Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1-2/2012

01.06.2012 | NON-THEMATIC REVIEW

Regulation of p53 by ING family members in suppression of tumor initiation and progression

verfasst von: Seyed Mehdi Jafarnejad, Gang Li

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1-2/2012

Einloggen, um Zugang zu erhalten

Abstract

The INhibitor of Growth (ING) family is an evolutionarily conserved set of proteins, implicated in suppression of initiation and progression of cancers in various tissues. They promote cell cycle arrest, cellular senescence and apoptosis, participate in stress responses, regulate DNA replication and DNA damage responses, and inhibit cancer cell migration, invasion, and angiogenesis of the tumors. At the molecular level, ING proteins are believed to participate in chromatin remodeling and transcriptional regulation of their target genes. However, the best known function of ING proteins is their cooperation with p53 tumor suppressor protein in tumor suppression. All major isoforms of ING family members can promote the transactivition of p53 and the majority of them are shown to directly interact with p53. In addition, ING proteins are thought to interact with and modulate the function of auxiliary members of p53 pathway, such as MDM2, ARF , p300, and p21, indicating their widespread involvement in the regulation and function of this prominent tumor suppressor pathway. It seems that p53 pathway is the main mechanism by which ING proteins exert their functions. Nevertheless, regulation of other pathways which are not relevant to p53, yet important for tumorigenesis such as TGF-β and NF-κB, by ING proteins is also observed. This review summarizes the current understanding of the mutual interactions and cooperation between different members of ING family with p53 pathway and implications of this cooperation in the suppression of cancer initiation and progression.
Literatur
1.
Zurück zum Zitat Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMedCrossRef Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMedCrossRef
2.
Zurück zum Zitat Franco, O. E., Shaw, A. K., Strand, D. W., & Hayward, S. W. (2009). Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol, 21(1), 33–39.PubMed Franco, O. E., Shaw, A. K., Strand, D. W., & Hayward, S. W. (2009). Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol, 21(1), 33–39.PubMed
3.
Zurück zum Zitat Malkin, D., Li, F. P., Strong, L. C., Fraumeni, J. F., Nelson, C. E., Kim, D. H., et al. (1990). Germ line P53 mutations in a familial syndrome of breast-cancer, sarcomas, and other neoplasms. Science, 250(4985), 1233–1238.PubMedCrossRef Malkin, D., Li, F. P., Strong, L. C., Fraumeni, J. F., Nelson, C. E., Kim, D. H., et al. (1990). Germ line P53 mutations in a familial syndrome of breast-cancer, sarcomas, and other neoplasms. Science, 250(4985), 1233–1238.PubMedCrossRef
4.
Zurück zum Zitat Esteller, M., & Lujambio, A. (2007). CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle, 6(12), 1455–1459.PubMed Esteller, M., & Lujambio, A. (2007). CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle, 6(12), 1455–1459.PubMed
5.
Zurück zum Zitat Cairns, P., Okami, K., Halachmi, S., Halachmi, N., Esteller, M., Herman, J. G., et al. (1997). Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Research, 57(22), 4997–5000.PubMed Cairns, P., Okami, K., Halachmi, S., Halachmi, N., Esteller, M., Herman, J. G., et al. (1997). Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Research, 57(22), 4997–5000.PubMed
6.
Zurück zum Zitat Mietz, J. A., Unger, T., Huibregtse, J. M., & Howley, P. M. (1992). The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO Journal, 11(13), 5013–5020.PubMed Mietz, J. A., Unger, T., Huibregtse, J. M., & Howley, P. M. (1992). The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO Journal, 11(13), 5013–5020.PubMed
7.
Zurück zum Zitat Bischof, O., Nacerddine, K., & Dejean, A. (2005). Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways. Molecular Cellular Biology, 25(3), 1013–1024.CrossRef Bischof, O., Nacerddine, K., & Dejean, A. (2005). Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways. Molecular Cellular Biology, 25(3), 1013–1024.CrossRef
8.
Zurück zum Zitat Kastan, M. B., Canman, C. E., & Leonard, C. J. (1995). P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Reviews, 14(1), 3–15.PubMedCrossRef Kastan, M. B., Canman, C. E., & Leonard, C. J. (1995). P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Reviews, 14(1), 3–15.PubMedCrossRef
9.
Zurück zum Zitat Meek, D. W. (2009). Tumour suppression by p53: a role for the DNA damage response? Nature Reviews Cancer, 9(10), 714–723.PubMed Meek, D. W. (2009). Tumour suppression by p53: a role for the DNA damage response? Nature Reviews Cancer, 9(10), 714–723.PubMed
10.
Zurück zum Zitat Helton, E. S., & Chen, X. (2007). p53 modulation of the DNA damage response. Journal of Cellular Biochemistry, 100(4), 883–896.PubMedCrossRef Helton, E. S., & Chen, X. (2007). p53 modulation of the DNA damage response. Journal of Cellular Biochemistry, 100(4), 883–896.PubMedCrossRef
11.
Zurück zum Zitat Sablina, A. A., Budanov, A. V., Ilyinskaya, G. V., Agapova, L. S., Kravchenko, J. E., & Chumakov, P. M. (2005). The antioxidant function of the p53 tumor suppressor. Nature Medicine, 11(12), 1306–1313.PubMedCrossRef Sablina, A. A., Budanov, A. V., Ilyinskaya, G. V., Agapova, L. S., Kravchenko, J. E., & Chumakov, P. M. (2005). The antioxidant function of the p53 tumor suppressor. Nature Medicine, 11(12), 1306–1313.PubMedCrossRef
12.
Zurück zum Zitat Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., & Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature, 389(6648), 300–305.PubMedCrossRef Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., & Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature, 389(6648), 300–305.PubMedCrossRef
13.
Zurück zum Zitat Van Meir, E. G., Polverini, P. J., Chazin, V. R., Su Huang, H. J., de Tribolet, N., & Cavenee, W. K. (1994). Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nature Genetics, 8(2), 171–176.PubMedCrossRef Van Meir, E. G., Polverini, P. J., Chazin, V. R., Su Huang, H. J., de Tribolet, N., & Cavenee, W. K. (1994). Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nature Genetics, 8(2), 171–176.PubMedCrossRef
14.
