C., Vollmer, G., Kretzschmar, G., & Panopoulos, N. (2007). Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health. Biotechnology Journal, 2, 1214–1234.PubMed
9.
Zurück zum Zitat Sliva, D. (2008). Suppression of cancer invasiveness by dietary compounds. Mini Reviews in Medicinal Chemistry, 8, 677–688.PubMed Sliva, D. (2008). Suppression of cancer invasiveness by dietary compounds. Mini Reviews in Medicinal Chemistry, 8, 677–688.PubMed
10.
Zurück zum Zitat Weng, C. J., & Yen, G. C. (2012). Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treatment Reviews, 38, 76–87.PubMed Weng, C. J., & Yen, G. C. (2012). Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treatment Reviews, 38, 76–87.PubMed
11.
Zurück zum Zitat Christofori, G. (2006). New signals from the invasive front. Nature, 441, 444–450.PubMed Christofori, G. (2006). New signals from the invasive front. Nature, 441, 444–450.PubMed
12.
Zurück zum Zitat Thiery, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2, 442–454.PubMed Thiery, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2, 442–454.PubMed
13.
Zurück zum Zitat Yang, J., & Weinberg, R. A. (2008). Epithelial–mesenchymal transition: At the crossroads of development and tumor metastasis. Developmental Cell, 14, 818–829.PubMed Yang, J., & Weinberg, R. A. (2008). Epithelial–mesenchymal transition: At the crossroads of development and tumor metastasis. Developmental Cell, 14, 818–829.PubMed
14.
Zurück zum Zitat Joo, Y., Rew, J., Park, C., & Kim, S. (2002). Expression of E-cadherin, alpha- and beta-catenins in patients with pancreatic adenocarcinoma. Pancreatology, 2, 129–137.PubMed Joo, Y., Rew, J., Park, C., & Kim, S. (2002). Expression of E-cadherin, alpha- and beta-catenins in patients with pancreatic adenocarcinoma. Pancreatology, 2, 129–137.PubMed
15.
Zurück zum Zitat Nakajima, S., Doi, R., Toyoda, E., Tsuji, S., Wada, M., Koizumi, M., Tulachan, S. S., Ito, D., Kami, K., Mori, T., Kawaguchi, Y., Fujimoto, K., Hosotani, R., & Imamura, M. (2004). N-cadherin expression and epithelial–mesenchymal transition in pancreatic carcinoma. Clinical Cancer Research, 10, 4125–4133.PubMed Nakajima, S., Doi, R., Toyoda, E., Tsuji, S., Wada, M., Koizumi, M., Tulachan, S. S., Ito, D., Kami, K., Mori, T., Kawaguchi, Y., Fujimoto, K., Hosotani, R., & Imamura, M. (2004). N-cadherin expression and epithelial–mesenchymal transition in pancreatic carcinoma. Clinical Cancer Research, 10, 4125–4133.PubMed
16.
Zurück zum Zitat Sanders, D. S., Bruton, R., Darnton, S. J., Casson, A. G., Hanson, I., Williams, H. K., & Jankowski, J. (1998). Sequential changes in cadherin–catenin expression associated with the progression and heterogeneity of primary oesophageal squamous carcinoma. International Journal of Cancer, 79, 573–579. Sanders, D. S., Bruton, R., Darnton, S. J., Casson, A. G., Hanson, I., Williams, H. K., & Jankowski, J. (1998). Sequential changes in cadherin–catenin expression associated with the progression and heterogeneity of primary oesophageal squamous carcinoma. International Journal of Cancer, 79, 573–579.
17.
Zurück zum Zitat Muzio, L. Lo, Pannone, G., Mignogna, M. D., Staibano, S., Mariggio, M. A., Rubini, C., Procaccini, M., Dolci, M., Bufo, P., Rosa, G. De, & Piattelli, A. (2004). P-cadherin expression predicts clinical outcome in oral squamous cell carcinomas. Histology and Histopathology, 19, 1089–1099.PubMed Muzio, L. Lo, Pannone, G., Mignogna, M. D., Staibano, S., Mariggio, M. A., Rubini, C., Procaccini, M., Dolci, M., Bufo, P., Rosa, G. De, & Piattelli, A. (2004). P-cadherin expression predicts clinical outcome in oral squamous cell carcinomas. Histology and Histopathology, 19, 1089–1099.PubMed
18.
Zurück zum Zitat Bachmann, I. M., Straume, O., Puntervoll, H. E., Kalvenes, M. B., & Akslen, L. A. (2005). Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clinical Cancer Research, 11, 8606–8614.PubMed Bachmann, I. M., Straume, O., Puntervoll, H. E., Kalvenes, M. B., & Akslen, L. A. (2005). Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clinical Cancer Research, 11, 8606–8614.PubMed
19.
Zurück zum Zitat Van Marck, V., Stove, C., Jacobs, K., Van den Eynden, G., & Bracke, M. (2011). P-cadherin in adhesion and invasion: Opposite roles in colon and bladder carcinoma. International Journal of Cancer, 128, 1031–1044. Van Marck, V., Stove, C., Jacobs, K., Van den Eynden, G., & Bracke, M. (2011). P-cadherin in adhesion and invasion: Opposite roles in colon and bladder carcinoma. International Journal of Cancer, 128, 1031–1044.
20.
Zurück zum Zitat Gamallo, C., Moreno-Bueno, G., Sarrio, D., Calero, F., Hardisson, D., & Palacios, J. (2001). The prognostic significance of P-cadherin in infiltrating ductal breast carcinoma. Modern Pathology, 14, 650–654.PubMed Gamallo, C., Moreno-Bueno, G., Sarrio, D., Calero, F., Hardisson, D., & Palacios, J. (2001). The prognostic significance of P-cadherin in infiltrating ductal breast carcinoma. Modern Pathology, 14, 650–654.PubMed
21.
Zurück zum Zitat Paredes, J., Stove, C., Stove, V., Milanezi, F., Van Marck, V., Derycke, L., Mareel, M., Bracke, M., & Schmitt, F. (2004). P-cadherin is upregulated by the antiestrogen ICI 182,780 and promotes invasion of human breast cancer cells. Cancer Research, 64, 8309–8317.PubMed Paredes, J., Stove, C., Stove, V., Milanezi, F., Van Marck, V., Derycke, L., Mareel, M., Bracke, M., & Schmitt, F. (2004). P-cadherin is upregulated by the antiestrogen ICI 182,780 and promotes invasion of human breast cancer cells. Cancer Research, 64, 8309–8317.PubMed
22.
Zurück zum Zitat Stefansson, I. M., Salvesen, H. B., & Akslen, L. A. (2004). Prognostic impact of alterations in Pcadherin expression and related cell adhesion markers in endometrial cancer. Journal of Clinical Oncology, 22, 1242–1252.PubMed Stefansson, I. M., Salvesen, H. B., & Akslen, L. A. (2004). Prognostic impact of alterations in Pcadherin expression and related cell adhesion markers in endometrial cancer. Journal of Clinical Oncology, 22, 1242–1252.PubMed
23.
Zurück zum Zitat Taniuchi, K., Nakagawa, H., Hosokawa, M., Nakamura, T., Eguchi, H., Ohigashi, H., Ishikawa, O., Katagiri, T., & Nakamura, Y. (2005). Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Research, 65, 3092–3099.PubMed Taniuchi, K., Nakagawa, H., Hosokawa, M., Nakamura, T., Eguchi, H., Ohigashi, H., Ishikawa, O., Katagiri, T., & Nakamura, Y. (2005). Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Research, 65, 3092–3099.PubMed
24.
Zurück zum Zitat Gravdal, K., Halvorsen, O. J., Haukaas, S. A., & Akslen, L. A. (2007). A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clinical Cancer Research, 13, 7003–7011.PubMed Gravdal, K., Halvorsen, O. J., Haukaas, S. A., & Akslen, L. A. (2007). A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clinical Cancer Research, 13, 7003–7011.PubMed
25.
Zurück zum Zitat Tothill, R. W., Tinker, A. V., George, J., Brown, R., Fox, S. B., Lade, S., Johnson, D. S., Trivett, M. K., Etemadmoghadam, D., Locandro, B., Traficante, N., Fereday, S., Hung, J. A., Chiew, Y. E., Haviv, I., Australian Ovarian Cancer Study Group, Gertig, D., DeFazio, A., & Bowtell, D. D. (2008). Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clinical Cancer Research, 14, 5198–5208.PubMed Tothill, R. W., Tinker, A. V., George, J., Brown, R., Fox, S. B., Lade, S., Johnson, D. S., Trivett, M. K., Etemadmoghadam, D., Locandro, B., Traficante, N., Fereday, S., Hung, J. A., Chiew, Y. E., Haviv, I., Australian Ovarian Cancer Study Group, Gertig, D., DeFazio, A., & Bowtell, D. D. (2008). Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clinical Cancer Research, 14, 5198–5208.PubMed
26.
Zurück zum Zitat Imai, K., Hirata, S., Irie, A., Senju, S., Ikuta, Y., Yokomine, K., Harao, M., Inoue, M., Tsunoda, T., Nakatsuru, S., Nakagawa, H., Nakamura, Y., Baba, H., & Nishimura, Y. (2008). Identification of a novel tumor-associated antigen, cadherin 3/P-cadherin, as a possible target for immunotherapy of pancreatic, gastric, and colorectal cancers. Clinical Cancer Research, 14, 6487–6495.PubMed Imai, K., Hirata, S., Irie, A., Senju, S., Ikuta, Y., Yokomine, K., Harao, M., Inoue, M., Tsunoda, T., Nakatsuru, S., Nakagawa, H., Nakamura, Y., Baba, H., & Nishimura, Y. (2008). Identification of a novel tumor-associated antigen, cadherin 3/P-cadherin, as a possible target for immunotherapy of pancreatic, gastric, and colorectal cancers. Clinical Cancer Research, 14, 6487–6495.PubMed
27.
Zurück zum Zitat Francí, C., Takkunen, M., Dave, N., Alameda, F., Gómez, S., Rodríguez, R., Escrivà, M., Montserrat-Sentís, B., Baró, T., Garrido, M., Bonilla, F., Virtanen, I., & García de Herreros, A. (2006). Expression of Snail protein in tumor-stroma interface. Oncogene, 25, 5134–5144.PubMed Francí, C., Takkunen, M., Dave, N., Alameda, F., Gómez, S., Rodríguez, R., Escrivà, M., Montserrat-Sentís, B., Baró, T., Garrido, M., Bonilla, F., Virtanen, I., & García de Herreros, A. (2006). Expression of Snail protein in tumor-stroma interface. Oncogene, 25, 5134–5144.PubMed
28.
Zurück zum Zitat Hipp, S., Walch, A., Schuster, T., Höfler, H., & Becker, K. F. (2008). Precise measurement of the E-cadherin repressor Snail in formalin-fixed endometrial carcinoma using protein lysate microarrays. Clinical & Experimental Metastasis, 25, 679–683. Hipp, S., Walch, A., Schuster, T., Höfler, H., & Becker, K. F. (2008). Precise measurement of the E-cadherin repressor Snail in formalin-fixed endometrial carcinoma using protein lysate microarrays. Clinical & Experimental Metastasis, 25, 679–683.
29.
Zurück zum Zitat Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., & Brabletz, T. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9, 582–589.PubMed Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., & Brabletz, T. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9, 582–589.PubMed
30.
Zurück zum Zitat Chang, T. H., Tsai, M. F., Su, K. Y., Wu, S. G., Huang, C. P., Yu, S. L., Yu, Y. L., Lan, C. C., Yang, C. H., Lin, S. B., Wu, C. P., Shih, J. Y., & Yang, P. C. (2011). Slug confers resistance to the epidermal growth factor receptor tyrosine kinase inhibitor. American Journal of Respiratory and Critical Care Medicine, 183, 1071–1079.PubMed Chang, T. H., Tsai, M. F., Su, K. Y., Wu, S. G., Huang, C. P., Yu, S. L., Yu, Y. L., Lan, C. C., Yang, C. H., Lin, S. B., Wu, C. P., Shih, J. Y., & Yang, P. C. (2011). Slug confers resistance to the epidermal growth factor receptor tyrosine kinase inhibitor. American Journal of Respiratory and Critical Care Medicine, 183, 1071–1079.PubMed
31.
Zurück zum Zitat Myatt, S. S., & Lam, E. W. (2007). The emerging roles of forkhead box (Fox) proteins in cancer. Nature Reviews. Cancer, 7, 847–859.PubMed Myatt, S. S., & Lam, E. W. (2007). The emerging roles of forkhead box (Fox) proteins in cancer. Nature Reviews. Cancer, 7, 847–859.PubMed
32.
Zurück zum Zitat Humphries, M. J. (2000). Integrin structure. Biochemical Society Transactions, 28, 311–339.PubMed Humphries, M. J. (2000). Integrin structure. Biochemical Society Transactions, 28, 311–339.PubMed
33.
Zurück zum Zitat Yamamoto, M., Bharti, A., Li, Y., & Kufe, D. (1997). Interaction of the DF3/MUC1 breast carcinoma-associated antigen and beta-catenin in cell adhesion. Journal of Biological Chemistry, 272, 12492–12494.PubMed Yamamoto, M., Bharti, A., Li, Y., & Kufe, D. (1997). Interaction of the DF3/MUC1 breast carcinoma-associated antigen and beta-catenin in cell adhesion. Journal of Biological Chemistry, 272, 12492–12494.PubMed
34.
Zurück zum Zitat Huang, L., Chen, D., Liu, D., Yin, L., Kharbanda, S., & Kufe, D. (2005). MUC1 oncoprotein blocks glycogen synthase kinase 3beta-mediated phosphorylation and degradation of beta-catenin. Cancer Research, 65, 10413–10422.PubMed Huang, L., Chen, D., Liu, D., Yin, L., Kharbanda, S., & Kufe, D. (2005). MUC1 oncoprotein blocks glycogen synthase kinase 3beta-mediated phosphorylation and degradation of beta-catenin. Cancer Research, 65, 10413–10422.PubMed
35.
Zurück zum Zitat Roy, L. D., Sahraei, M., Subramani, D. B., Besmer, D., Nath, S., Tinder, T. L., Bajaj, E., Shanmugam, K., Lee, Y. Y., Hwang, S. I. L., Gendler, S. J., & Mukherjee, P. (2011). MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene, 30, 1449–1459.PubMed Roy, L. D., Sahraei, M., Subramani, D. B., Besmer, D., Nath, S., Tinder, T. L., Bajaj, E., Shanmugam, K., Lee, Y. Y., Hwang, S. I. L., Gendler, S. J., & Mukherjee, P. (2011). MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene, 30, 1449–1459.PubMed
36.
Zurück zum Zitat Sahai, E. (2007). Illuminating the metastatic process. Nature Reviews. Cancer, 7, 737–749.PubMed Sahai, E. (2007). Illuminating the metastatic process. Nature Reviews. Cancer, 7, 737–749.PubMed
37.
Zurück zum Zitat Wyckoff, J. B., Jones, J. G., Condeelis, J. S., & Segall, J. E. (2000). A critical step in metastasis: In vivo analysis of intravasation at the primary tumor. Cancer Research, 60, 2504–2511.PubMed Wyckoff, J. B., Jones, J. G., Condeelis, J. S., & Segall, J. E. (2000). A critical step in metastasis: In vivo analysis of intravasation at the primary tumor. Cancer Research, 60, 2504–2511.PubMed
38.