Zurück zum Zitat Eastham, J. A., Grafton, W., Martin, C. M., & Williams, B. J. (2000). Suppression of primary tumor growth and the progression to metastasis with p53 adenovirus in human prostate cancer. Journal of Urology, 164(3 Pt 1), 814–819.PubMed Eastham, J. A., Grafton, W., Martin, C. M., & Williams, B. J. (2000). Suppression of primary tumor growth and the progression to metastasis with p53 adenovirus in human prostate cancer. Journal of Urology, 164(3 Pt 1), 814–819.PubMed
15.
Zurück zum Zitat Muller, P. A., Vousden, K. H., & Norman, J. C. (2011). p53 and its mutants in tumor cell migration and invasion. Journal of Cell Biology, 192(2), 209–218.PubMedCrossRef Muller, P. A., Vousden, K. H., & Norman, J. C. (2011). p53 and its mutants in tumor cell migration and invasion. Journal of Cell Biology, 192(2), 209–218.PubMedCrossRef
16.
Zurück zum Zitat Chang, C. J., Chao, C. H., Xia, W. Y., Yang, J. Y., Xiong, Y., Li, C. W., et al. (2011). p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology, 13(3), 317–U296.PubMedCrossRef Chang, C. J., Chao, C. H., Xia, W. Y., Yang, J. Y., Xiong, Y., Li, C. W., et al. (2011). p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology, 13(3), 317–U296.PubMedCrossRef
17.
Zurück zum Zitat Smith, M. L., Chen, I. T., Zhan, Q., O'Connor, P. M., & Fornace, A. J., Jr. (1995). Involvement of the p53 tumor suppressor in repair of u.v.-type DNA damage. Oncogene, 10(6), 1053–1059.PubMed Smith, M. L., Chen, I. T., Zhan, Q., O'Connor, P. M., & Fornace, A. J., Jr. (1995). Involvement of the p53 tumor suppressor in repair of u.v.-type DNA damage. Oncogene, 10(6), 1053–1059.PubMed
18.
Zurück zum Zitat Yin, Y., Terauchi, Y., Solomon, G. G., Aizawa, S., Rangarajan, P. N., Yazaki, Y., et al. (1998). Involvement of p85 in p53-dependent apoptotic response to oxidative stress. Nature, 391(6668), 707–710.PubMedCrossRef Yin, Y., Terauchi, Y., Solomon, G. G., Aizawa, S., Rangarajan, P. N., Yazaki, Y., et al. (1998). Involvement of p85 in p53-dependent apoptotic response to oxidative stress. Nature, 391(6668), 707–710.PubMedCrossRef
19.
Zurück zum Zitat Friedman, P. N., Chen, X. B., Bargonetti, J., & Prives, C. (1993). The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proceedings of the National Academy of Sciences of the United States of America, 90(8), 3319–3323.PubMedCrossRef Friedman, P. N., Chen, X. B., Bargonetti, J., & Prives, C. (1993). The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proceedings of the National Academy of Sciences of the United States of America, 90(8), 3319–3323.PubMedCrossRef
20.
Zurück zum Zitat Joerger, A. C., & Fersht, A. R. (2008). Structural biology of the tumor suppressor p53. Annual Review of Biochemistry, 77, 557–582.PubMedCrossRef Joerger, A. C., & Fersht, A. R. (2008). Structural biology of the tumor suppressor p53. Annual Review of Biochemistry, 77, 557–582.PubMedCrossRef
21.
Zurück zum Zitat Wahl, G. M., Wang, Y. Y. V., Leblanc, M., Fox, N., Mao, J. H., Tinkum, K. L., et al. (2011). Fine-tuning p53 activity through C-terminal modification significantly contributes to HSC homeostasis and mouse radiosensitivity. Genes & Development, 25(13), 1426–1438.CrossRef Wahl, G. M., Wang, Y. Y. V., Leblanc, M., Fox, N., Mao, J. H., Tinkum, K. L., et al. (2011). Fine-tuning p53 activity through C-terminal modification significantly contributes to HSC homeostasis and mouse radiosensitivity. Genes & Development, 25(13), 1426–1438.CrossRef
22.
Zurück zum Zitat Webley, K., Bond, J. A., Jones, C. J., Blaydes, J. P., Craig, A., Hupp, T., et al. (2000). Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Molecular and Cellular Biology, 20(8), 2803–2808.PubMedCrossRef Webley, K., Bond, J. A., Jones, C. J., Blaydes, J. P., Craig, A., Hupp, T., et al. (2000). Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Molecular and Cellular Biology, 20(8), 2803–2808.PubMedCrossRef
23.
Zurück zum Zitat Xu, Y., Feng, L. J., Lin, T. X., Uranishi, H., & Gu, W. (2005). Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Molecular and Cellular Biology, 25(13), 5389–5395.PubMedCrossRef Xu, Y., Feng, L. J., Lin, T. X., Uranishi, H., & Gu, W. (2005). Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Molecular and Cellular Biology, 25(13), 5389–5395.PubMedCrossRef
24.
Zurück zum Zitat Shvarts, A., Steegenga, W. T., Riteco, N., vanLaar, T., Dekker, P., Bazuine, M., et al. (1996). MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO Journal, 15(19), 5349–5357.PubMed Shvarts, A., Steegenga, W. T., Riteco, N., vanLaar, T., Dekker, P., Bazuine, M., et al. (1996). MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO Journal, 15(19), 5349–5357.PubMed
25.
Zurück zum Zitat Haupt, Y., Maya, R., Kazaz, A., & Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387(6630), 296–299.PubMedCrossRef Haupt, Y., Maya, R., Kazaz, A., & Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387(6630), 296–299.PubMedCrossRef
26.
Zurück zum Zitat Vousden, K. H., Ashcroft, M., & Taya, Y. (2000). Stress signals utilize multiple pathways to stabilize p53. Molecular and Cellular Biology, 20(9), 3224–3233.PubMedCrossRef Vousden, K. H., Ashcroft, M., & Taya, Y. (2000). Stress signals utilize multiple pathways to stabilize p53. Molecular and Cellular Biology, 20(9), 3224–3233.PubMedCrossRef
27.
Zurück zum Zitat Prives, C., Shieh, S. Y., Ahn, J., Tamai, K., & Taya, Y. (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes & Development, 14(3), 289–300. Prives, C., Shieh, S. Y., Ahn, J., Tamai, K., & Taya, Y. (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes & Development, 14(3), 289–300.
28.
Zurück zum Zitat Avantaggiati, M. L., Ogryzko, V., Gardner, K., Giordano, A., Levine, A. S., & Kelly, K. (1997). Recruitment of p300/CBP in p53-dependent signal pathways. Cell, 89(7), 1175–1184.PubMedCrossRef Avantaggiati, M. L., Ogryzko, V., Gardner, K., Giordano, A., Levine, A. S., & Kelly, K. (1997). Recruitment of p300/CBP in p53-dependent signal pathways. Cell, 89(7), 1175–1184.PubMedCrossRef
29.
Zurück zum Zitat Xu, Y. (2003). Regulation of p53 responses by post-translational modifications. Cell Death and Differentiation, 10(4), 400–403.PubMedCrossRef Xu, Y. (2003). Regulation of p53 responses by post-translational modifications. Cell Death and Differentiation, 10(4), 400–403.PubMedCrossRef
30.
Zurück zum Zitat Jackson, J. G., & Pereira-Smith, O. M. (2006). p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Research, 66(17), 8356–8360.PubMedCrossRef Jackson, J. G., & Pereira-Smith, O. M. (2006). p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Research, 66(17), 8356–8360.PubMedCrossRef
31.
Zurück zum Zitat el-Deiry, W. S. (1998). Regulation of p53 downstream genes. Seminars in Cancer Biology, 8(5), 345–357.PubMedCrossRef el-Deiry, W. S. (1998). Regulation of p53 downstream genes. Seminars in Cancer Biology, 8(5), 345–357.PubMedCrossRef
32.
Zurück zum Zitat Sherr, C. J., & Roberts, J. M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & Development, 13(12), 1501–1512.CrossRef Sherr, C. J., & Roberts, J. M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & Development, 13(12), 1501–1512.CrossRef
33.
Zurück zum Zitat Hanas, J. S., Lerner, M. R., Lightfoot, S. A., Raczkowski, C., Kastens, D. J., Brackett, D. J., et al. (1999). Expression of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) and p53 tumor suppressor in dysplastic progression and adenocarcinoma in Barrett esophagus. Cancer, 86(5), 756–763.PubMedCrossRef Hanas, J. S., Lerner, M. R., Lightfoot, S. A., Raczkowski, C., Kastens, D. J., Brackett, D. J., et al. (1999). Expression of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) and p53 tumor suppressor in dysplastic progression and adenocarcinoma in Barrett esophagus. Cancer, 86(5), 756–763.PubMedCrossRef
34.
Zurück zum Zitat Yang, H., Zhao, R., & Lee, M. H. (2006). 14-3-3sigma, a p53 regulator, suppresses tumor growth of nasopharyngeal carcinoma. Molecular Cancer Therapeutics, 5(2), 253–260.PubMedCrossRef Yang, H., Zhao, R., & Lee, M. H. (2006). 14-3-3sigma, a p53 regulator, suppresses tumor growth of nasopharyngeal carcinoma. Molecular Cancer Therapeutics, 5(2), 253–260.PubMedCrossRef
35.
Zurück zum Zitat Yu, J., & Zhang, L. (2005). The transcriptional targets of p53 in apoptosis control. Biochemical and Biophysical Research Communications, 331(3), 851–858.PubMedCrossRef Yu, J., & Zhang, L. (2005). The transcriptional targets of p53 in apoptosis control. Biochemical and Biophysical Research Communications, 331(3), 851–858.PubMedCrossRef
36.
Zurück zum Zitat Baptiste-Okoh, N., Barsotti, A. M., & Prives, C. (2008). A role for caspase 2 and PIDD in the process of p53-mediated apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 1937–1942.PubMedCrossRef Baptiste-Okoh, N., Barsotti, A. M., & Prives, C. (2008). A role for caspase 2 and PIDD in the process of p53-mediated apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 1937–1942.PubMedCrossRef
37.
Zurück zum Zitat Kannan, K., Amariglio, N., Rechavi, G., & Givol, D. (2000). Profile of gene expression regulated by induced p53: connection to the TGF-beta family. FEBS Letters, 470(1), 77–82.PubMedCrossRef Kannan, K., Amariglio, N., Rechavi, G., & Givol, D. (2000). Profile of gene expression regulated by induced p53: connection to the TGF-beta family. FEBS Letters, 470(1), 77–82.PubMedCrossRef
38.
Zurück zum Zitat Dameron, K. M., Volpert, O. V., Tainsky, M. A., & Bouck, N. (1994). Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science, 265(5178), 1582–1584.PubMedCrossRef Dameron, K. M., Volpert, O. V., Tainsky, M. A., & Bouck, N. (1994). Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science, 265(5178), 1582–1584.PubMedCrossRef
39.
Zurück zum Zitat Nishimori, H., Shiratsuchi, T., Urano, T., Kimura, Y., Kiyono, K., Tatsumi, K., et al. (1997). A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene, 15(18), 2145–2150.PubMedCrossRef Nishimori, H., Shiratsuchi, T., Urano, T., Kimura, Y., Kiyono, K., Tatsumi, K., et al. (1997). A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene, 15(18), 2145–2150.PubMedCrossRef
40.
Zurück zum Zitat Garkavtsev, I., Kazarov, A., Gudkov, A., & Riabowol, K. (1996). Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nature Genetics, 14(4), 415–420.PubMedCrossRef Garkavtsev, I., Kazarov, A., Gudkov, A., & Riabowol, K. (1996). Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nature Genetics, 14(4), 415–420.PubMedCrossRef
41.
Zurück zum Zitat Nagashima, M., Shiseki, M., Miura, K., Hagiwara, K., Linke, S. P., Pedeux, R., et al. (2001). DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9671–9676.PubMedCrossRef Nagashima, M., Shiseki, M., Miura, K., Hagiwara, K., Linke, S. P., Pedeux, R., et al. (2001). DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9671–9676.PubMedCrossRef
42.