Zurück zum Zitat Ghosh, M., Song, X., Mouneimne, G., Sidani, M., Lawrence, D. S., & Condeelis, J. S. (2004). Cofilin promotes actin polymerization and defines the direction of cell motility. Science, 304, 743–746.PubMed Ghosh, M., Song, X., Mouneimne, G., Sidani, M., Lawrence, D. S., & Condeelis, J. S. (2004). Cofilin promotes actin polymerization and defines the direction of cell motility. Science, 304, 743–746.PubMed
39.
Zurück zum Zitat Kleiner, D. E., & Stetler-Stevenson, W. G. (1999). Matrix metalloproteinases and metastasis. Cancer Chemotherapy and Pharmacology, 43, S41–S51. Kleiner, D. E., & Stetler-Stevenson, W. G. (1999). Matrix metalloproteinases and metastasis. Cancer Chemotherapy and Pharmacology, 43, S41–S51.
40.
Zurück zum Zitat Westermarck, J., & Kahari, V. M. (1999). Regulation of matrix metalloproteinase expression in tumor invasion. The FASEB Journal, 13, 781–792. Westermarck, J., & Kahari, V. M. (1999). Regulation of matrix metalloproteinase expression in tumor invasion. The FASEB Journal, 13, 781–792.
41.
Zurück zum Zitat Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Reviews. Cancer, 3, 362–374.PubMed Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Reviews. Cancer, 3, 362–374.PubMed
42.
Zurück zum Zitat Rao, J. S. (2003). Molecular mechanisms of glioma invasiveness: The role of proteases. Nature Reviews. Cancer, 3, 489–501.PubMed Rao, J. S. (2003). Molecular mechanisms of glioma invasiveness: The role of proteases. Nature Reviews. Cancer, 3, 489–501.PubMed
43.
Zurück zum Zitat Yamamoto, H., Itoh, F., Iku, S., Adachi, Y., Fukushima, H., Sasaki, S., Mukaiya, M., Hirata, K., & Imai, K. (2001). Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human pancreatic adenocarcinomas: Clinicopathologic and prognostic significance of matrilysin expression. Journal of Clinical Oncology, 19, 1118–1127.PubMed Yamamoto, H., Itoh, F., Iku, S., Adachi, Y., Fukushima, H., Sasaki, S., Mukaiya, M., Hirata, K., & Imai, K. (2001). Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human pancreatic adenocarcinomas: Clinicopathologic and prognostic significance of matrilysin expression. Journal of Clinical Oncology, 19, 1118–1127.PubMed
44.
Zurück zum Zitat Chung, T. W., Moon, S. K., Lee, Y. C., Kim, J. G., Ko, J. H., & Kim, C. H. (2002). Enhanced expression of matrix metalloproteinase-9 by hepatitis B virus infection in liver cells. Archives of Biochemistry and Biophysics, 408, 147–154.PubMed Chung, T. W., Moon, S. K., Lee, Y. C., Kim, J. G., Ko, J. H., & Kim, C. H. (2002). Enhanced expression of matrix metalloproteinase-9 by hepatitis B virus infection in liver cells. Archives of Biochemistry and Biophysics, 408, 147–154.PubMed
45.
Zurück zum Zitat Muramatsu, T., & Miyauchi, T. (2004). Basigin (CD147): A multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histology and Histopathology, 18, 981–987. Muramatsu, T., & Miyauchi, T. (2004). Basigin (CD147): A multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histology and Histopathology, 18, 981–987.
46.
Zurück zum Zitat Jinga, D. C., Blidaru, A., Condrea, I., Ardeleanu, C., Dragomir, C., Szegli, G., Stefanescu, M., & Matache, C. (2006). MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: Correlations with prognostic factors. Journal of Cellular and Molecular Medicine, 10, 499–510.PubMed Jinga, D. C., Blidaru, A., Condrea, I., Ardeleanu, C., Dragomir, C., Szegli, G., Stefanescu, M., & Matache, C. (2006). MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: Correlations with prognostic factors. Journal of Cellular and Molecular Medicine, 10, 499–510.PubMed
47.
Zurück zum Zitat Tan, X., Egami, H., Nozawa, F., Abe, M., & Baba, H. (2006). Analysis of the invasion-metastasis mechanism in pancreatic cancer: Involvement of plasmin(ogen) cascade proteins in the invasion of pancreatic cancer cells. International Journal of Oncology, 28, 369–374.PubMed Tan, X., Egami, H., Nozawa, F., Abe, M., & Baba, H. (2006). Analysis of the invasion-metastasis mechanism in pancreatic cancer: Involvement of plasmin(ogen) cascade proteins in the invasion of pancreatic cancer cells. International Journal of Oncology, 28, 369–374.PubMed
48.
Zurück zum Zitat Mazar, A. P. (2001). The urokinase plasminogen activator receptor (uPAR) as a target for the diagnosis and therapy of cancer. Anti-Cancer Drugs, 12, 387–400.PubMed Mazar, A. P. (2001). The urokinase plasminogen activator receptor (uPAR) as a target for the diagnosis and therapy of cancer. Anti-Cancer Drugs, 12, 387–400.PubMed
49.
Zurück zum Zitat Sliva, D., Labarrere, C., Slivova, V., Sedlak, M., Lloyd, F. P., Jr., & Ho, N. W. (2002). Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells. Biochemical and Biophysical Research Communications, 298, 603–612.PubMed Sliva, D., Labarrere, C., Slivova, V., Sedlak, M., Lloyd, F. P., Jr., & Ho, N. W. (2002). Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells. Biochemical and Biophysical Research Communications, 298, 603–612.PubMed
50.
Zurück zum Zitat Sidenius, N., & Blasi, F. (2003). The urokinase plasminogen activator system in cancer: Recent advances and implication for prognosis and therapy. Cancer and Metastasis Reviews, 22, 205–222.PubMed Sidenius, N., & Blasi, F. (2003). The urokinase plasminogen activator system in cancer: Recent advances and implication for prognosis and therapy. Cancer and Metastasis Reviews, 22, 205–222.PubMed
51.
Zurück zum Zitat Han, B., Nakamura, M., Mori, I., Nakamura, Y., & Kakudo, K. (2005). Urokinase-type plasminogen activator system and breast cancer (review). Oncology Reports, 14, 105–112.PubMed Han, B., Nakamura, M., Mori, I., Nakamura, Y., & Kakudo, K. (2005). Urokinase-type plasminogen activator system and breast cancer (review). Oncology Reports, 14, 105–112.PubMed
52.
Zurück zum Zitat Duggan, C., Kennedy, S., Kramer, M. D., Barnes, C., Elvin, P., McDermott, E., O’Higgins, N., & Duffy, M. J. (1997). Plasminogen activator inhibitor type 2 in breast cancer. British Journal of Cancer, 76, 622–627.PubMed Duggan, C., Kennedy, S., Kramer, M. D., Barnes, C., Elvin, P., McDermott, E., O’Higgins, N., & Duffy, M. J. (1997). Plasminogen activator inhibitor type 2 in breast cancer. British Journal of Cancer, 76, 622–627.PubMed
53.
Zurück zum Zitat Sakakibara, T., Hibi, K., Koike, M., Fujiwara, M., Kodera, Y., Ito, K., & Nakao, A. (2005). Plasminogen activator inhibitor-1 as a potential marker for the malignancy of colorectal cancer. British Journal of Cancer, 93, 799–803.PubMed Sakakibara, T., Hibi, K., Koike, M., Fujiwara, M., Kodera, Y., Ito, K., & Nakao, A. (2005). Plasminogen activator inhibitor-1 as a potential marker for the malignancy of colorectal cancer. British Journal of Cancer, 93, 799–803.PubMed
54.
Zurück zum Zitat Kang, H. G., Kim, H. S., Kim, K. J., Oh, J. H., Lee, M. R., Seol, S. M., & Han, I. (2007). RECK expression in osteosarcoma: Correlation with matrix metalloproteinases activation and tumor invasiveness. Journal of Orthopaedic Research, 25, 696–702.PubMed Kang, H. G., Kim, H. S., Kim, K. J., Oh, J. H., Lee, M. R., Seol, S. M., & Han, I. (2007). RECK expression in osteosarcoma: Correlation with matrix metalloproteinases activation and tumor invasiveness. Journal of Orthopaedic Research, 25, 696–702.PubMed
55.
Zurück zum Zitat Rao, A. R., Motiwala, H. G., & Karim, O. M. (2008). The discovery of prostate-specific antigen. BJU International, 101, 5–10.PubMed Rao, A. R., Motiwala, H. G., & Karim, O. M. (2008). The discovery of prostate-specific antigen. BJU International, 101, 5–10.PubMed
56.
Zurück zum Zitat Lilja, H. (2003). Biology of prostate-specific antigen. Urology, 62, 27–33.PubMed Lilja, H. (2003). Biology of prostate-specific antigen. Urology, 62, 27–33.PubMed
57.
Zurück zum Zitat Fuchs, E. (1882). Das Sarcom des Uvealtractus. In W. Braumueller (Ed.), Metastasenbildung (pp. 197–206). Vienna: Wilhelm Braumuller. Fuchs, E. (1882). Das Sarcom des Uvealtractus. In W. Braumueller (Ed.), Metastasenbildung (pp. 197–206). Vienna: Wilhelm Braumuller.
58.
Zurück zum Zitat Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573. Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.
59.
Zurück zum Zitat Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.PubMed Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.PubMed
60.
Zurück zum Zitat Ruoslahti, E., & Rajotte, D. (2000). An address system in the vasculature of normal tissues and tumors. Annual Review of Immunology, 18, 813–827.PubMed Ruoslahti, E., & Rajotte, D. (2000). An address system in the vasculature of normal tissues and tumors. Annual Review of Immunology, 18, 813–827.PubMed
61.
Zurück zum Zitat Brown, D. M., & Metadherin, R. E. (2004). A cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell, 5, 365–374.PubMed Brown, D. M., & Metadherin, R. E. (2004). A cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell, 5, 365–374.PubMed
62.
Zurück zum Zitat Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S. N., Barrera, J. L., Mohar, A., Verástegui, E., & Zlotnik, A. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.PubMed Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S. N., Barrera, J. L., Mohar, A., Verástegui, E., & Zlotnik, A. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.PubMed
63.
Zurück zum Zitat Harbeck, B., Hüttelmaier, S., Schluter, K., Jockusch, B. M., & Illenberger, S. (2000). Phosphorylation of the vasodilator-stimulated phosphoprotein regulates its interaction with actin. The Journal of Biological Chemistry, 275, 30817–30825.PubMed Harbeck, B., Hüttelmaier, S., Schluter, K., Jockusch, B. M., & Illenberger, S. (2000). Phosphorylation of the vasodilator-stimulated phosphoprotein regulates its interaction with actin. The Journal of Biological Chemistry, 275, 30817–30825.PubMed
64.
Zurück zum Zitat McDougall, S. R., Anderson, A. R., & Chaplain, M. A. (2006). Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies. Journal of Theoretical Biology, 241, 564–589.PubMed McDougall, S. R., Anderson, A. R., & Chaplain, M. A. (2006). Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies. Journal of Theoretical Biology, 241, 564–589.PubMed
65.
Zurück zum Zitat Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews. Cancer, 3, 401–410.PubMed Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews. Cancer, 3, 401–410.PubMed
66.
Zurück zum Zitat Kalluri, R. (2003). Basement membranes: Structure, assembly and role in tumour angiogenesis. Nature Reviews. Cancer, 3, 422–433.PubMed Kalluri, R. (2003). Basement membranes: Structure, assembly and role in tumour angiogenesis. Nature Reviews. Cancer, 3, 422–433.PubMed
67.
Zurück zum Zitat Thurston, G. (2003). Role of Angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell and Tissue Research, 314, 61–68.PubMed Thurston, G. (2003). Role of Angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell and Tissue Research, 314, 61–68.PubMed
68.
Zurück zum Zitat Smith, T. G., Robbins, P. A., & Ratcliffe, P. J. (2008). The human side of hypoxia-inducible factor. British Journal of Haematology, 141, 325–334.PubMed Smith, T. G., Robbins, P. A., & Ratcliffe, P. J. (2008). The human side of hypoxia-inducible factor. British Journal of Haematology, 141, 325–334.PubMed
69.
Zurück zum Zitat Harris, A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nature Reviews. Cancer, 2, 38–47.PubMed Harris, A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nature Reviews. Cancer, 2, 38–47.PubMed
70.
Zurück zum Zitat Sullivan, R., & Graham, C. H. (2007). Hypoxia-driven selection of the metastatic phenotype. Cancer and Metastasis Reviews, 26, 319–331.PubMed Sullivan, R., & Graham, C. H. (2007). Hypoxia-driven selection of the metastatic phenotype. Cancer and Metastasis Reviews, 26, 319–331.PubMed
71.
Zurück zum Zitat Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3, 721–732.PubMed Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3, 721–732.PubMed
72.
Zurück zum Zitat Semenza, G. L. (2007). Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discovery Today, 12, 853–859.PubMed Semenza, G. L. (2007). Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discovery Today, 12, 853–859.PubMed
73.
Zurück zum Zitat Melillo, G. (2006). Inhibiting hypoxia-inducible factor 1 for cancer therapy. Molecular Cancer Research, 4, 601–605.PubMed Melillo, G. (2006). Inhibiting hypoxia-inducible factor 1 for cancer therapy. Molecular Cancer Research, 4, 601–605.PubMed
74.
Zurück zum Zitat Steeg, P. S. (2006). Tumor metastasis: Mechanistic insights and clinical challenges. Nature Medicine, 12, 895–904.PubMed Steeg, P. S. (2006). Tumor metastasis: Mechanistic insights and clinical challenges. Nature Medicine, 12, 895–904.PubMed
75.
Zurück zum Zitat Khan, N., & Mukhtar, H. (2007). Tea polyphenols for health promotion. Life Sciences, 81, 519–533.PubMed Khan, N., & Mukhtar, H. (2007). Tea polyphenols for health promotion. Life Sciences, 81, 519–533.PubMed
76.
Zurück zum Zitat Chacko, S. M., Thambi, P. T., Kuttan, R., & Nishigaki, I. (2010). Beneficial effects of green tea: A literature review. Chinese Medicine, 5, 13.PubMed Chacko, S. M., Thambi, P. T., Kuttan, R., & Nishigaki, I. (2010). Beneficial effects of green tea: A literature review. Chinese Medicine, 5, 13.PubMed
77.
Zurück zum Zitat Cao, Y., Cao, R., & Brakenhielm, E. (2002). Antiangiogenic mechanisms of diet-derived polyphenols. The Journal of Nutritional Biochemistry, 13, 380–390.PubMed Cao, Y., Cao, R., & Brakenhielm, E. (2002). Antiangiogenic mechanisms of diet-derived polyphenols. The Journal of Nutritional Biochemistry, 13, 380–390.PubMed
78.