Zurück zum Zitat Nagashima, M., Shiseki, M., Pedeux, R. M., Okamura, S., Kitahama-Shiseki, M., Miura, K., et al. (2003). A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis. Oncogene, 22(3), 343–350.PubMedCrossRef Nagashima, M., Shiseki, M., Pedeux, R. M., Okamura, S., Kitahama-Shiseki, M., Miura, K., et al. (2003). A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis. Oncogene, 22(3), 343–350.PubMedCrossRef
43.
Zurück zum Zitat Shiseki, M., Nagashima, M., Pedeux, R. M., Kitahama-Shiseki, M., Miura, K., Okamura, S., et al. (2003). p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Research, 63(10), 2373–2378.PubMed Shiseki, M., Nagashima, M., Pedeux, R. M., Kitahama-Shiseki, M., Miura, K., Okamura, S., et al. (2003). p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Research, 63(10), 2373–2378.PubMed
44.
Zurück zum Zitat Gunduz, M., Ouchida, M., Fukushima, K., Ito, S., Jitsumori, Y., Nakashima, T., et al. (2002). Allelic loss and reduced expression of the ING3, a candidate tumor suppressor gene at 7q31, in human head and neck cancers. Oncogene, 21(28), 4462–4470.PubMedCrossRef Gunduz, M., Ouchida, M., Fukushima, K., Ito, S., Jitsumori, Y., Nakashima, T., et al. (2002). Allelic loss and reduced expression of the ING3, a candidate tumor suppressor gene at 7q31, in human head and neck cancers. Oncogene, 21(28), 4462–4470.PubMedCrossRef
45.
Zurück zum Zitat Vieyra, D., Toyama, T., Hara, Y., Boland, D., Johnston, R., & Riabowol, K. (2002). ING1 isoforms differentially affect apoptosis in a cell age-dependent manner. Cancer Research, 62(15), 4445–4452.PubMed Vieyra, D., Toyama, T., Hara, Y., Boland, D., Johnston, R., & Riabowol, K. (2002). ING1 isoforms differentially affect apoptosis in a cell age-dependent manner. Cancer Research, 62(15), 4445–4452.PubMed
46.
Zurück zum Zitat Shi, X., & Gozani, O. (2005). The fellowships of the INGs. Journal of Cellular Biochemistry, 96(6), 1127–1136.PubMedCrossRef Shi, X., & Gozani, O. (2005). The fellowships of the INGs. Journal of Cellular Biochemistry, 96(6), 1127–1136.PubMedCrossRef
47.
Zurück zum Zitat Zeremski, M., Hill, J. E., Kwek, S. S. S., Grigorian, I. A., Gurova, K. V., Garkavtsev, I. V., et al. (1999). Structure and regulation of the mouse ing1 gene—three alternative transcripts encode two PHD finger proteins that have opposite effects on p53 function. The Journal of Biological Chemistry, 274(45), 32172–32181.PubMedCrossRef Zeremski, M., Hill, J. E., Kwek, S. S. S., Grigorian, I. A., Gurova, K. V., Garkavtsev, I. V., et al. (1999). Structure and regulation of the mouse ing1 gene—three alternative transcripts encode two PHD finger proteins that have opposite effects on p53 function. The Journal of Biological Chemistry, 274(45), 32172–32181.PubMedCrossRef
48.
Zurück zum Zitat He, G. H., Helbing, C. C., Wagner, M. J., Sensen, C. W., & Riabowol, K. (2005). Phylogenetic analysis of the ING family of PHD finger proteins. Molecular and Biological Evolution, 22(1), 104–116.CrossRef He, G. H., Helbing, C. C., Wagner, M. J., Sensen, C. W., & Riabowol, K. (2005). Phylogenetic analysis of the ING family of PHD finger proteins. Molecular and Biological Evolution, 22(1), 104–116.CrossRef
49.
Zurück zum Zitat Ythier, D., Larrieu, D., Brambilla, C., Brambilla, E., & Pedeux, R. (2008). The new tumor suppressor genes ING: genomic structure and status in cancer. International Journal of Cancer, 123(7), 1483–1490.CrossRef Ythier, D., Larrieu, D., Brambilla, C., Brambilla, E., & Pedeux, R. (2008). The new tumor suppressor genes ING: genomic structure and status in cancer. International Journal of Cancer, 123(7), 1483–1490.CrossRef
50.
51.
Zurück zum Zitat Baker, L. A., Allis, C. D., & Wang, G. G. (2008). PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. Mutation Research, 647(1–2), 3–12.PubMed Baker, L. A., Allis, C. D., & Wang, G. G. (2008). PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. Mutation Research, 647(1–2), 3–12.PubMed
52.
Zurück zum Zitat Wang, Y., Dai, D. L., Martinka, M., & Li, G. (2007). Prognostic significance of nuclear ING3 expression in human cutaneous melanoma. Clinical Cancer Research, 13(14), 4111–4116.PubMedCrossRef Wang, Y., Dai, D. L., Martinka, M., & Li, G. (2007). Prognostic significance of nuclear ING3 expression in human cutaneous melanoma. Clinical Cancer Research, 13(14), 4111–4116.PubMedCrossRef
53.
Zurück zum Zitat Zheng, H. C., Xia, P., Xu, X. Y., Takahashi, H., & Takano, Y. (2011). The nuclear to cytoplasmic shift of ING5 protein during colorectal carcinogenesis with their distinct links to pathologic behaviors of carcinomas. Human Pathology, 42(3), 424–433.PubMedCrossRef Zheng, H. C., Xia, P., Xu, X. Y., Takahashi, H., & Takano, Y. (2011). The nuclear to cytoplasmic shift of ING5 protein during colorectal carcinogenesis with their distinct links to pathologic behaviors of carcinomas. Human Pathology, 42(3), 424–433.PubMedCrossRef
54.
Zurück zum Zitat Li, X. H., Nishida, T., Noguchi, A., Zheng, Y., Takahashi, H., Yang, X. H., et al. (2010). Decreased nuclear expression and increased cytoplasmic expression of ING5 may be linked to tumorigenesis and progression in human head and neck squamous cell carcinoma. Journal of Cancer Research and Clinical Oncology, 136(10), 1573–1583.PubMedCrossRef Li, X. H., Nishida, T., Noguchi, A., Zheng, Y., Takahashi, H., Yang, X. H., et al. (2010). Decreased nuclear expression and increased cytoplasmic expression of ING5 may be linked to tumorigenesis and progression in human head and neck squamous cell carcinoma. Journal of Cancer Research and Clinical Oncology, 136(10), 1573–1583.PubMedCrossRef
55.