Zurück zum Zitat Khan, N., Afaq, F., Saleem, M., Ahmad, N., & Mukhtar, H. (2006). Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Research, 66, 2500–2505.PubMed Khan, N., Afaq, F., Saleem, M., Ahmad, N., & Mukhtar, H. (2006). Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Research, 66, 2500–2505.PubMed
79.
Zurück zum Zitat Kaufmann, R., Henklein, P., Henklein, P., & Settmacher, U. (2009). Green tea polyphenol epigallocatechin-3-gallate inhibits thrombin-induced hepatocellular carcinoma cell invasion and p42/p44-MAPKinase activation. Oncology Reports, 21, 1261–1267.PubMed Kaufmann, R., Henklein, P., Henklein, P., & Settmacher, U. (2009). Green tea polyphenol epigallocatechin-3-gallate inhibits thrombin-induced hepatocellular carcinoma cell invasion and p42/p44-MAPKinase activation. Oncology Reports, 21, 1261–1267.PubMed
80.
Zurück zum Zitat Lu, L., Liu, H. M., & Tang, W. X. (2007). Effect of epigallocatechin-3-gallate on the invasiveness of hepatocarcinoma cells in vitro. Zhonghua Gan Zang Bing Za Zhi, 15, 825–827.PubMed Lu, L., Liu, H. M., & Tang, W. X. (2007). Effect of epigallocatechin-3-gallate on the invasiveness of hepatocarcinoma cells in vitro. Zhonghua Gan Zang Bing Za Zhi, 15, 825–827.PubMed
81.
Zurück zum Zitat Lee, S. J., Lee, K. W., Hur, H. J., Chun, J. Y., Kim, S. Y., & Lee, H. J. (2007). Phenolic phytochemicals derived from red pine (Pinus densiflora) inhibit the invasion and migration of SK-Hep-1 human hepatocellular carcinoma cells. Annals of the New York Academy of Sciences, 1095, 536–544.PubMed Lee, S. J., Lee, K. W., Hur, H. J., Chun, J. Y., Kim, S. Y., & Lee, H. J. (2007). Phenolic phytochemicals derived from red pine (Pinus densiflora) inhibit the invasion and migration of SK-Hep-1 human hepatocellular carcinoma cells. Annals of the New York Academy of Sciences, 1095, 536–544.PubMed
82.
Zurück zum Zitat Zhen, M. C., Huang, X. H., Wang, Q., Sun, K., Liu, Y. J., Li, W., Zhang, L. J., Cao, L. Q., & Chen, X. L. (2006). Green tea polyphenol epigallocatechin-3-gallate suppresses rat hepatic stellate cell invasion by inhibition of MMP-2 expression and its activation. Acta Pharmacologica Sinica, 27, 1600–1607.PubMed Zhen, M. C., Huang, X. H., Wang, Q., Sun, K., Liu, Y. J., Li, W., Zhang, L. J., Cao, L. Q., & Chen, X. L. (2006). Green tea polyphenol epigallocatechin-3-gallate suppresses rat hepatic stellate cell invasion by inhibition of MMP-2 expression and its activation. Acta Pharmacologica Sinica, 27, 1600–1607.PubMed
83.
Zurück zum Zitat Zhang, G., Miura, Y., & Yagasaki, K. (2000). Suppression of adhesion and invasion of hepatoma cells in culture by tea compounds through antioxidative activity. Cancer Letters, 159, 169–173.PubMed Zhang, G., Miura, Y., & Yagasaki, K. (2000). Suppression of adhesion and invasion of hepatoma cells in culture by tea compounds through antioxidative activity. Cancer Letters, 159, 169–173.PubMed
84.
Zurück zum Zitat Zhang, G., Miura, Y., & Yagasaki, K. (2001). Inhibition of hepatoma cell invasion beneath mesothelial-cell monolayer by sera from tea- and related component-treated rats and their modes of action. Cytotechnology, 36, 187–193.PubMed Zhang, G., Miura, Y., & Yagasaki, K. (2001). Inhibition of hepatoma cell invasion beneath mesothelial-cell monolayer by sera from tea- and related component-treated rats and their modes of action. Cytotechnology, 36, 187–193.PubMed
85.
Zurück zum Zitat Yang, J., Wei, D., & Liu, J. (2005). Repressions of MMP-9 expression and NF-kappa B localization are involved in inhibition of lung carcinoma 95-D cell invasion by (−)-epigallocatechin-3-gallate. Biomedicine & Pharmacotherapy, 59, 98–103. Yang, J., Wei, D., & Liu, J. (2005). Repressions of MMP-9 expression and NF-kappa B localization are involved in inhibition of lung carcinoma 95-D cell invasion by (−)-epigallocatechin-3-gallate. Biomedicine & Pharmacotherapy, 59, 98–103.
86.
Zurück zum Zitat Hazgui, S., Bonnomet, A., Nawrocki-Raby, B., Milliot, M., Terryn, C., Cutrona, J., Polette, M., Birembaut, P., & Zahm, J. M. (2008). Epigallocatechin-3-gallate (EGCG) inhibits the migratory behavior of tumor bronchial epithelial cells. Respiratory Research, 9, 33.PubMed Hazgui, S., Bonnomet, A., Nawrocki-Raby, B., Milliot, M., Terryn, C., Cutrona, J., Polette, M., Birembaut, P., & Zahm, J. M. (2008). Epigallocatechin-3-gallate (EGCG) inhibits the migratory behavior of tumor bronchial epithelial cells. Respiratory Research, 9, 33.PubMed
87.
Zurück zum Zitat Belguise, K., Guo, S., & Sonenshein, G. E. (2007). Activation of FOXO3a by the green tea polyphenol epigallocatechin-3-gallate induces estrogen receptor alpha expression reversing invasive phenotype of breast cancer cells. Cancer Research, 67, 5763–5770.PubMed Belguise, K., Guo, S., & Sonenshein, G. E. (2007). Activation of FOXO3a by the green tea polyphenol epigallocatechin-3-gallate induces estrogen receptor alpha expression reversing invasive phenotype of breast cancer cells. Cancer Research, 67, 5763–5770.PubMed
88.
Zurück zum Zitat Thangapazham, R. L., Passi, N., & Maheshwari, R. K. (2007). Green tea polyphenol and epigallocatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells. Cancer Biology & Therapy, 6, 1938–1943. Thangapazham, R. L., Passi, N., & Maheshwari, R. K. (2007). Green tea polyphenol and epigallocatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells. Cancer Biology & Therapy, 6, 1938–1943.
89.
Zurück zum Zitat Sen, T., & Chatterjee, A. (2010). Epigallocatechin-3-gallate (EGCG) downregulates EGF-induced MMP-9 in breast cancer cells: Involvement of integrin receptor α5β1 in the process. European Journal of Nutrition, 50, 465–478.PubMed Sen, T., & Chatterjee, A. (2010). Epigallocatechin-3-gallate (EGCG) downregulates EGF-induced MMP-9 in breast cancer cells: Involvement of integrin receptor α5β1 in the process. European Journal of Nutrition, 50, 465–478.PubMed
90.
Zurück zum Zitat Slivova, V., Zaloga, G., DeMichele, S. J., Mukerji, P., Huang, Y. S., Siddiqui, R., Harvey, K., Valachovicova, T., & Sliva, D. (2005). Green tea polyphenols modulate secretion of urokinase plasminogen activator (uPA) and inhibit invasive behavior of breast cancer cells. Nutrition and Cancer, 52, 66–73.PubMed Slivova, V., Zaloga, G., DeMichele, S. J., Mukerji, P., Huang, Y. S., Siddiqui, R., Harvey, K., Valachovicova, T., & Sliva, D. (2005). Green tea polyphenols modulate secretion of urokinase plasminogen activator (uPA) and inhibit invasive behavior of breast cancer cells. Nutrition and Cancer, 52, 66–73.PubMed
91.
Zurück zum Zitat Zhang, Y., Han, G., Fan, B., Zhou, Y., Zhou, X., Wei, L., & Zhang, J. (2009). Green tea (−)-epigallocatechin-3-gallate down-regulates VASP expression and inhibits breast cancer cell migration and invasion by attenuating Rac1 activity. European Journal of Pharmacology, 606, 172–179.PubMed Zhang, Y., Han, G., Fan, B., Zhou, Y., Zhou, X., Wei, L., & Zhang, J. (2009). Green tea (−)-epigallocatechin-3-gallate down-regulates VASP expression and inhibits breast cancer cell migration and invasion by attenuating Rac1 activity. European Journal of Pharmacology, 606, 172–179.PubMed
92.
Zurück zum Zitat Sen, T., Moulik, S., Dutta, A., Choudhury, P. R., Banerji, A., Das, S., Roy, M., & Chatterjee, A. (2009). Multifunctional effect of epigallocatechin-3-gallate (EGCG) in downregulation of gelatinase-A (MMP-2) in human breast cancer cell line MCF-7. Life Sciences, 84, 194–204.PubMed Sen, T., Moulik, S., Dutta, A., Choudhury, P. R., Banerji, A., Das, S., Roy, M., & Chatterjee, A. (2009). Multifunctional effect of epigallocatechin-3-gallate (EGCG) in downregulation of gelatinase-A (MMP-2) in human breast cancer cell line MCF-7. Life Sciences, 84, 194–204.PubMed
93.
Zurück zum Zitat Kushima, Y., Iida, K., Nagaoka, Y., Kawaratani, Y., Shirahama, T., Sakaguchi, M., Baba, K., Hara, Y., & Uesato, S. (2009). Inhibitory effect of (−)-epigallocatechin and (−)-epigallocatechin gallate against heregulin beta1-induced migration/invasion of the MCF-7 breast carcinoma cell line. Biological & Pharmaceutical Bulletin, 32, 899–904. Kushima, Y., Iida, K., Nagaoka, Y., Kawaratani, Y., Shirahama, T., Sakaguchi, M., Baba, K., Hara, Y., & Uesato, S. (2009). Inhibitory effect of (−)-epigallocatechin and (−)-epigallocatechin gallate against heregulin beta1-induced migration/invasion of the MCF-7 breast carcinoma cell line. Biological & Pharmaceutical Bulletin, 32, 899–904.
94.
Zurück zum Zitat Farabegoli, F., Papi, A., & Orlandi, M. (2011). (−)Epigallocatechin-3-gallate downregulates EGFR, MMP-2, MMP-9 EMMPRIN and inhibits the invasion of MCF-7 tamoxifen resistant cells. Biosciences Reports, 31, 99–108. Farabegoli, F., Papi, A., & Orlandi, M. (2011). (−)Epigallocatechin-3-gallate downregulates EGFR, MMP-2, MMP-9 EMMPRIN and inhibits the invasion of MCF-7 tamoxifen resistant cells. Biosciences Reports, 31, 99–108.
95.
Zurück zum Zitat Bigelow, R. L., & Cardelli, J. A. (2006). The green tea catechins, (−)-epigallocatechin-3- gallate (EGCG) and (−)-epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene, 25, 1922–1930.PubMed Bigelow, R. L., & Cardelli, J. A. (2006). The green tea catechins, (−)-epigallocatechin-3- gallate (EGCG) and (−)-epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene, 25, 1922–1930.PubMed
96.
Zurück zum Zitat Vayalil, P. K., & Katiyar, S. K. (2004). Treatment of epigallocatechin-3-gallate inhibits matrix metalloproteinases-2 and -9 via inhibition of activation of mitogen-activated protein kinases, c-Jun and NF-kappaB in human prostate carcinoma DU-145 cells. Prostate, 59, 33–42.PubMed Vayalil, P. K., & Katiyar, S. K. (2004). Treatment of epigallocatechin-3-gallate inhibits matrix metalloproteinases-2 and -9 via inhibition of activation of mitogen-activated protein kinases, c-Jun and NF-kappaB in human prostate carcinoma DU-145 cells. Prostate, 59, 33–42.PubMed
97.
Zurück zum Zitat Siddiqui, I. A., Malik, A., Adhami, V. M., Asim, M., Hafeez, B. B., Sarfaraz, S., & Mukhtar, H. (2008). Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene, 27, 2055–2063.PubMed Siddiqui, I. A., Malik, A., Adhami, V. M., Asim, M., Hafeez, B. B., Sarfaraz, S., & Mukhtar, H. (2008). Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene, 27, 2055–2063.PubMed
98.
Zurück zum Zitat Pezzato, E., Sartor, L., Dell’Aica, I., Dittadi, R., Gion, M., Belluco, C., Lise, M., & Garbisa, S. (2004). Prostate carcinoma and green tea: PSA-triggered basement membrane degradation and MMP-2 activation are inhibited by (−) epigallocatechin-3-gallate. International Journal of Cancer, 112, 787–792. Pezzato, E., Sartor, L., Dell’Aica, I., Dittadi, R., Gion, M., Belluco, C., Lise, M., & Garbisa, S. (2004). Prostate carcinoma and green tea: PSA-triggered basement membrane degradation and MMP-2 activation are inhibited by (−) epigallocatechin-3-gallate. International Journal of Cancer, 112, 787–792.
99.
Zurück zum Zitat Sartor, L., Pezzato, E., Donà, M., Dell’Aica, I., Calabrese, F., Morini, M., Albini, A., & Garbisa, S. (2004). Prostate carcinoma and green tea: (−)epigallocatechin-3-gallate inhibits inflammation-triggered MMP-2 activation and invasion in murine TRAMP model. International Journal of Cancer, 112, 823–829. Sartor, L., Pezzato, E., Donà, M., Dell’Aica, I., Calabrese, F., Morini, M., Albini, A., & Garbisa, S. (2004). Prostate carcinoma and green tea: (−)epigallocatechin-3-gallate inhibits inflammation-triggered MMP-2 activation and invasion in murine TRAMP model. International Journal of Cancer, 112, 823–829.
100.
Zurück zum Zitat Larsen, C. A., & Dashwood, R. H. (2010). (−)-Epigallocatechin-3-gallate inhibits Met signaling, proliferation, and invasiveness in human colon cancer cells. Archives of Biochemistry and Biophysics, 501, 52–57.PubMed Larsen, C. A., & Dashwood, R. H. (2010). (−)-Epigallocatechin-3-gallate inhibits Met signaling, proliferation, and invasiveness in human colon cancer cells. Archives of Biochemistry and Biophysics, 501, 52–57.PubMed
101.
Zurück zum Zitat Ogasawara, M., Matsunaga, T., & Suzuki, H. (2007). Differential effects of antioxidants on the in vitro invasion, growth and lung metastasis of murine colon cancer cells. Biological & Pharmaceutical Bulletin, 30, 200–204. Ogasawara, M., Matsunaga, T., & Suzuki, H. (2007). Differential effects of antioxidants on the in vitro invasion, growth and lung metastasis of murine colon cancer cells. Biological & Pharmaceutical Bulletin, 30, 200–204.
102.
Zurück zum Zitat Lim, Y. C., Park, H. Y., Hwang, H. S., Kang, S. U., Pyun, J. H., Lee, M. H., Choi, E. C., & Kim, C. H. (2008). (−)-Epigallocatechin-3-gallate (EGCG) inhibits HGF-induced invasion and metastasis in hypopharyngeal carcinoma cells. Cancer Letters, 271, 140–152.PubMed Lim, Y. C., Park, H. Y., Hwang, H. S., Kang, S. U., Pyun, J. H., Lee, M. H., Choi, E. C., & Kim, C. H. (2008). (−)-Epigallocatechin-3-gallate (EGCG) inhibits HGF-induced invasion and metastasis in hypopharyngeal carcinoma cells. Cancer Letters, 271, 140–152.PubMed
103.