Zurück zum Zitat Nouman, G. S., Angus, B., Lunec, J., Crosier, S., Lodge, A., & Anderson, J. J. (2002). Comparative assessment expression of the inhibitor of growth 1 gene (ING1) in normal and neoplastic tissues. Hybridoma and Hybridomics, 21(1), 1–10.PubMedCrossRef Nouman, G. S., Angus, B., Lunec, J., Crosier, S., Lodge, A., & Anderson, J. J. (2002). Comparative assessment expression of the inhibitor of growth 1 gene (ING1) in normal and neoplastic tissues. Hybridoma and Hybridomics, 21(1), 1–10.PubMedCrossRef
56.
Zurück zum Zitat Vieyra, D., Senger, D. L., Toyama, T., Muzik, H., Brasher, P. M., Johnston, R. N., et al. (2003). Altered subcellular localization and low frequency of mutations of ING1 in human brain tumors. Clinical Cancer Research, 9(16 Pt 1), 5952–5961.PubMed Vieyra, D., Senger, D. L., Toyama, T., Muzik, H., Brasher, P. M., Johnston, R. N., et al. (2003). Altered subcellular localization and low frequency of mutations of ING1 in human brain tumors. Clinical Cancer Research, 9(16 Pt 1), 5952–5961.PubMed
57.
Zurück zum Zitat Gong, W., Russell, M., Suzuki, K., & Riabowol, K. (2006). Subcellular targeting of p33ING1b by phosphorylation-dependent 14-3-3 binding regulates p21WAF1 expression. Molecular and Cellular Biology, 26(8), 2947–2954.PubMedCrossRef Gong, W., Russell, M., Suzuki, K., & Riabowol, K. (2006). Subcellular targeting of p33ING1b by phosphorylation-dependent 14-3-3 binding regulates p21WAF1 expression. Molecular and Cellular Biology, 26(8), 2947–2954.PubMedCrossRef
58.
Zurück zum Zitat Scott, M., Boisvert, F. M., Vieyra, D., Johnston, R. N., Bazett-Jones, D. P., & Riabowol, K. (2001). UV induces nucleolar translocation of ING1 through two distinct nucleolar targeting sequences. Nucleic Acids Research, 29(10), 2052–2058.PubMedCrossRef Scott, M., Boisvert, F. M., Vieyra, D., Johnston, R. N., Bazett-Jones, D. P., & Riabowol, K. (2001). UV induces nucleolar translocation of ING1 through two distinct nucleolar targeting sequences. Nucleic Acids Research, 29(10), 2052–2058.PubMedCrossRef
59.
Zurück zum Zitat Garate, M., Campos, E. I., Bush, J. A., Xiao, H., & Li, G. (2007). Phosphorylation of the tumor suppressor p33(ING1b) at Ser-126 influences its protein stability and proliferation of melanoma cells. The FASEB Journal, 21(13), 3705–3716.CrossRef Garate, M., Campos, E. I., Bush, J. A., Xiao, H., & Li, G. (2007). Phosphorylation of the tumor suppressor p33(ING1b) at Ser-126 influences its protein stability and proliferation of melanoma cells. The FASEB Journal, 21(13), 3705–3716.CrossRef
60.
Zurück zum Zitat Wagner, M. J., & Helbing, C. C. (2005). Multiple variants of the ING1 and ING2 tumor suppressors are differentially expressed and thyroid hormone-responsive in Xenopus laevis. General and Comparative Endocrinology, 144(1), 38–50.PubMedCrossRef Wagner, M. J., & Helbing, C. C. (2005). Multiple variants of the ING1 and ING2 tumor suppressors are differentially expressed and thyroid hormone-responsive in Xenopus laevis. General and Comparative Endocrinology, 144(1), 38–50.PubMedCrossRef
61.
Zurück zum Zitat Osaki, M., Nagahama, Y., Ishimaru, M., Inoue, T., Maeda, A., Nakada, C., et al. (2008). Apoptotic pathway induced by transduction of RUNX3 in the human gastric carcinoma cell line MKN-1. Cancer Science, 99(1), 23–30.PubMed Osaki, M., Nagahama, Y., Ishimaru, M., Inoue, T., Maeda, A., Nakada, C., et al. (2008). Apoptotic pathway induced by transduction of RUNX3 in the human gastric carcinoma cell line MKN-1. Cancer Science, 99(1), 23–30.PubMed
62.
Zurück zum Zitat Cheung, K. J. J., Bush, J. A., Jia, W., & Li, G. (2000). Expression of the novel tumour suppressor p33(ING1) is independent of p53. British Journal of Cancer, 83(11), 1468–1472.PubMedCrossRef Cheung, K. J. J., Bush, J. A., Jia, W., & Li, G. (2000). Expression of the novel tumour suppressor p33(ING1) is independent of p53. British Journal of Cancer, 83(11), 1468–1472.PubMedCrossRef
63.
Zurück zum Zitat Harris, C. C., Kumamoto, K., Spillare, E. A., Fujita, K., Horikawa, I., Yamashita, T., et al. (2008). Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Research, 68(9), 3193–3203.PubMedCrossRef Harris, C. C., Kumamoto, K., Spillare, E. A., Fujita, K., Horikawa, I., Yamashita, T., et al. (2008). Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Research, 68(9), 3193–3203.PubMedCrossRef
64.
Zurück zum Zitat Li, G., Garate, M., Campos, E. I., Bush, J. A., & Xiao, H. (2007). Phosphorylation of the tumor suppressor p33(ING1b) at Ser-126 influences its protein stability and proliferation of melanoma cells. The FASEB Journal, 21(13), 3705–3716.CrossRef Li, G., Garate, M., Campos, E. I., Bush, J. A., & Xiao, H. (2007). Phosphorylation of the tumor suppressor p33(ING1b) at Ser-126 influences its protein stability and proliferation of melanoma cells. The FASEB Journal, 21(13), 3705–3716.CrossRef
65.
Zurück zum Zitat Li, G., Garate, M., Wong, R. P. C., Campos, E. I., & Wang, Y. M. (2008). NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of the tumour suppressor p33(ING1b). EMBO Reports, 9(6), 576–581.PubMedCrossRef Li, G., Garate, M., Wong, R. P. C., Campos, E. I., & Wang, Y. M. (2008). NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of the tumour suppressor p33(ING1b). EMBO Reports, 9(6), 576–581.PubMedCrossRef
66.
Zurück zum Zitat Kameyama, K., Huang, C. L., Liu, D., Masuya, D., Nakashima, T., Sumitomo, S., et al. (2003). Reduced ING1b gene expression plays an important role in carcinogenesis of non-small cell lung cancer patients. Clinical Cancer Research, 9(13), 4926–4934.PubMed Kameyama, K., Huang, C. L., Liu, D., Masuya, D., Nakashima, T., Sumitomo, S., et al. (2003). Reduced ING1b gene expression plays an important role in carcinogenesis of non-small cell lung cancer patients. Clinical Cancer Research, 9(13), 4926–4934.PubMed
67.
Zurück zum Zitat Shen, D. H., Chan, K. Y., Khoo, U. S., Ngan, H. Y., Xue, W. C., Chiu, P. M., et al. (2005). Epigenetic and genetic alterations of p33ING1b in ovarian cancer. Carcinogenesis, 26(4), 855–863.PubMedCrossRef Shen, D. H., Chan, K. Y., Khoo, U. S., Ngan, H. Y., Xue, W. C., Chiu, P. M., et al. (2005). Epigenetic and genetic alterations of p33ING1b in ovarian cancer. Carcinogenesis, 26(4), 855–863.PubMedCrossRef
68.
Zurück zum Zitat Yu, G. Z., Zhu, M. H., Zhu, Z., Ni, C. R., Zheng, J. M., & Li, F. M. (2004). Genetic alterations and reduced expression of tumor suppressor p33(ING1b) in human exocrine pancreatic carcinoma. World Journal of Gastroenterology, 10(24), 3597–3601.PubMed Yu, G. Z., Zhu, M. H., Zhu, Z., Ni, C. R., Zheng, J. M., & Li, F. M. (2004). Genetic alterations and reduced expression of tumor suppressor p33(ING1b) in human exocrine pancreatic carcinoma. World Journal of Gastroenterology, 10(24), 3597–3601.PubMed
69.
Zurück zum Zitat Takahashi, M., Ozaki, T., Todo, S., & Nakagawara, A. (2004). Decreased expression of the candidate tumor suppressor gene ING1 is associated with poor prognosis in advanced neuroblastomas. Oncology Reports, 12(4), 811–816.PubMed Takahashi, M., Ozaki, T., Todo, S., & Nakagawara, A. (2004). Decreased expression of the candidate tumor suppressor gene ING1 is associated with poor prognosis in advanced neuroblastomas. Oncology Reports, 12(4), 811–816.PubMed
70.
Zurück zum Zitat Tallen, G., Kaiser, I., Krabbe, S., Lass, U., Hartmann, C., Henze, G., et al. (2004). NoING1 mutations in human brain tumours but reduced expression in high malignancy grades of astrocytoma. International Journal of Cancer, 109(3), 476–479.CrossRef Tallen, G., Kaiser, I., Krabbe, S., Lass, U., Hartmann, C., Henze, G., et al. (2004). NoING1 mutations in human brain tumours but reduced expression in high malignancy grades of astrocytoma. International Journal of Cancer, 109(3), 476–479.CrossRef
71.
Zurück zum Zitat Piche, B., & Li, G. (2010). Inhibitor of growth tumor suppressors in cancer progression. Cellular and Molecular Life Sciences, 67(12), 1987–1999.PubMedCrossRef Piche, B., & Li, G. (2010). Inhibitor of growth tumor suppressors in cancer progression. Cellular and Molecular Life Sciences, 67(12), 1987–1999.PubMedCrossRef
72.
Zurück zum Zitat Cengiz, B., Gunduz, E., Gunduz, M., Beder, L. B., Tamamura, R., Bagci, C., et al. (2010). Tumor-specific mutation and downregulation of ING5 detected in oral squamous cell carcinoma. International Journal of Cancer, 127(9), 2088–2094.CrossRef Cengiz, B., Gunduz, E., Gunduz, M., Beder, L. B., Tamamura, R., Bagci, C., et al. (2010). Tumor-specific mutation and downregulation of ING5 detected in oral squamous cell carcinoma. International Journal of Cancer, 127(9), 2088–2094.CrossRef
73.
Zurück zum Zitat Gunduz, M., Nagatsuka, H., Demircan, K., Gunduz, E., Cengiz, B., Ouchida, M., et al. (2005). Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas. Gene, 356, 109–117.PubMedCrossRef Gunduz, M., Nagatsuka, H., Demircan, K., Gunduz, E., Cengiz, B., Ouchida, M., et al. (2005). Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas. Gene, 356, 109–117.PubMedCrossRef
74.
Zurück zum Zitat Coles, A. H., & Jones, S. N. (2009). The ING gene family in the regulation of cell growth and tumorigenesis. Journal of Cellular Physiology, 218(1), 45–57.PubMedCrossRef Coles, A. H., & Jones, S. N. (2009). The ING gene family in the regulation of cell growth and tumorigenesis. Journal of Cellular Physiology, 218(1), 45–57.PubMedCrossRef
75.
Zurück zum Zitat Li, J., Wang, Y., Wong, R. P., & Li, G. (2009). The role of ING tumor suppressors in UV stress response and melanoma progression. Current Drug Targets, 10(5), 455–464.PubMedCrossRef Li, J., Wang, Y., Wong, R. P., & Li, G. (2009). The role of ING tumor suppressors in UV stress response and melanoma progression. Current Drug Targets, 10(5), 455–464.PubMedCrossRef
76.
Zurück zum Zitat Bua, D. J., & Binda, O. (2009). The return of the INGs, histone mark sensors and phospholipid signaling effectors. Current Drug Targets, 10(5), 418–431.PubMedCrossRef Bua, D. J., & Binda, O. (2009). The return of the INGs, histone mark sensors and phospholipid signaling effectors. Current Drug Targets, 10(5), 418–431.PubMedCrossRef
77.