Zurück zum Zitat Hsu, S. D., Singh, B. B., Lewis, J. B., Borke, J. L., Dickinson, D. P., Drake, L., Caughman, G. B., & Schuster, G. S. (2002). Chemoprevention of oral cancer by green tea. General Dentistry, 50, 140–146.PubMed Hsu, S. D., Singh, B. B., Lewis, J. B., Borke, J. L., Dickinson, D. P., Drake, L., Caughman, G. B., & Schuster, G. S. (2002). Chemoprevention of oral cancer by green tea. General Dentistry, 50, 140–146.PubMed
104.
Zurück zum Zitat Ho, Y. C., Yang, S. F., Peng, C. Y., Chou, M. Y., & Chang, Y. C. (2007). Epigallocatechin-3-gallate inhibits the invasion of human oral cancer cells and decreases the productions of matrix metalloproteinases and urokinase-plasminogen activator. Journal of Oral Pathology & Medicine, 36, 588–593. Ho, Y. C., Yang, S. F., Peng, C. Y., Chou, M. Y., & Chang, Y. C. (2007). Epigallocatechin-3-gallate inhibits the invasion of human oral cancer cells and decreases the productions of matrix metalloproteinases and urokinase-plasminogen activator. Journal of Oral Pathology & Medicine, 36, 588–593.
105.
Zurück zum Zitat Kato, K., Long, N. K., Makita, H., Toida, M., Yamashita, T., Hatakeyama, D., Hara, A., Mori, H., & Shibata, T. (2008). Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. British Journal of Cancer, 99, 647–654.PubMed Kato, K., Long, N. K., Makita, H., Toida, M., Yamashita, T., Hatakeyama, D., Hara, A., Mori, H., & Shibata, T. (2008). Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. British Journal of Cancer, 99, 647–654.PubMed
106.
Zurück zum Zitat Park, J. H., Yoon, J. H., Kim, S. A., Ahn, S. G., & Yoon, J. H. (2010). (−)-Epigallocatechin-3-gallate inhibits invasion and migration of salivary gland adenocarcinoma cells. Oncology Reports, 23, 585–590.PubMed Park, J. H., Yoon, J. H., Kim, S. A., Ahn, S. G., & Yoon, J. H. (2010). (−)-Epigallocatechin-3-gallate inhibits invasion and migration of salivary gland adenocarcinoma cells. Oncology Reports, 23, 585–590.PubMed
107.
Zurück zum Zitat Kim, H. S., Kim, M. H., Jeong, M., Hwang, Y. S., Lim, S. H., Shin, B. A., Ahn, B. W., & Jung, Y. D. (2004). EGCG blocks tumor promoter-induced MMP-9 expression via suppression of MAPK and AP-1 activation in human gastric AGS cells. Anticancer Research, 24, 747–753.PubMed Kim, H. S., Kim, M. H., Jeong, M., Hwang, Y. S., Lim, S. H., Shin, B. A., Ahn, B. W., & Jung, Y. D. (2004). EGCG blocks tumor promoter-induced MMP-9 expression via suppression of MAPK and AP-1 activation in human gastric AGS cells. Anticancer Research, 24, 747–753.PubMed
108.
Zurück zum Zitat Maeda-Yamamoto, M., Kawahara, H., Tahara, N., Tsuji, K., Hara, Y., & Isemura, M. (1999). Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells. Journal of Agricultural and Food Chemistry, 47, 2350–2354.PubMed Maeda-Yamamoto, M., Kawahara, H., Tahara, N., Tsuji, K., Hara, Y., & Isemura, M. (1999). Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells. Journal of Agricultural and Food Chemistry, 47, 2350–2354.PubMed
109.
Zurück zum Zitat Maeda-Yamamoto, M., Suzuki, N., Sawai, Y., Miyase, T., Sano, M., Hashimoto-Ohta, A., & Isemura, M. (2003). Association of suppression of extracellular signal-regulated kinase phosphorylation by epigallocatechin gallate with the reduction of matrix metalloproteinase activities in human fibrosarcoma HT1080 cells. Journal of Agricultural and Food Chemistry, 51, 1858–1863.PubMed Maeda-Yamamoto, M., Suzuki, N., Sawai, Y., Miyase, T., Sano, M., Hashimoto-Ohta, A., & Isemura, M. (2003). Association of suppression of extracellular signal-regulated kinase phosphorylation by epigallocatechin gallate with the reduction of matrix metalloproteinase activities in human fibrosarcoma HT1080 cells. Journal of Agricultural and Food Chemistry, 51, 1858–1863.PubMed
110.
Zurück zum Zitat Garbisa, S., Sartor, L., Biggin, S., Salvato, B., Benelli, R., & Albini, A. (2001). Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate. Cancer, 91, 822–832.PubMed Garbisa, S., Sartor, L., Biggin, S., Salvato, B., Benelli, R., & Albini, A. (2001). Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate. Cancer, 91, 822–832.PubMed
111.
Zurück zum Zitat Dell’Aica, I., Donà, M., Sartor, L., Pezzato, E., & Garbisa, S. (2002). (−) Epigallocatechin-3-gallate directly inhibits MT1-MMP activity, leading to accumulation of nonactivated MMP-2 at the cell surface. Laboratory Investigation, 82, 1685–1693.PubMed Dell’Aica, I., Donà, M., Sartor, L., Pezzato, E., & Garbisa, S. (2002). (−) Epigallocatechin-3-gallate directly inhibits MT1-MMP activity, leading to accumulation of nonactivated MMP-2 at the cell surface. Laboratory Investigation, 82, 1685–1693.PubMed
112.
Zurück zum Zitat Takada, M., Nakamura, Y., Koizumi, T., Toyama, H., Kamigaki, T., Suzuki, Y., Takeyama, Y., & Kuroda, Y. (2002). Suppression of human pancreatic carcinoma cell growth and invasion by epigallocatechin-3-gallate. Pancreas, 25, 45–48.PubMed Takada, M., Nakamura, Y., Koizumi, T., Toyama, H., Kamigaki, T., Suzuki, Y., Takeyama, Y., & Kuroda, Y. (2002). Suppression of human pancreatic carcinoma cell growth and invasion by epigallocatechin-3-gallate. Pancreas, 25, 45–48.PubMed
113.
Zurück zum Zitat Pilorget, A., Berthet, V., Luis, J., Moghrabi, A., Annabi, B., & Béliveau, R. (2003). Medulloblastoma cell invasion is inhibited by green tea (−)epigallocatechin-3-gallate. Journal of Cellular Biochemistry, 90, 745–755.PubMed Pilorget, A., Berthet, V., Luis, J., Moghrabi, A., Annabi, B., & Béliveau, R. (2003). Medulloblastoma cell invasion is inhibited by green tea (−)epigallocatechin-3-gallate. Journal of Cellular Biochemistry, 90, 745–755.PubMed
114.
Zurück zum Zitat Takada, M., Ku, Y., Habara, K., Ajiki, T., Suzuki, Y., & Kuroda, Y. (2002). Inhibitory effect of epigallocatechin-3-gallate on growth and invasion in human biliary tract carcinoma cells. World Journal of Surgery, 26, 683–686.PubMed Takada, M., Ku, Y., Habara, K., Ajiki, T., Suzuki, Y., & Kuroda, Y. (2002). Inhibitory effect of epigallocatechin-3-gallate on growth and invasion in human biliary tract carcinoma cells. World Journal of Surgery, 26, 683–686.PubMed
115.
Zurück zum Zitat Fassina, G., Venè, R., Morini, M., Minghelli, S., Benelli, R., Noonan, D. M., & Albini, A. (2004). Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clinical Cancer Research, 10, 4865–4873.PubMed Fassina, G., Venè, R., Morini, M., Minghelli, S., Benelli, R., Noonan, D. M., & Albini, A. (2004). Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clinical Cancer Research, 10, 4865–4873.PubMed
116.
Zurück zum Zitat Liu, J. D., Chen, S. H., Lin, C. L., Tsai, S. H., & Liang, Y. C. (2001). Inhibition of melanoma growth and metastasis by combination with (−)-epigallocatechin-3-gallate and dacarbazine in mice. Journal of Cellular Biochemistry, 83, 631–642.PubMed Liu, J. D., Chen, S. H., Lin, C. L., Tsai, S. H., & Liang, Y. C. (2001). Inhibition of melanoma growth and metastasis by combination with (−)-epigallocatechin-3-gallate and dacarbazine in mice. Journal of Cellular Biochemistry, 83, 631–642.PubMed
117.
Zurück zum Zitat Suzuki, Y., & Isemura, M. (2001). Inhibitory effect of epigallocatechin gallate on adhesion of murine melanoma cells to laminin. Cancer Letters, 173, 15–20.PubMed Suzuki, Y., & Isemura, M. (2001). Inhibitory effect of epigallocatechin gallate on adhesion of murine melanoma cells to laminin. Cancer Letters, 173, 15–20.PubMed
118.
Zurück zum Zitat Wu, Y., Lin, Y., Liu, H., & Li, J. (2008). Inhibition of invasion and up-regulation of E-cadherin expression in human malignant melanoma cell line A375 by (−)-epigallocatechin-3-gallate. Journal of Huazhong University of Science and Technology. Medical Sciences, 28, 356–359. Wu, Y., Lin, Y., Liu, H., & Li, J. (2008). Inhibition of invasion and up-regulation of E-cadherin expression in human malignant melanoma cell line A375 by (−)-epigallocatechin-3-gallate. Journal of Huazhong University of Science and Technology. Medical Sciences, 28, 356–359.
119.
Zurück zum Zitat Kwak, I., Shin, Y. H., Kim, M., Cha, H. Y., Nam, H. J., Lee, B. S., Chaudhary, S. C., Pai, K. S., & Lee, J. H. (2011). Epigallocatechin-3-gallate inhibits paracrine and autocrine hepatocyte growth factor/scatter factor-induced tumor cell migration and invasion. Experimental & Molecular Medicine, 43, 111–120. Kwak, I., Shin, Y. H., Kim, M., Cha, H. Y., Nam, H. J., Lee, B. S., Chaudhary, S. C., Pai, K. S., & Lee, J. H. (2011). Epigallocatechin-3-gallate inhibits paracrine and autocrine hepatocyte growth factor/scatter factor-induced tumor cell migration and invasion. Experimental & Molecular Medicine, 43, 111–120.
120.
Zurück zum Zitat Messina, M., Nagata, C., & Wu, A. H. (2006). Estimated Asian adult soy protein and isoflavone intakes. Nutrition and Cancer, 55, 1–12.PubMed Messina, M., Nagata, C., & Wu, A. H. (2006). Estimated Asian adult soy protein and isoflavone intakes. Nutrition and Cancer, 55, 1–12.PubMed
121.
Zurück zum Zitat Bobe, G., Sansbury, L. B., Albert, P. S., Cross, A. J., Kahle, L., Ashby, J., Slattery, M. L., Caan, B., Paskett, E., Iber, F., Kikendall, J. W., Lance, P., Daston, C., Marshall, J. R., Schatzkin, A., & Lanza, E. (2008). Dietary flavonoids and colorectal adenoma recurrence in the polyp prevention trial. Cancer Epidemiology, Biomarkers & Prevention, 17, 1344–1353. Bobe, G., Sansbury, L. B., Albert, P. S., Cross, A. J., Kahle, L., Ashby, J., Slattery, M. L., Caan, B., Paskett, E., Iber, F., Kikendall, J. W., Lance, P., Daston, C., Marshall, J. R., Schatzkin, A., & Lanza, E. (2008). Dietary flavonoids and colorectal adenoma recurrence in the polyp prevention trial. Cancer Epidemiology, Biomarkers & Prevention, 17, 1344–1353.
122.
Zurück zum Zitat Hwang, Y. W., Kim, S. Y., Jee, S. H., Kim, Y. N., & Nam, C. M. (2009). Soy food consumption and risk of prostate cancer: A meta-analysis of observational studies. Nutrition and Cancer, 61, 598–606.PubMed Hwang, Y. W., Kim, S. Y., Jee, S. H., Kim, Y. N., & Nam, C. M. (2009). Soy food consumption and risk of prostate cancer: A meta-analysis of observational studies. Nutrition and Cancer, 61, 598–606.PubMed
123.
Zurück zum Zitat Magee, P. J., & Rowland, I. R. (2004). Phyto-oestrogens, their mechanism of action: Current evidence for a role in breast and prostate cancer. British Journal of Nutrition, 91, 513–531.PubMed Magee, P. J., & Rowland, I. R. (2004). Phyto-oestrogens, their mechanism of action: Current evidence for a role in breast and prostate cancer. British Journal of Nutrition, 91, 513–531.PubMed
124.
Zurück zum Zitat Park, O. J., & Surh, Y. J. (2004). Chemopreventive potential of epigallocatechin gallate and genistein: Evidence from epidemiological and laboratory studies. Toxicology Letters, 150, 43–56.PubMed Park, O. J., & Surh, Y. J. (2004). Chemopreventive potential of epigallocatechin gallate and genistein: Evidence from epidemiological and laboratory studies. Toxicology Letters, 150, 43–56.PubMed
125.
Zurück zum Zitat Sarkar, F. H., & Li, Y. (2002). Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer and Metastasis Reviews, 21, 265–280.PubMed Sarkar, F. H., & Li, Y. (2002). Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer and Metastasis Reviews, 21, 265–280.PubMed
126.
Zurück zum Zitat Sarkar, F. H., & Li, Y. (2003). Soy isoflavones and cancer prevention. Cancer Investigation, 217, 44–757. Sarkar, F. H., & Li, Y. (2003). Soy isoflavones and cancer prevention. Cancer Investigation, 217, 44–757.
127.
Zurück zum Zitat Gu, Y., Zhu, C. F., Iwamoto, H., & Chen, J. S. (2005). Genistein inhibits invasive potential of human hepatocellular carcinoma by altering cell cycle, apoptosis, and angiogenesis. World Journal of Gastroenterology, 11, 6512–6517.PubMed Gu, Y., Zhu, C. F., Iwamoto, H., & Chen, J. S. (2005). Genistein inhibits invasive potential of human hepatocellular carcinoma by altering cell cycle, apoptosis, and angiogenesis. World Journal of Gastroenterology, 11, 6512–6517.PubMed
128.
Zurück zum Zitat Valachovicova, T., Slivova, V., Bergman, H., Shuherk, J., & Sliva, D. (2004). Soy isoflavones suppress invasiveness of breast cancer cells by the inhibition of NF-kappaB/AP-1-dependent and -independent pathways. International Journal of Oncology, 25, 1389–1395.PubMed Valachovicova, T., Slivova, V., Bergman, H., Shuherk, J., & Sliva, D. (2004). Soy isoflavones suppress invasiveness of breast cancer cells by the inhibition of NF-kappaB/AP-1-dependent and -independent pathways. International Journal of Oncology, 25, 1389–1395.PubMed
129.