Zurück zum Zitat Garkavtsev, I., & Riabowol, K. (1997). Extension of the replicative life span of human diploid fibroblasts by inhibition of the p33ING1 candidate tumor suppressor. Molecular and Cellular Biology, 17(4), 2014–2019.PubMed Garkavtsev, I., & Riabowol, K. (1997). Extension of the replicative life span of human diploid fibroblasts by inhibition of the p33ING1 candidate tumor suppressor. Molecular and Cellular Biology, 17(4), 2014–2019.PubMed
78.
Zurück zum Zitat Abad, M., Moreno, A., Palacios, A., Narita, M., Blanco, F., Moreno-Bueno, G., et al. (2011). The tumor suppressor ING1 contributes to epigenetic control of cellular senescence. Aging Cell, 10(1), 158–171.PubMedCrossRef Abad, M., Moreno, A., Palacios, A., Narita, M., Blanco, F., Moreno-Bueno, G., et al. (2011). The tumor suppressor ING1 contributes to epigenetic control of cellular senescence. Aging Cell, 10(1), 158–171.PubMedCrossRef
79.
Zurück zum Zitat Larrieu, D., Ythier, D., Brambilla, C., & Pedeux, R. (2010). ING2 controls the G1 to S-phase transition by regulating p21 expression. Cell Cycle, 9(19), 3984–3990.PubMedCrossRef Larrieu, D., Ythier, D., Brambilla, C., & Pedeux, R. (2010). ING2 controls the G1 to S-phase transition by regulating p21 expression. Cell Cycle, 9(19), 3984–3990.PubMedCrossRef
80.
Zurück zum Zitat Kim, S., Welm, A. L., & Bishop, J. M. (2010). A dominant mutant allele of the ING4 tumor suppressor found in human cancer cells exacerbates MYC-initiated mouse mammary tumorigenesis. Cancer Research, 70(12), 5155–5162.PubMedCrossRef Kim, S., Welm, A. L., & Bishop, J. M. (2010). A dominant mutant allele of the ING4 tumor suppressor found in human cancer cells exacerbates MYC-initiated mouse mammary tumorigenesis. Cancer Research, 70(12), 5155–5162.PubMedCrossRef
81.
Zurück zum Zitat Li, X., Cai, L., Chen, H., Zhang, Q., Zhang, S., Wang, Y., et al. (2009). Inhibitor of growth 4 induces growth suppression and apoptosis in glioma U87MG. Pathobiology, 76(4), 181–192.PubMedCrossRef Li, X., Cai, L., Chen, H., Zhang, Q., Zhang, S., Wang, Y., et al. (2009). Inhibitor of growth 4 induces growth suppression and apoptosis in glioma U87MG. Pathobiology, 76(4), 181–192.PubMedCrossRef
82.
Zurück zum Zitat Cai, L., Li, X., Zheng, S., Wang, Y., Li, H., Yang, J., et al. (2009). Inhibitor of growth 4 is involved in melanomagenesis and induces growth suppression and apoptosis in melanoma cell line M14. Melanoma Research, 19(1), 1–7.PubMedCrossRef Cai, L., Li, X., Zheng, S., Wang, Y., Li, H., Yang, J., et al. (2009). Inhibitor of growth 4 is involved in melanomagenesis and induces growth suppression and apoptosis in melanoma cell line M14. Melanoma Research, 19(1), 1–7.PubMedCrossRef
83.
Zurück zum Zitat Pedeux, R., Sengupta, S., Shen, J. C., Demidov, O. N., Saito, S., Onogi, H., et al. (2005). ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Molecular and Cellular Biology, 25(15), 6639–6648.PubMedCrossRef Pedeux, R., Sengupta, S., Shen, J. C., Demidov, O. N., Saito, S., Onogi, H., et al. (2005). ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Molecular and Cellular Biology, 25(15), 6639–6648.PubMedCrossRef
84.
Zurück zum Zitat Gniadecki, R., Hansen, M., & Wulf, H. C. (1997). Two pathways for induction of apoptosis by ultraviolet radiation in cultured human keratinocytes. The Journal of Investigative Dermatology, 109(2), 163–169.PubMedCrossRef Gniadecki, R., Hansen, M., & Wulf, H. C. (1997). Two pathways for induction of apoptosis by ultraviolet radiation in cultured human keratinocytes. The Journal of Investigative Dermatology, 109(2), 163–169.PubMedCrossRef
85.
Zurück zum Zitat Shimizu, S., Eguchi, Y., Kamiike, W., Itoh, Y., Hasegawa, J., Yamabe, K., et al. (1996). Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-X(L). Cancer Research, 56(9), 2161–2166.PubMed Shimizu, S., Eguchi, Y., Kamiike, W., Itoh, Y., Hasegawa, J., Yamabe, K., et al. (1996). Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-X(L). Cancer Research, 56(9), 2161–2166.PubMed
86.
Zurück zum Zitat Yang, C. S., Yang, G. Y., Liao, J., Kim, K., & Yurkow, E. J. (1998). Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis, 19(4), 611–616.PubMedCrossRef Yang, C. S., Yang, G. Y., Liao, J., Kim, K., & Yurkow, E. J. (1998). Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis, 19(4), 611–616.PubMedCrossRef
87.
Zurück zum Zitat Hansson, M., Asea, A., Ersson, U., Hermodsson, S., & Hellstrand, K. (1996). Induction of apoptosis in NK cells by monocyte-derived reactive oxygen metabolites. The Journal of Immunology, 156(1), 42–47.PubMed Hansson, M., Asea, A., Ersson, U., Hermodsson, S., & Hellstrand, K. (1996). Induction of apoptosis in NK cells by monocyte-derived reactive oxygen metabolites. The Journal of Immunology, 156(1), 42–47.PubMed
88.
Zurück zum Zitat Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic Pathology, 35(4), 495–516.PubMedCrossRef Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic Pathology, 35(4), 495–516.PubMedCrossRef
89.
Zurück zum Zitat Shah, S., & Riabowol, K. (2009). Signaling pathways of the ING proteins in apoptosis. Current Drug Targets, 10(5), 385–391.PubMedCrossRef Shah, S., & Riabowol, K. (2009). Signaling pathways of the ING proteins in apoptosis. Current Drug Targets, 10(5), 385–391.PubMedCrossRef
90.