Zurück zum Zitat Magee, P. J., McGlynn, H., & Rowland, I. R. (2004). Differential effects of isoflavones and lignans on invasiveness of MDA-MB-231 breast cancer cells in vitro. Cancer Letters, 208, 35–41.PubMed Magee, P. J., McGlynn, H., & Rowland, I. R. (2004). Differential effects of isoflavones and lignans on invasiveness of MDA-MB-231 breast cancer cells in vitro. Cancer Letters, 208, 35–41.PubMed
130.
Zurück zum Zitat Kousidou, O. C., Mitropoulou, T. N., Roussidis, A. E., Kletsas, D., Theocharis, A. D., & Karamanos, N. K. (2005). Genistein suppresses the invasive potential of human breast cancer cells through transcriptional regulation of metalloproteinases and their tissue inhibitors. International Journal of Oncology, 26, 1101–1109.PubMed Kousidou, O. C., Mitropoulou, T. N., Roussidis, A. E., Kletsas, D., Theocharis, A. D., & Karamanos, N. K. (2005). Genistein suppresses the invasive potential of human breast cancer cells through transcriptional regulation of metalloproteinases and their tissue inhibitors. International Journal of Oncology, 26, 1101–1109.PubMed
131.
Zurück zum Zitat Hsu, E. L., Chen, N. A., Westbrook, F., Wang, R., Zhang, R., Taylor, T., & Hankinson, O. (2009). Modulation of CXCR4, CXCL12, and tumor cell invasion potential in vitro by phytochemicals. Journal of Oncology, 2009, 491985.PubMed Hsu, E. L., Chen, N. A., Westbrook, F., Wang, R., Zhang, R., Taylor, T., & Hankinson, O. (2009). Modulation of CXCR4, CXCL12, and tumor cell invasion potential in vitro by phytochemicals. Journal of Oncology, 2009, 491985.PubMed
132.
Zurück zum Zitat Shao, Z. M., Wu, J., Shen, Z. Z., & Barsky, S. H. (1998). Genistein inhibits both constitutive and EGF-stimulated invasion in ER-negative human breast carcinoma cell lines. Anticancer Research, 18, 1435–1439.PubMed Shao, Z. M., Wu, J., Shen, Z. Z., & Barsky, S. H. (1998). Genistein inhibits both constitutive and EGF-stimulated invasion in ER-negative human breast carcinoma cell lines. Anticancer Research, 18, 1435–1439.PubMed
133.
Zurück zum Zitat Scholar, E. M., & Toews, M. L. (1994). Inhibition of invasion of murine mammary carcinoma cells by the tyrosine kinase inhibitor genistein. Cancer Letters, 87, 159–162.PubMed Scholar, E. M., & Toews, M. L. (1994). Inhibition of invasion of murine mammary carcinoma cells by the tyrosine kinase inhibitor genistein. Cancer Letters, 87, 159–162.PubMed
134.
Zurück zum Zitat Farina, H. G., Pomies, M., Alonso, D. F., & Gomez, D. E. (2006). Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncology Reports, 16, 885–891.PubMed Farina, H. G., Pomies, M., Alonso, D. F., & Gomez, D. E. (2006). Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncology Reports, 16, 885–891.PubMed
135.
Zurück zum Zitat Zhang, L. L., Li, L., Wu, D. P., Fan, J. H., Li, X., Wu, K. J., Wang, X. Y., & He, D. L. (2008). A novel anti-cancer effect of genistein: Reversal of epithelial mesenchymal transition in prostate cancer cells. Acta Pharmacologica Sinica, 29, 1060–1068.PubMed Zhang, L. L., Li, L., Wu, D. P., Fan, J. H., Li, X., Wu, K. J., Wang, X. Y., & He, D. L. (2008). A novel anti-cancer effect of genistein: Reversal of epithelial mesenchymal transition in prostate cancer cells. Acta Pharmacologica Sinica, 29, 1060–1068.PubMed
136.
Zurück zum Zitat Li, Y., Kucuk, O., Hussain, M., Abrams, J., Cher, M. L., & Sarkar, F. H. (2006). Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Research, 66, 4816–4825.PubMed Li, Y., Kucuk, O., Hussain, M., Abrams, J., Cher, M. L., & Sarkar, F. H. (2006). Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Research, 66, 4816–4825.PubMed
137.
Zurück zum Zitat El Touny, L. H., & Banerjee, P. P. (2009). Identification of a biphasic role for genistein in the regulation of prostate cancer growth and metastasis. Cancer Research, 69, 3695–3703.PubMed El Touny, L. H., & Banerjee, P. P. (2009). Identification of a biphasic role for genistein in the regulation of prostate cancer growth and metastasis. Cancer Research, 69, 3695–3703.PubMed
138.
Zurück zum Zitat Huang, X., Chen, S., Xu, L., Liu, Y., Deb, D. K., Platanias, L. C., & Bergan, R. C. (2005). Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Research, 65, 3470–3478.PubMed Huang, X., Chen, S., Xu, L., Liu, Y., Deb, D. K., Platanias, L. C., & Bergan, R. C. (2005). Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Research, 65, 3470–3478.PubMed
139.
Zurück zum Zitat Xu, L., & Bergan, R. C. (2006). Genistein inhibits matrix metalloproteinase type 2 activation and prostate cancer cell invasion by blocking the transforming growth factor beta-mediated activation of mitogen-activated protein kinase-activated protein kinase 2-27-kDa heat shock protein pathway. Molecular Pharmacology, 70, 869–877.PubMed Xu, L., & Bergan, R. C. (2006). Genistein inhibits matrix metalloproteinase type 2 activation and prostate cancer cell invasion by blocking the transforming growth factor beta-mediated activation of mitogen-activated protein kinase-activated protein kinase 2-27-kDa heat shock protein pathway. Molecular Pharmacology, 70, 869–877.PubMed
140.
Zurück zum Zitat Xu, L., Ding, Y., Catalona, W. J., Yang, X. J., Anderson, W. F., Jovanovic, B., Wellman, K., Killmer, J., Huang, X., Scheidt, K. A., Montgomery, R. B., & Bergan, R. C. (2009). MEK4 function, genistein treatment, and invasion of human prostate cancer cells. Journal of the National Cancer Institute, 101, 1141–1155.PubMed Xu, L., Ding, Y., Catalona, W. J., Yang, X. J., Anderson, W. F., Jovanovic, B., Wellman, K., Killmer, J., Huang, X., Scheidt, K. A., Montgomery, R. B., & Bergan, R. C. (2009). MEK4 function, genistein treatment, and invasion of human prostate cancer cells. Journal of the National Cancer Institute, 101, 1141–1155.PubMed
141.
Zurück zum Zitat El Touny, L. H., & Banerjee, P. P. (2007). Genistein induces the metastasis suppressor kangai-1 which mediates its anti-invasive effects in TRAMP cancer cells. Biochemical and Biophysics Research Communications, 361, 169–175. El Touny, L. H., & Banerjee, P. P. (2007). Genistein induces the metastasis suppressor kangai-1 which mediates its anti-invasive effects in TRAMP cancer cells. Biochemical and Biophysics Research Communications, 361, 169–175.
142.
Zurück zum Zitat Yan, C., & Han, R. (1999). Protein tyrosine kinase inhibitor genistein suppresses in vitro invasion of HT1080 human fibrosarcoma cells. Zhonghua Zhong Liu Za Zhi, 21, 171–174.PubMed Yan, C., & Han, R. (1999). Protein tyrosine kinase inhibitor genistein suppresses in vitro invasion of HT1080 human fibrosarcoma cells. Zhonghua Zhong Liu Za Zhi, 21, 171–174.PubMed
143.
Zurück zum Zitat Yan, C., & Han, R. (1999). Effects of genistein on invasion and matrix metalloproteinase activities of HT1080 human fibrosarcoma cells. Chinese Medical Sciences Journal, 14, 129–133.PubMed Yan, C., & Han, R. (1999). Effects of genistein on invasion and matrix metalloproteinase activities of HT1080 human fibrosarcoma cells. Chinese Medical Sciences Journal, 14, 129–133.PubMed
144.
Zurück zum Zitat Hölting, T., Siperstein, A. E., Clark, O. H., & Duh, Q. Y. (1995). Epidermal growth factor (EGF)- and transforming growth factor alpha-stimulated invasion and growth of follicular thyroid cancer cells can be blocked by antagonism to the EGF receptor and tyrosine kinase in vitro. European Journal of Endocrinology, 132, 229–235.PubMed Hölting, T., Siperstein, A. E., Clark, O. H., & Duh, Q. Y. (1995). Epidermal growth factor (EGF)- and transforming growth factor alpha-stimulated invasion and growth of follicular thyroid cancer cells can be blocked by antagonism to the EGF receptor and tyrosine kinase in vitro. European Journal of Endocrinology, 132, 229–235.PubMed
145.
Zurück zum Zitat Yan, C., & Han, R. (1998). Genistein suppresses adhesion-induced protein tyrosine phosphorylation and invasion of B16-BL6 melanoma cells. Cancer Letters, 129, 117–124.PubMed Yan, C., & Han, R. (1998). Genistein suppresses adhesion-induced protein tyrosine phosphorylation and invasion of B16-BL6 melanoma cells. Cancer Letters, 129, 117–124.PubMed
146.
Zurück zum Zitat Singh, R. P., & Agarwal, R. (2002). Flavonoid antioxidant silymarin and skin cancer. Antioxidants & Redox Signaling, 4, 655–663. Singh, R. P., & Agarwal, R. (2002). Flavonoid antioxidant silymarin and skin cancer. Antioxidants & Redox Signaling, 4, 655–663.
147.
Zurück zum Zitat Chu, S. C., Chiou, H. L., Chen, P. N., Yang, S. F., & Hsieh, Y. S. (2004). Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Molecular Carcinogenesis, 40, 143–149.PubMed Chu, S. C., Chiou, H. L., Chen, P. N., Yang, S. F., & Hsieh, Y. S. (2004). Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Molecular Carcinogenesis, 40, 143–149.PubMed
148.
Zurück zum Zitat Chen, P. N., Hsieh, Y. S., Chiou, H. L., & Chu, S. C. (2005). Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chemico-Biological Interactions, 156, 141–150.PubMed Chen, P. N., Hsieh, Y. S., Chiou, H. L., & Chu, S. C. (2005). Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chemico-Biological Interactions, 156, 141–150.PubMed
149.
Zurück zum Zitat Lee, S. O., Jeong, Y. J., Im, H. G., Kim, C. H., Chang, Y. C., & Lee, I. S. (2007). Silibinin suppresses PMA-induced MMP-9 expression by blocking the AP-1 activation via MAPK signaling pathways in MCF-7 human breast carcinoma cells. Biochemical and Biophysics Research Communications, 354, 165–171. Lee, S. O., Jeong, Y. J., Im, H. G., Kim, C. H., Chang, Y. C., & Lee, I. S. (2007). Silibinin suppresses PMA-induced MMP-9 expression by blocking the AP-1 activation via MAPK signaling pathways in MCF-7 human breast carcinoma cells. Biochemical and Biophysics Research Communications, 354, 165–171.
150.
Zurück zum Zitat Kim, S., Choi, J. H., Lim, H. I., Lee, S. K., Kim, W. W., Kim, J. S., Kim, J. H., Choe, J. H., Yang, J. H., Nam, S. J., & Lee, J. E. (2009). Silibinin prevents TPA-induced MMP-9 expression and VEGF secretion by inactivation of the Raf/MEK/ERK pathway in MCF-7 human breast cancer cells. Phytomedicine, 16, 573–580.PubMed Kim, S., Choi, J. H., Lim, H. I., Lee, S. K., Kim, W. W., Kim, J. S., Kim, J. H., Choe, J. H., Yang, J. H., Nam, S. J., & Lee, J. E. (2009). Silibinin prevents TPA-induced MMP-9 expression and VEGF secretion by inactivation of the Raf/MEK/ERK pathway in MCF-7 human breast cancer cells. Phytomedicine, 16, 573–580.PubMed
151.
Zurück zum Zitat Mokhtari, M. J., Motamed, N., & Shokrgozar, M. A. (2008). Evaluation of silibinin on the viability, migration and adhesion of the human prostate adenocarcinoma (PC-3) cell line. Cell Biology International, 32, 888–892.PubMed Mokhtari, M. J., Motamed, N., & Shokrgozar, M. A. (2008). Evaluation of silibinin on the viability, migration and adhesion of the human prostate adenocarcinoma (PC-3) cell line. Cell Biology International, 32, 888–892.PubMed
152.
Zurück zum Zitat Wu, K. J., Zeng, J., Zhu, G. D., Zhang, L. L., Zhang, D., Li, L., Fan, J. H., Wang, X. Y., & He, D. L. (2009). Silibinin inhibits prostate cancer invasion, motility and migration by suppressing vimentin and MMP-2 expression. Acta Pharmacologica Sinica, 30, 1162–1168.PubMed Wu, K. J., Zeng, J., Zhu, G. D., Zhang, L. L., Zhang, D., Li, L., Fan, J. H., Wang, X. Y., & He, D. L. (2009). Silibinin inhibits prostate cancer invasion, motility and migration by suppressing vimentin and MMP-2 expression. Acta Pharmacologica Sinica, 30, 1162–1168.PubMed
153.
Zurück zum Zitat Wu, K., Zeng, J., Li, L., Fan, J., Zhang, D., Xue, Y., Zhu, G., Yang, L., Wang, X., & He, D. (2010). Silibinin reverses epithelial-to-mesenchymal transition in metastatic prostate cancer cells by targeting transcription factors. Oncology Reports, 23, 1545–1552.PubMed Wu, K., Zeng, J., Li, L., Fan, J., Zhang, D., Xue, Y., Zhu, G., Yang, L., Wang, X., & He, D. (2010). Silibinin reverses epithelial-to-mesenchymal transition in metastatic prostate cancer cells by targeting transcription factors. Oncology Reports, 23, 1545–1552.PubMed
154.
Zurück zum Zitat Chen, P. N., Hsieh, Y. S., Chiang, C. L., Chiou, H. L., Yang, S. F., & Chu, S. C. (2006). Silibinin inhibits invasion of oral cancer cells by suppressing the MAPK pathway. Journal of Dental Research, 85, 220–225.PubMed Chen, P. N., Hsieh, Y. S., Chiang, C. L., Chiou, H. L., Yang, S. F., & Chu, S. C. (2006). Silibinin inhibits invasion of oral cancer cells by suppressing the MAPK pathway. Journal of Dental Research, 85, 220–225.PubMed
155.
Zurück zum Zitat Chang, H. R., Chen, P. N., Yang, S. F., Sun, Y. S., Wu, S. W., Hung, T. W., Lian, J. D., Chu, S. C., & Hsieh, Y. S. (2011). Silibinin inhibits the invasion and migration of renal carcinoma 786-O cells in vitro, inhibits the growth of xenografts in vivo and enhances chemosensitivity to 5-fluorouracil and paclitaxel. Molecular Carcinogenesis, 50, 811–823.PubMed Chang, H. R., Chen, P. N., Yang, S. F., Sun, Y. S., Wu, S. W., Hung, T. W., Lian, J. D., Chu, S. C., & Hsieh, Y. S. (2011). Silibinin inhibits the invasion and migration of renal carcinoma 786-O cells in vitro, inhibits the growth of xenografts in vivo and enhances chemosensitivity to 5-fluorouracil and paclitaxel. Molecular Carcinogenesis, 50, 811–823.PubMed
156.
Zurück zum Zitat Hsieh, Y. S., Chu, S. C., Yang, S. F., Chen, P. N., Liu, Y. C., & Lu, K. H. (2007). Silibinin suppresses human osteosarcoma MG-63 cell invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of MMP-2. Carcinogenesis, 28, 977–987.PubMed Hsieh, Y. S., Chu, S. C., Yang, S. F., Chen, P. N., Liu, Y. C., & Lu, K. H. (2007). Silibinin suppresses human osteosarcoma MG-63 cell invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of MMP-2. Carcinogenesis, 28, 977–987.PubMed
157.
Zurück zum Zitat Naderi, G. A., Asgary, S., Sarraf-Zadegan, N., & Shirvany, H. (2003). Anti-oxidant effect of flavonoids on the susceptibility of LDL oxidation. Molecular and Cellular Biochemistry, 246, 193–196.PubMed Naderi, G. A., Asgary, S., Sarraf-Zadegan, N., & Shirvany, H. (2003). Anti-oxidant effect of flavonoids on the susceptibility of LDL oxidation. Molecular and Cellular Biochemistry, 246, 193–196.PubMed
158.
Zurück zum Zitat Mamani-Matsuda, M. (2006). Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators. Biochemical Pharmacology, 72, 1304–1310.PubMed Mamani-Matsuda, M. (2006). Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators. Biochemical Pharmacology, 72, 1304–1310.PubMed
159.
Zurück zum Zitat Lotito, S. B., & Frei, B. (2006). Dietary flavonoids attenuate tumor necrosis factor alpha-induced adhesion molecule expression in human aortic endothelial cells. Structure–function relationships and activity after first pass metabolism. The Journal of Biological Chemistry, 281, 37102–37110.PubMed Lotito, S. B., & Frei, B. (2006). Dietary flavonoids attenuate tumor necrosis factor alpha-induced adhesion molecule expression in human aortic endothelial cells. Structure–function relationships and activity after first pass metabolism. The Journal of Biological Chemistry, 281, 37102–37110.PubMed
160.
Zurück zum Zitat Lin, C. W., Hou, W. C., Shen, S. C., Juan, S. H., Ko, C. H., Wang, L. M., & Chen, Y. C. (2008). Quercetin inhibition of tumor invasion via suppressing PKC delta/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. Carcinogenesis, 29, 1807–1815.PubMed Lin, C. W., Hou, W. C., Shen, S. C., Juan, S. H., Ko, C. H., Wang, L. M., & Chen, Y. C. (2008). Quercetin inhibition of tumor invasion via suppressing PKC delta/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. Carcinogenesis, 29, 1807–1815.PubMed
161.
Zurück zum Zitat Phromnoi, K., Yodkeeree, S., Anuchapreeda, S., & Limtrakul, P. (2009). Inhibition of MMP-3 activity and invasion of the MDA-MB-231 human invasive breast carcinoma cell line by bioflavonoids. Acta Pharmacologica Sinica, 30, 1169–1176.PubMed Phromnoi, K., Yodkeeree, S., Anuchapreeda, S., & Limtrakul, P. (2009). Inhibition of MMP-3 activity and invasion of the MDA-MB-231 human invasive breast carcinoma cell line by bioflavonoids. Acta Pharmacologica Sinica, 30, 1169–1176.PubMed
162.
Zurück zum Zitat Vijayababu, M. R., Arunkumar, A., Kanagaraj, P., Venkataraman, P., Krishnamoorthy, G., & Arunakaran, J. (2006). Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Molecular and Cellular Biochemistry, 287, 109–116.PubMed Vijayababu, M. R., Arunkumar, A., Kanagaraj, P., Venkataraman, P., Krishnamoorthy, G., & Arunakaran, J. (2006). Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Molecular and Cellular Biochemistry, 287, 109–116.PubMed
163.
Zurück zum Zitat Senthilkumar, K., Arunkumar, R., Elumalai, P., Sharmila, G., Gunadharini, D. N., Banudevi, S., Krishnamoorthy, G., Benson, C. S., & Arunakaran, J. (2011). Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3). Cell Biochemistry and Function, 29, 87–95.PubMed Senthilkumar, K., Arunkumar, R., Elumalai, P., Sharmila, G., Gunadharini, D. N., Banudevi, S., Krishnamoorthy, G., Benson, C. S., & Arunakaran, J. (2011). Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3). Cell Biochemistry and Function, 29, 87–95.PubMed
164.
Zurück zum Zitat Labbé, D., Provençal, M., Lamy, S., Boivin, D., Gingras, D., & Béliveau, R. (2009). The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. The Journal of Nutrition, 139, 646–652.PubMed Labbé, D., Provençal, M., Lamy, S., Boivin, D., Gingras, D., & Béliveau, R. (2009). The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. The Journal of Nutrition, 139, 646–652.PubMed
165.
Zurück zum Zitat Chiu, W. T., Shen, S. C., Chow, J. M., Lin, C. W., Shia, L. T., & Chen, Y. C. (2010). Contribution of reactive oxygen species to migration/invasion of human glioblastoma cells U87 via ERK-dependent COX-2/PGE(2) activation. Neurobiology of Disease, 37, 118–129.PubMed Chiu, W. T., Shen, S. C., Chow, J. M., Lin, C. W., Shia, L. T., & Chen, Y. C. (2010). Contribution of reactive oxygen species to migration/invasion of human glioblastoma cells U87 via ERK-dependent COX-2/PGE(2) activation. Neurobiology of Disease, 37, 118–129.PubMed
166.
Zurück zum Zitat Zhang, F. L., Zhang, W., Chen, X. M., & Luo, R. Y. (2008). Effects of quercetin and quercetin in combination with cisplatin on adhesion, migration and invasion of HeLa cells. Zhonghua Fu Chan Ke Za Zhi, 43, 619–621.PubMed Zhang, F. L., Zhang, W., Chen, X. M., & Luo, R. Y. (2008). Effects of quercetin and quercetin in combination with cisplatin on adhesion, migration and invasion of HeLa cells. Zhonghua Fu Chan Ke Za Zhi, 43, 619–621.PubMed
167.
Zurück zum Zitat Zhang, W., & Zhang, F. (2009). Effects of quercetin on proliferation, apoptosis, adhesion and migration, and invasion of HeLa cells. European Journal of Gynaecological Oncology, 30, 60–64.PubMed Zhang, W., & Zhang, F. (2009). Effects of quercetin on proliferation, apoptosis, adhesion and migration, and invasion of HeLa cells. European Journal of Gynaecological Oncology, 30, 60–64.PubMed
168.
Zurück zum Zitat Lin, Y. S., Tsai, P. H., Kandaswami, C. C., Cheng, C. H., Ke, F. C., Lee, P. P., Hwang, J. J., & Lee, M. T. (2011). Effects of dietary flavonoids, luteolin and quercetin on the reversal of epithelial–mesenchymal transition in A431 epidermal cancer cells. Cancer Science, 102, 1829–1839.PubMed Lin, Y. S., Tsai, P. H., Kandaswami, C. C., Cheng, C. H., Ke, F. C., Lee, P. P., Hwang, J. J., & Lee, M. T. (2011). Effects of dietary flavonoids, luteolin and quercetin on the reversal of epithelial–mesenchymal transition in A431 epidermal cancer cells. Cancer Science, 102, 1829–1839.PubMed
169.
Zurück zum Zitat Caltagirone, S., Rossi, C., Poggi, A., Ranelletti, F. O., Natali, P. G., Brunetti, M., Aiello, F. B., & Piantelli, M. (2000). Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. International Journal of Cancer, 87, 595–600. Caltagirone, S., Rossi, C., Poggi, A., Ranelletti, F. O., Natali, P. G., Brunetti, M., Aiello, F. B., & Piantelli, M. (2000). Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. International Journal of Cancer, 87, 595–600.
170.
Zurück zum Zitat Zhang, X. M., Huang, S. P., & Xu, Q. (2004). Quercetin inhibits the invasion of murine melanoma B16-BL6 cells by decreasing pro-MMP-9 via the PKC pathway. Cancer Chemotherapy and Pharmacology, 53, 82–88.PubMed Zhang, X. M., Huang, S. P., & Xu, Q. (2004). Quercetin inhibits the invasion of murine melanoma B16-BL6 cells by decreasing pro-MMP-9 via the PKC pathway. Cancer Chemotherapy and Pharmacology, 53, 82–88.PubMed
171.
Zurück zum Zitat Jeong, Y., Tyner, A. L., & Park, J. H. (2007). Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. American Journal of Physiology. Gastrointestinal and Liver Physiology, 292, G66–G75.PubMed Jeong, Y., Tyner, A. L., & Park, J. H. (2007). Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. American Journal of Physiology. Gastrointestinal and Liver Physiology, 292, G66–G75.PubMed
172.
Zurück zum Zitat Selvendiran, K., Koga, H., Ueno, T., Yoshida, T., Maeyama, M., Torimura, T., Yano, H., Kojiro, M., & Sata, M. (2006). Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: An implication for the antitumor potential of flavonoids. Cancer Research, 66, 4826–4834.PubMed Selvendiran, K., Koga, H., Ueno, T., Yoshida, T., Maeyama, M., Torimura, T., Yano, H., Kojiro, M., & Sata, M. (2006). Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: An implication for the antitumor potential of flavonoids. Cancer Research, 66, 4826–4834.PubMed
173.
Zurück zum Zitat Lee, W. J., Wu, L. F., Chen, W. K., Wang, C. J., & Tseng, T. H. (2006). Inhibitory effect of luteolin on hepatocyte growth factor/scatter factor-induced HepG2 cell invasion involving both MAPK/ERKs and PI3K-Akt pathways. Chemico-Biological Interactions, 160, 123–133.PubMed Lee, W. J., Wu, L. F., Chen, W. K., Wang, C. J., & Tseng, T. H. (2006). Inhibitory effect of luteolin on hepatocyte growth factor/scatter factor-induced HepG2 cell invasion involving both MAPK/ERKs and PI3K-Akt pathways. Chemico-Biological Interactions, 160, 123–133.PubMed
174.
Zurück zum Zitat Attoub, S., Hassan, A. H., Vanhoecke, B., Iratni, R., Takahashi, T., Gaben, A. M., Bracke, M., Awad, S., John, A., Kamalboor, H. A., Al Sultan, M. A., Arafat, K., Gespach, C., & Petroianu, G. (2011). Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells. European Journal of Pharmacology, 651, 18–25.PubMed Attoub, S., Hassan, A. H., Vanhoecke, B., Iratni, R., Takahashi, T., Gaben, A. M., Bracke, M., Awad, S., John, A., Kamalboor, H. A., Al Sultan, M. A., Arafat, K., Gespach, C., & Petroianu, G. (2011). Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells. European Journal of Pharmacology, 651, 18–25.PubMed
175.
Zurück zum Zitat Lansky, E. P., Harrison, G., Froom, P., & Jiang, W. G. (2005). Pomegranate (Punica granatum) pure chemicals show possible synergistic inhibition of human PC-3 prostate cancer cell invasion across Matrigel. Investigational New Drugs, 23, 121–122.PubMed Lansky, E. P., Harrison, G., Froom, P., & Jiang, W. G. (2005). Pomegranate (Punica granatum) pure chemicals show possible synergistic inhibition of human PC-3 prostate cancer cell invasion across Matrigel. Investigational New Drugs, 23, 121–122.PubMed
176.
Zurück zum Zitat Zhou, Q., Yan, B., Hu, X., Li, X. B., Zhang, J., & Fang, J. (2009). Luteolin inhibits invasion of prostate cancer PC3 cells through E-cadherin. Molecular Cancer Therapeutics, 8, 1684–1691.PubMed Zhou, Q., Yan, B., Hu, X., Li, X. B., Zhang, J., & Fang, J. (2009). Luteolin inhibits invasion of prostate cancer PC3 cells through E-cadherin. Molecular Cancer Therapeutics, 8, 1684–1691.PubMed
177.
Zurück zum Zitat Lin, C. W., Shen, S. C., Chien, C. C., Yang, L. Y., Shia, L. T., & Chen, Y. C. (2010). 12-O-tetradecanoylphorbol-13-acetate-induced invasion/migration of glioblastoma cells through activating PKC alpha/ERK/NF-kappaB-dependent MMP-9 expression. Journal of Cellular Physiology, 225, 472–481.PubMed Lin, C. W., Shen, S. C., Chien, C. C., Yang, L. Y., Shia, L. T., & Chen, Y. C. (2010). 12-O-tetradecanoylphorbol-13-acetate-induced invasion/migration of glioblastoma cells through activating PKC alpha/ERK/NF-kappaB-dependent MMP-9 expression. Journal of Cellular Physiology, 225, 472–481.PubMed
178.
Zurück zum Zitat Ross, J. A., & Kasum, C. M. (2002). Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 22, 19–34.PubMed Ross, J. A., & Kasum, C. M. (2002). Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 22, 19–34.PubMed
179.
Zurück zum Zitat Gupta, S., Afaq, F., & Mukhtar, H. (2001). Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochemical and Biophysics Research Communications, 287, 914–920. Gupta, S., Afaq, F., & Mukhtar, H. (2001). Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochemical and Biophysics Research Communications, 287, 914–920.
180.
Zurück zum Zitat Wang, W., Heideman, L., Chung, C. S., Pelling, J. C., Koehler, K. J., & Birt, D. F. (2000). Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines. Molecular Carcinogenesis, 28, 102–110.PubMed Wang, W., Heideman, L., Chung, C. S., Pelling, J. C., Koehler, K. J., & Birt, D. F. (2000). Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines. Molecular Carcinogenesis, 28, 102–110.PubMed
181.
Zurück zum Zitat Way, T. D., Kao, M. C., & Lin, J. K. (2004). Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. The Journal of Biological Chemistry, 279, 4479–4489.PubMed Way, T. D., Kao, M. C., & Lin, J. K. (2004). Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. The Journal of Biological Chemistry, 279, 4479–4489.PubMed
182.
Zurück zum Zitat Zheng, P. W., Chiang, L. C., & Lin, C. C. (2005). Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sciences, 76, 1367–1379.PubMed Zheng, P. W., Chiang, L. C., & Lin, C. C. (2005). Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sciences, 76, 1367–1379.PubMed
183.
Zurück zum Zitat Czyz, J., Madeja, Z., Irmer, U., Korohoda, W., & Hülser, D. F. (2005). Flavonoid apigenin inhibits motility and invasiveness of carcinoma cells in vitro. International Journal of Cancer, 114, 12–18. Czyz, J., Madeja, Z., Irmer, U., Korohoda, W., & Hülser, D. F. (2005). Flavonoid apigenin inhibits motility and invasiveness of carcinoma cells in vitro. International Journal of Cancer, 114, 12–18.
184.
Zurück zum Zitat Lindenmeyer, F., Li, H., Menashi, S., Soria, C., & Lu, H. (2001). Apigenin acts on the tumor cell invasion process and regulates protease production. Nutrition and Cancer, 39, 139–147.PubMed Lindenmeyer, F., Li, H., Menashi, S., Soria, C., & Lu, H. (2001). Apigenin acts on the tumor cell invasion process and regulates protease production. Nutrition and Cancer, 39, 139–147.PubMed
185.
Zurück zum Zitat Lee, W. J., Chen, W. K., Wang, C. J., Lin, W. L., & Tseng, T. H. (2008). Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells. Toxicology and Applied Pharmacology, 226, 178–191.PubMed Lee, W. J., Chen, W. K., Wang, C. J., Lin, W. L., & Tseng, T. H. (2008). Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells. Toxicology and Applied Pharmacology, 226, 178–191.PubMed
186.
Zurück zum Zitat Franzen, C. A., Amargo, E., Todorović, V., Desai, B. V., Huda, S., Mirzoeva, S., Chiu, K., Grzybowski, B. A., Chew, T. L., Green, K. J., & Pelling, J. C. (2009). The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Cancer Prevention Research (Phila), 2, 830–841. Franzen, C. A., Amargo, E., Todorović, V., Desai, B. V., Huda, S., Mirzoeva, S., Chiu, K., Grzybowski, B. A., Chew, T. L., Green, K. J., & Pelling, J. C. (2009). The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Cancer Prevention Research (Phila), 2, 830–841.
187.
Zurück zum Zitat Zhu, F., Liu, X. G., & Liang, N. C. (2003). Effect of emodin and apigenin on invasion of human ovarian carcinoma HO-8910 PM cells in vitro. Ai Zheng, 22, 358–362.PubMed Zhu, F., Liu, X. G., & Liang, N. C. (2003). Effect of emodin and apigenin on invasion of human ovarian carcinoma HO-8910 PM cells in vitro. Ai Zheng, 22, 358–362.PubMed
188.
Zurück zum Zitat Hu, X. W., Meng, D., & Fang, J. (2008). Apigenin inhibited migration and invasion of human ovarian cancer A2780 cells through focal adhesion kinase. Carcinogenesis, 29, 2369–2376.PubMed Hu, X. W., Meng, D., & Fang, J. (2008). Apigenin inhibited migration and invasion of human ovarian cancer A2780 cells through focal adhesion kinase. Carcinogenesis, 29, 2369–2376.PubMed
189.
Zurück zum Zitat Noh, H. J., Sung, E. G., Kim, J. Y., Lee, T. J., & Song, I. H. (2010). Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by apigenin via the inhibition of p38 mitogen-activated protein kinase-dependent matrix metalloproteinase-9 expression. Oncology Reports, 24, 277–283.PubMed Noh, H. J., Sung, E. G., Kim, J. Y., Lee, T. J., & Song, I. H. (2010). Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by apigenin via the inhibition of p38 mitogen-activated protein kinase-dependent matrix metalloproteinase-9 expression. Oncology Reports, 24, 277–283.PubMed
190.
Zurück zum Zitat Maggiolini, M., Recchia, A. G., Bonofiglio, D., Catalano, S., Vivacqua, A., Carpino, A., Rago, V., Rossi, R., & Andò, S. (2005). The red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor in human breast cancer cells. Journal of Molecular Endocrinology, 35, 269–281.PubMed Maggiolini, M., Recchia, A. G., Bonofiglio, D., Catalano, S., Vivacqua, A., Carpino, A., Rago, V., Rossi, R., & Andò, S. (2005). The red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor in human breast cancer cells. Journal of Molecular Endocrinology, 35, 269–281.PubMed
191.
Zurück zum Zitat Nöthlings, U., Murphy, S. P., Wilkens, L. R., Henderson, B. E., & Kolonel, L. N. (2007). Flavonols and pancreatic cancer risk: The multiethnic cohort study. American Journal of Epidemiology, 166, 924–931.PubMed Nöthlings, U., Murphy, S. P., Wilkens, L. R., Henderson, B. E., & Kolonel, L. N. (2007). Flavonols and pancreatic cancer risk: The multiethnic cohort study. American Journal of Epidemiology, 166, 924–931.PubMed
192.
Zurück zum Zitat Shih, Y. W., Wu, P. F., Lee, Y. C., Shi, M. D., & Chiang, T. A. (2009). Myricetin suppresses invasion and migration of human lung adenocarcinoma A549 cells: Possible mediation by blocking the ERK signaling pathway. Journal of Agricultural and Food Chemistry, 57, 3490–3499.PubMed Shih, Y. W., Wu, P. F., Lee, Y. C., Shi, M. D., & Chiang, T. A. (2009). Myricetin suppresses invasion and migration of human lung adenocarcinoma A549 cells: Possible mediation by blocking the ERK signaling pathway. Journal of Agricultural and Food Chemistry, 57, 3490–3499.PubMed
193.
Zurück zum Zitat Ko, C. H., Shen, S. C., Lee, T. J., & Chen, Y. C. (2005). Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectal carcinoma cells. Molecular Cancer Therapeutics, 4, 281–290.PubMed Ko, C. H., Shen, S. C., Lee, T. J., & Chen, Y. C. (2005). Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectal carcinoma cells. Molecular Cancer Therapeutics, 4, 281–290.PubMed
194.
Zurück zum Zitat Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., & Yano, M. (1999). Antiproliferative activity of flavonoids on several cancer cell lines. Bioscience, Biotechnology, and Biochemistry, 63, 896–899.PubMed Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., & Yano, M. (1999). Antiproliferative activity of flavonoids on several cancer cell lines. Bioscience, Biotechnology, and Biochemistry, 63, 896–899.PubMed
195.
Zurück zum Zitat Bracke, M., Vyncke, B., Opdenakker, G., Foidart, J. M., de Pestel, G., & Mareel, M. (1991). Effects of catechins and citrus flavonoids on invasion in vitro. Clinical & Experimental Metastasis, 9, 13–25. Bracke, M., Vyncke, B., Opdenakker, G., Foidart, J. M., de Pestel, G., & Mareel, M. (1991). Effects of catechins and citrus flavonoids on invasion in vitro. Clinical & Experimental Metastasis, 9, 13–25.
196.
Zurück zum Zitat Mareel, M. M., & De Mets, M. (1989). Anti-invasive activities of experimental chemotherapeutic agents. Critical Reviews in Oncology/Haematology, 9, 263–303. Mareel, M. M., & De Mets, M. (1989). Anti-invasive activities of experimental chemotherapeutic agents. Critical Reviews in Oncology/Haematology, 9, 263–303.
197.
Zurück zum Zitat Brack, M. E., Boterberg, T., Depypere, H. T., Stove, C., Leclercq, G., & Mareel, M. M. (2002). The citrus methoxyflavone tangeretin affects human cell–cell interactions. Advances in Experimental Medicine and Biology, 505, 135–139.PubMed Brack, M. E., Boterberg, T., Depypere, H. T., Stove, C., Leclercq, G., & Mareel, M. M. (2002). The citrus methoxyflavone tangeretin affects human cell–cell interactions. Advances in Experimental Medicine and Biology, 505, 135–139.PubMed
198.
Zurück zum Zitat Rooprai, H. K., Kandanearatchi, A., Maidment, S. L., Christidou, M., Trillo-Pazos, G., Dexter, D. T., Rucklidge, G. J., Widmer, W., & Pilkington, G. J. (2001). Evaluation of the effects of swainsonine, captopril, tangeretin and nobiletin on the biological behaviour of brain tumour cells in vitro. Neuropathology and Applied Neurobiology, 27, 29–39.PubMed Rooprai, H. K., Kandanearatchi, A., Maidment, S. L., Christidou, M., Trillo-Pazos, G., Dexter, D. T., Rucklidge, G. J., Widmer, W., & Pilkington, G. J. (2001). Evaluation of the effects of swainsonine, captopril, tangeretin and nobiletin on the biological behaviour of brain tumour cells in vitro. Neuropathology and Applied Neurobiology, 27, 29–39.PubMed
199.
Zurück zum Zitat Martínez Conesa, C., Vicente Ortega, V., Yáñez Gascón, M. J., Alcaraz Baños, M., Canteras Jordana, M., Benavente-García, O., & Castillo, J. (2005). Treatment of metastatic melanoma B16F10 by the flavonoids tangeretin, rutin, and diosmin. Journal of Agricultural and Food Chemistry, 53, 6791–6797.PubMed Martínez Conesa, C., Vicente Ortega, V., Yáñez Gascón, M. J., Alcaraz Baños, M., Canteras Jordana, M., Benavente-García, O., & Castillo, J. (2005). Treatment of metastatic melanoma B16F10 by the flavonoids tangeretin, rutin, and diosmin. Journal of Agricultural and Food Chemistry, 53, 6791–6797.PubMed
200.
Zurück zum Zitat Park, J. S., Rho, H. S., Kim, D. H., & Chang, I. S. (2006). Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. Journal of Agricultural and Food Chemistry, 54, 2951–2956.PubMed Park, J. S., Rho, H. S., Kim, D. H., & Chang, I. S. (2006). Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. Journal of Agricultural and Food Chemistry, 54, 2951–2956.PubMed
201.
Zurück zum Zitat Calderon-Montaño, J. M., Burgos-Moron, E., Perez-Guerrero, C., & Lopez-Lazaro, M. (2011). A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chemistry, 11, 298–344.PubMed Calderon-Montaño, J. M., Burgos-Moron, E., Perez-Guerrero, C., & Lopez-Lazaro, M. (2011). A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chemistry, 11, 298–344.PubMed
202.
Zurück zum Zitat Shen, S. C., Lin, C. W., Lee, H. M., Chien, L. L., & Chen, Y. C. (2006). Lipopolysaccharide plus 12-o-tetradecanoylphorbol 13-acetate induction of migration and invasion of glioma cells in vitro and in vivo: Differential inhibitory effects of flavonoids. Neuroscience, 140, 477–489.PubMed Shen, S. C., Lin, C. W., Lee, H. M., Chien, L. L., & Chen, Y. C. (2006). Lipopolysaccharide plus 12-o-tetradecanoylphorbol 13-acetate induction of migration and invasion of glioma cells in vitro and in vivo: Differential inhibitory effects of flavonoids. Neuroscience, 140, 477–489.PubMed
203.
Zurück zum Zitat Lee, E. J., Kim, S. Y., Hyun, J. W., Min, S. W., Kim, D. H., & Kim, H. S. (2010). Glycitein inhibits glioma cell invasion through down-regulation of MMP-3 and MMP-9 gene expression. Chemico-Biological Interactions, 185, 18–24.PubMed Lee, E. J., Kim, S. Y., Hyun, J. W., Min, S. W., Kim, D. H., & Kim, H. S. (2010). Glycitein inhibits glioma cell invasion through down-regulation of MMP-3 and MMP-9 gene expression. Chemico-Biological Interactions, 185, 18–24.PubMed
204.
Zurück zum Zitat Park, S. Y., Lim, S. S., Kim, J. K., Kang, I. J., Kim, J. S., Lee, C., Kim, J., & Park, J. H. (2010). Hexane-ethanol extract of Glycyrrhiza uralensis containing licoricidin inhibits the metastatic capacity of DU145 human prostate cancer cells. British Journal of Nutrition, 104, 1–11. Park, S. Y., Lim, S. S., Kim, J. K., Kang, I. J., Kim, J. S., Lee, C., Kim, J., & Park, J. H. (2010). Hexane-ethanol extract of Glycyrrhiza uralensis containing licoricidin inhibits the metastatic capacity of DU145 human prostate cancer cells. British Journal of Nutrition, 104, 1–11.
205.
Zurück zum Zitat Kahkonen, M. P., & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycons. Journal of Agricultural and Food Chemistry, 51, 628–633.PubMed Kahkonen, M. P., & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycons. Journal of Agricultural and Food Chemistry, 51, 628–633.PubMed
206.
Zurück zum Zitat Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., Fong, H. H., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C., & Pezzuto, J. M. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275, 218–220.PubMed Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., Fong, H. H., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C., & Pezzuto, J. M. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275, 218–220.PubMed
207.
Zurück zum Zitat Middleton, E., Jr., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 52, 673–751.PubMed Middleton, E., Jr., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 52, 673–751.PubMed
208.
Zurück zum Zitat Katsube, N., Iwashita, K., Tsushida, T., Yamaki, K., & Kobori, M. (2003). Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus) and the anthocyanins. Journal of Agricultural and Food Chemistry, 51, 68–75.PubMed Katsube, N., Iwashita, K., Tsushida, T., Yamaki, K., & Kobori, M. (2003). Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus) and the anthocyanins. Journal of Agricultural and Food Chemistry, 51, 68–75.PubMed
209.
Zurück zum Zitat Bagchi, D., Sen, C. K., Bagchi, M., & Atala, M. (2004). Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry (Mosc), 69, 75–80. Bagchi, D., Sen, C. K., Bagchi, M., & Atala, M. (2004). Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry (Mosc), 69, 75–80.
210.
Zurück zum Zitat Nagase, H., Sasaki, K., Kito, H., Haga, A., & Sato, T. (1998). Inhibitory effect of delphinidin from Solanum melongena on human fibrosarcoma HT-1080 invasiveness in vitro. Planta Medica, 64, 216–219.PubMed Nagase, H., Sasaki, K., Kito, H., Haga, A., & Sato, T. (1998). Inhibitory effect of delphinidin from Solanum melongena on human fibrosarcoma HT-1080 invasiveness in vitro. Planta Medica, 64, 216–219.PubMed
211.
Zurück zum Zitat Chen, P. N., Chu, S. C., Chiou, H. L., Kuo, W. H., Chiang, C. L., & Hsieh, Y. S. (2006). Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Letters, 235, 248–259.PubMed Chen, P. N., Chu, S. C., Chiou, H. L., Kuo, W. H., Chiang, C. L., & Hsieh, Y. S. (2006). Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Letters, 235, 248–259.PubMed
212.
Zurück zum Zitat Shin, D. Y., Ryu, C. H., Lee, W. S., Kim, D. C., Kim, S. H., Hah, Y. S., Lee, S. J., Shin, S. C., Kang, H. S., & Choi, Y. H. (2009). Induction of apoptosis and inhibition of invasion in human hepatoma cells by anthocyanins from meoru. Annals of the New York Academy of Sciences, 1171, 137–148.PubMed Shin, D. Y., Ryu, C. H., Lee, W. S., Kim, D. C., Kim, S. H., Hah, Y. S., Lee, S. J., Shin, S. C., Kang, H. S., & Choi, Y. H. (2009). Induction of apoptosis and inhibition of invasion in human hepatoma cells by anthocyanins from meoru. Annals of the New York Academy of Sciences, 1171, 137–148.PubMed
213.
Zurück zum Zitat Shin, D. Y., Lee, W. S., Kim, S. H., Kim, M. J., Yun, J. W., Lu, J. N., Lee, S. J., Tsoy, I., Kim, H. J., Ryu, C. H., Kim, G. Y., Kang, H. S., Shin, S. C., & Choi, Y. H. (2009). Anti-invasive activity of anthocyanins isolated from Vitis coignetiae in human hepatocarcinoma cells. Journal of Medicinal Food, 12, 967–972.PubMed Shin, D. Y., Lee, W. S., Kim, S. H., Kim, M. J., Yun, J. W., Lu, J. N., Lee, S. J., Tsoy, I., Kim, H. J., Ryu, C. H., Kim, G. Y., Kang, H. S., Shin, S. C., & Choi, Y. H. (2009). Anti-invasive activity of anthocyanins isolated from Vitis coignetiae in human hepatocarcinoma cells. Journal of Medicinal Food, 12, 967–972.PubMed
214.
Zurück zum Zitat Ho, M. L., Chen, P. N., Chu, S. C., Kuo, D. Y., Kuo, W. H., Chen, J. Y., & Hsieh, Y. S. (2010). Peonidin 3-glucoside inhibits lung cancer metastasis by downregulation of proteinases activities and MAPK pathway. Nutrition and Cancer, 62, 505–516.PubMed Ho, M. L., Chen, P. N., Chu, S. C., Kuo, D. Y., Kuo, W. H., Chen, J. Y., & Hsieh, Y. S. (2010). Peonidin 3-glucoside inhibits lung cancer metastasis by downregulation of proteinases activities and MAPK pathway. Nutrition and Cancer, 62, 505–516.PubMed
215.
Zurück zum Zitat Syed, D. N., Afaq, F., Sarfaraz, S., Khan, N., Kedlaya, R., Setaluri, V., & Mukhtar, H. (2008). Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation. Toxicology and Applied Pharmacology, 231, 52–60.PubMed Syed, D. N., Afaq, F., Sarfaraz, S., Khan, N., Kedlaya, R., Setaluri, V., & Mukhtar, H. (2008). Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation. Toxicology and Applied Pharmacology, 231, 52–60.PubMed
216.
Zurück zum Zitat Xu, M., Bower, K. A., Wang, S., Frank, J. A., Chen, G., Ding, M., Wang, S., Shi, X., Ke, Z., & Luo, J. (2010). Cyanidin-3-glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2. Molecular Cancer, 9, 285.PubMed Xu, M., Bower, K. A., Wang, S., Frank, J. A., Chen, G., Ding, M., Wang, S., Shi, X., Ke, Z., & Luo, J. (2010). Cyanidin-3-glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2. Molecular Cancer, 9, 285.PubMed
217.
Zurück zum Zitat Matchett, M. D., MacKinnon, S. L., Sweeney, M. I., Gottschall-Pass, K. T., & Hurta, R. A. (2005). Blueberry flavonoids inhibit matrix metalloproteinase activity in DU145 human prostate cancer cells. Biochemistry and Cell Biology, 83, 637–643.PubMed Matchett, M. D., MacKinnon, S. L., Sweeney, M. I., Gottschall-Pass, K. T., & Hurta, R. A. (2005). Blueberry flavonoids inhibit matrix metalloproteinase activity in DU145 human prostate cancer cells. Biochemistry and Cell Biology, 83, 637–643.PubMed
218.
Zurück zum Zitat Matchett, M. D., MacKinnon, S. L., Sweeney, M. I., Gottschall-Pass, K. T., & Hurta, R. A. (2006). Inhibition of matrix metalloproteinase activity in DU145 human prostate cancer cells by flavonoids from lowbush blueberry (Vaccinium angustifolium): Possible roles for protein kinase C and mitogen-activated protein-kinase-mediated events. The Journal of Nutritional Biochemistry, 17, 117–125.PubMed Matchett, M. D., MacKinnon, S. L., Sweeney, M. I., Gottschall-Pass, K. T., & Hurta, R. A. (2006). Inhibition of matrix metalloproteinase activity in DU145 human prostate cancer cells by flavonoids from lowbush blueberry (Vaccinium angustifolium): Possible roles for protein kinase C and mitogen-activated protein-kinase-mediated events. The Journal of Nutritional Biochemistry, 17, 117–125.PubMed
219.
Zurück zum Zitat Yun, J. W., Lee, W. S., Kim, M. J., Lu, J. N., Kang, M. H., Kim, H. G., Kim, D. C., Choi, E. J., Choi, J. Y., Kim, H. G., Lee, Y. K., Ryu, C. H., Kim, G., Choi, Y. H., Park, O. J., & Shin, S. C. (2010). Characterization of a profile of the anthocyanins isolated from Vitis coignetiae Pulliat and their anti-invasive activity on HT-29 human colon cancer cells. Food and Chemical Toxicology, 48, 903–909.PubMed Yun, J. W., Lee, W. S., Kim, M. J., Lu, J. N., Kang, M. H., Kim, H. G., Kim, D. C., Choi, E. J., Choi, J. Y., Kim, H. G., Lee, Y. K., Ryu, C. H., Kim, G., Choi, Y. H., Park, O. J., & Shin, S. C. (2010). Characterization of a profile of the anthocyanins isolated from Vitis coignetiae Pulliat and their anti-invasive activity on HT-29 human colon cancer cells. Food and Chemical Toxicology, 48, 903–909.PubMed
220.
Zurück zum Zitat Shin, D. Y., Lu, J. N., Kim, G. Y., Jung, J. M., Kang, H. S., Lee, W. S., & Choi, Y. H. (2011). Anti-invasive activities of anthocyanins through modulation of tight junctions and suppression of matrix metalloproteinase activities in HCT-116 human colon carcinoma cells. Oncology Reports, 25, 567–572.PubMed Shin, D. Y., Lu, J. N., Kim, G. Y., Jung, J. M., Kang, H. S., Lee, W. S., & Choi, Y. H. (2011). Anti-invasive activities of anthocyanins through modulation of tight junctions and suppression of matrix metalloproteinase activities in HCT-116 human colon carcinoma cells. Oncology Reports, 25, 567–572.PubMed
221.
Zurück zum Zitat Chen, P. N., Kuo, W. H., Chiang, C. L., Chiou, H. L., Hsieh, Y. S., & Chu, S. C. (2006). Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chemico-Biological Interactions, 163, 218–229.PubMed Chen, P. N., Kuo, W. H., Chiang, C. L., Chiou, H. L., Hsieh, Y. S., & Chu, S. C. (2006). Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chemico-Biological Interactions, 163, 218–229.PubMed
222.
Zurück zum Zitat Lamy, S., Lafleur, R., Bédard, V., Moghrabi, A., Barrette, S., Gingras, D., & Béliveau, R. (2007). Anthocyanidins inhibit migration of glioblastoma cells: Structure–activity relationship and involvement of the plasminolytic system. Journal of Cellular Biochemistry, 100, 100–111.PubMed Lamy, S., Lafleur, R., Bédard, V., Moghrabi, A., Barrette, S., Gingras, D., & Béliveau, R. (2007). Anthocyanidins inhibit migration of glioblastoma cells: Structure–activity relationship and involvement of the plasminolytic system. Journal of Cellular Biochemistry, 100, 100–111.PubMed
223.
Zurück zum Zitat Shankar, S., Ganapathy, S., Hingorani, S. R., & Srivastava, R. K. (2008). EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Frontiers in Bioscience, 13, 440–452.PubMed Shankar, S., Ganapathy, S., Hingorani, S. R., & Srivastava, R. K. (2008). EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Frontiers in Bioscience, 13, 440–452.PubMed
224.
Zurück zum Zitat Pfeffer, U., Ferrari, N., Dell’Eva, R., Indraccolo, S., Morini, M., Noonan, D. M., & Albini, A. (2005). Molecular mechanisms of action of angiopreventive anti-oxidants on endothelial cells: Microarray gene expression analyses. Mutation Research, 591, 198–211.PubMed Pfeffer, U., Ferrari, N., Dell’Eva, R., Indraccolo, S., Morini, M., Noonan, D. M., & Albini, A. (2005). Molecular mechanisms of action of angiopreventive anti-oxidants on endothelial cells: Microarray gene expression analyses. Mutation Research, 591, 198–211.PubMed
225.
Zurück zum Zitat Yamakawa, S., Asai, T., Uchida, T., Matsukawa, M., Akizawa, T., & Oku, N. (2004). (−)-Epigallocatechin gallate inhibits membrane-type 1 matrix metalloproteinase, MT1-MMP, and tumor angiogenesis. Cancer Letters, 210, 47–55.PubMed Yamakawa, S., Asai, T., Uchida, T., Matsukawa, M., Akizawa, T., & Oku, N. (2004). (−)-Epigallocatechin gallate inhibits membrane-type 1 matrix metalloproteinase, MT1-MMP, and tumor angiogenesis. Cancer Letters, 210, 47–55.PubMed
226.
Zurück zum Zitat Iishi, H., Tatsuta, M., Baba, M., Yano, H., Sakai, N., & Akedo, H. (2000). Genistein attenuates peritoneal metastasis of azoxymethane-induced intestinal adenocarcinomas in Wistar rats. International Journal of Cancer, 86, 416–420. Iishi, H., Tatsuta, M., Baba, M., Yano, H., Sakai, N., & Akedo, H. (2000). Genistein attenuates peritoneal metastasis of azoxymethane-induced intestinal adenocarcinomas in Wistar rats. International Journal of Cancer, 86, 416–420.
227.
Zurück zum Zitat Lakshman, M., Xu, L., Ananthanarayanan, V., Cooper, J., Takimoto, C. H., Helenowski, I., Pelling, J. C., & Bergan, R. C. (2008). Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Research, 68, 2024–2032.PubMed Lakshman, M., Xu, L., Ananthanarayanan, V., Cooper, J., Takimoto, C. H., Helenowski, I., Pelling, J. C., & Bergan, R. C. (2008). Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Research, 68, 2024–2032.PubMed
228.
Zurück zum Zitat Singh, A. V., Franke, A. A., Blackburn, G. L., & Zhou, J. R. (2006). Soy phytochemicals prevent orthotopic growth and metastasis of bladder cancer in mice by alterations of cancer cell proliferation and apoptosis and tumor angiogenesis. Cancer Research, 66, 1851–1858.PubMed Singh, A. V., Franke, A. A., Blackburn, G. L., & Zhou, J. R. (2006). Soy phytochemicals prevent orthotopic growth and metastasis of bladder cancer in mice by alterations of cancer cell proliferation and apoptosis and tumor angiogenesis. Cancer Research, 66, 1851–1858.PubMed
229.
Zurück zum Zitat Singh, R. P., Raina, K., Sharma, G., & Agarwal, R. (2008). Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial–mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clinical Cancer Research, 14, 7773–7780.PubMed Singh, R. P., Raina, K., Sharma, G., & Agarwal, R. (2008). Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial–mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clinical Cancer Research, 14, 7773–7780.PubMed
230.
Zurück zum Zitat Raina, K., Rajamanickam, S., Singh, R. P., Deep, G., Chittezhath, M., & Agarwal, R. (2008). Stage-specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Cancer Research, 68, 6822–6830.PubMed Raina, K., Rajamanickam, S., Singh, R. P., Deep, G., Chittezhath, M., & Agarwal, R. (2008). Stage-specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Cancer Research, 68, 6822–6830.PubMed
231.
Zurück zum Zitat Singh, R. P., Dhanalakshmi, S., Agarwal, C., & Agarwal, R. (2005). Silibinin strongly inhibits growth and survival of human endothelial cells via cell cycle arrest and downregulation of survivin, Akt and NF-kappaB: Implications for angioprevention and antiangiogenic therapy. Oncogene, 24, 1188–1202.PubMed Singh, R. P., Dhanalakshmi, S., Agarwal, C., & Agarwal, R. (2005). Silibinin strongly inhibits growth and survival of human endothelial cells via cell cycle arrest and downregulation of survivin, Akt and NF-kappaB: Implications for angioprevention and antiangiogenic therapy. Oncogene, 24, 1188–1202.PubMed
232.
Zurück zum Zitat Devipriya, S., Ganapathy, V., & Shyamaladevi, C. S. (2006). Suppression of tumor growth and invasion in 9,10 dimethyl benz(a) anthracene induced mammary carcinoma by the plant bioflavonoid quercetin. Chemico-Biological Interactions, 162, 106–113.PubMed Devipriya, S., Ganapathy, V., & Shyamaladevi, C. S. (2006). Suppression of tumor growth and invasion in 9,10 dimethyl benz(a) anthracene induced mammary carcinoma by the plant bioflavonoid quercetin. Chemico-Biological Interactions, 162, 106–113.PubMed
233.
Zurück zum Zitat Tan, W. F., Lin, L. P., Li, M. H., Zhang, Y. X., Tong, Y. G., Xiao, D., & Ding, J. (2003). Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. European Journal of Pharmacology, 459, 255–262.PubMed Tan, W. F., Lin, L. P., Li, M. H., Zhang, Y. X., Tong, Y. G., Xiao, D., & Ding, J. (2003). Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. European Journal of Pharmacology, 459, 255–262.PubMed
234.
Zurück zum Zitat Tatsuta, A., Iishi, H., Baba, M., Yano, H., Murata, K., Mukai, M., & Akedo, H. (2000). Suppression by apigenin of peritoneal metastasis of intestinal adenocarcinomas induced by azoxymethane in Wistar rats. Clinical & Experimental Metastasis, 18, 657–662. Tatsuta, A., Iishi, H., Baba, M., Yano, H., Murata, K., Mukai, M., & Akedo, H. (2000). Suppression by apigenin of peritoneal metastasis of intestinal adenocarcinomas induced by azoxymethane in Wistar rats. Clinical & Experimental Metastasis, 18, 657–662.
235.
Zurück zum Zitat Fang, J., Zhou, Q., Liu, L. Z., Xia, C., Hu, X., Shi, X., & Jiang, B. H. (2007). Apigenin inhibits tumor angiogenesis through decreasing HIF-1alphaand VEGF expression. Carcinogenesis, 28, 858–864.PubMed Fang, J., Zhou, Q., Liu, L. Z., Xia, C., Hu, X., Shi, X., & Jiang, B. H. (2007). Apigenin inhibits tumor angiogenesis through decreasing HIF-1alphaand VEGF expression. Carcinogenesis, 28, 858–864.PubMed
236.
Zurück zum Zitat Lentini, A., Forni, C., Provenzano, B., & Beninati, S. (2007). Enhancement of transglutaminase activity and polyamine depletion in B16-F10 melanoma cells by flavonoids naringenin and hesperitin correlate to reduction of the in vivo metastatic potential. Amino Acids, 32, 95–100.PubMed Lentini, A., Forni, C., Provenzano, B., & Beninati, S. (2007). Enhancement of transglutaminase activity and polyamine depletion in B16-F10 melanoma cells by flavonoids naringenin and hesperitin correlate to reduction of the in vivo metastatic potential. Amino Acids, 32, 95–100.PubMed
237.
Zurück zum Zitat Ding, M., Feng, R., Wang, S. Y., Bowman, L., Lu, Y., Qian, Y., Castranova, V., Jiang, B. H., & Shi, X. (2006). Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. The Journal of Biological Chemistry, 281, 17359–17368.PubMed Ding, M., Feng, R., Wang, S. Y., Bowman, L., Lu, Y., Qian, Y., Castranova, V., Jiang, B. H., & Shi, X. (2006). Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. The Journal of Biological Chemistry, 281, 17359–17368.PubMed
Metadaten
Titel
Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities
verfasst von
Chia-Jui Weng
Gow-Chin Yen
Publikationsdatum
01.06.2012
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1-2/2012
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9347-y

Weitere Artikel der Ausgabe 1-2/2012

Cancer and Metastasis Reviews 1-2/2012 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.