Zurück zum Zitat Shah, S., Smith, H., Feng, X., Rancourt, D. E., & Riabowol, K. (2009). ING function in apoptosis in diverse model systems. Biochemistry and Cell Biology, 87(1), 117–125.PubMedCrossRef Shah, S., Smith, H., Feng, X., Rancourt, D. E., & Riabowol, K. (2009). ING function in apoptosis in diverse model systems. Biochemistry and Cell Biology, 87(1), 117–125.PubMedCrossRef
91.
Zurück zum Zitat Helbing, C. C., Veillette, C., Riabowol, K., Johnston, R. N., & Garkavtsev, I. (1997). A novel candidate tumor suppressor, ING1, is involved in the regulation of apoptosis. Cancer Research, 57(7), 1255–1258.PubMed Helbing, C. C., Veillette, C., Riabowol, K., Johnston, R. N., & Garkavtsev, I. (1997). A novel candidate tumor suppressor, ING1, is involved in the regulation of apoptosis. Cancer Research, 57(7), 1255–1258.PubMed
92.
Zurück zum Zitat Scott, M., Bonnefin, P., Vieyra, D., Boisvert, F. M., Young, D., Bazett-Jones, D. P., et al. (2001). UV-induced binding of ING1 to PCNA regulates the induction of apoptosis. Journal of Cell Science, 114(19), 3455–3462.PubMed Scott, M., Bonnefin, P., Vieyra, D., Boisvert, F. M., Young, D., Bazett-Jones, D. P., et al. (2001). UV-induced binding of ING1 to PCNA regulates the induction of apoptosis. Journal of Cell Science, 114(19), 3455–3462.PubMed
93.
Zurück zum Zitat Cheung, K. J., Jr., & Li, G. (2002). p33(ING1) enhances UVB-induced apoptosis in melanoma cells. Experimental Cell Research, 279(2), 291–298.PubMedCrossRef Cheung, K. J., Jr., & Li, G. (2002). p33(ING1) enhances UVB-induced apoptosis in melanoma cells. Experimental Cell Research, 279(2), 291–298.PubMedCrossRef
94.
Zurück zum Zitat Wang, Y., & Li, G. (2006). ING3 promotes UV-induced apoptosis via Fas/caspase-8 pathway in melanoma cells. The Journal of Biological Chemistry, 281(17), 11887–11893.PubMedCrossRef Wang, Y., & Li, G. (2006). ING3 promotes UV-induced apoptosis via Fas/caspase-8 pathway in melanoma cells. The Journal of Biological Chemistry, 281(17), 11887–11893.PubMedCrossRef
95.
Zurück zum Zitat Li, Z., Xie, Y., Sheng, W., Miao, J., Xiang, J., & Yang, J. (2010). Tumor-suppressive effect of adenovirus-mediated inhibitor of growth 4 gene transfer in breast carcinoma cells in vitro and in vivo. Cancer Biotherapy and Radiopharmaceuticals, 25(4), 427–437.PubMedCrossRef Li, Z., Xie, Y., Sheng, W., Miao, J., Xiang, J., & Yang, J. (2010). Tumor-suppressive effect of adenovirus-mediated inhibitor of growth 4 gene transfer in breast carcinoma cells in vitro and in vivo. Cancer Biotherapy and Radiopharmaceuticals, 25(4), 427–437.PubMedCrossRef
96.
Zurück zum Zitat Xie, Y., Sheng, W., Miao, J., Xiang, J., & Yang, J. (2011). Enhanced antitumor activity by combining an adenovirus harboring ING4 with cisplatin for hepatocarcinoma cells. Cancer Gene Therapy, 18(3), 176–188.PubMedCrossRef Xie, Y., Sheng, W., Miao, J., Xiang, J., & Yang, J. (2011). Enhanced antitumor activity by combining an adenovirus harboring ING4 with cisplatin for hepatocarcinoma cells. Cancer Gene Therapy, 18(3), 176–188.PubMedCrossRef
97.
Zurück zum Zitat Chin, M. Y., Ng, K. C., & Li, G. (2005). The novel tumor suppressor p33ING2 enhances UVB-induced apoptosis in human melanoma cells. Experimental Cell Research, 304(2), 531–543.PubMedCrossRef Chin, M. Y., Ng, K. C., & Li, G. (2005). The novel tumor suppressor p33ING2 enhances UVB-induced apoptosis in human melanoma cells. Experimental Cell Research, 304(2), 531–543.PubMedCrossRef
98.
Zurück zum Zitat Negrini, S., Gorgoulis, V. G., & Halazonetis, T. D. (2010). Genomic instability—an evolving hallmark of cancer. Nature Reviews Molecular Cell Biology, 11(3), 220–228.PubMedCrossRef Negrini, S., Gorgoulis, V. G., & Halazonetis, T. D. (2010). Genomic instability—an evolving hallmark of cancer. Nature Reviews Molecular Cell Biology, 11(3), 220–228.PubMedCrossRef
99.
Zurück zum Zitat Charames, G. S., & Bapat, B. (2003). Genomic instability and cancer. Current Molecular Medicine, 3(7), 589–596.PubMedCrossRef Charames, G. S., & Bapat, B. (2003). Genomic instability and cancer. Current Molecular Medicine, 3(7), 589–596.PubMedCrossRef
100.
Zurück zum Zitat Kichina, J. V., Zeremski, M., Aris, L., Gurova, K. V., Walker, E., Franks, R., et al. (2006). Targeted disruption of the mouse ing1 locus results in reduced body size, hypersensitivity to radiation and elevated incidence of lymphomas. Oncogene, 25(6), 857–866.PubMedCrossRef Kichina, J. V., Zeremski, M., Aris, L., Gurova, K. V., Walker, E., Franks, R., et al. (2006). Targeted disruption of the mouse ing1 locus results in reduced body size, hypersensitivity to radiation and elevated incidence of lymphomas. Oncogene, 25(6), 857–866.PubMedCrossRef
101.
Zurück zum Zitat Vieyra, D., Loewith, R., Scott, M., Bonnefin, P., Boisvert, F. M., Cheema, P., et al. (2002). Human ING1 proteins differentially regulate histone acetylation. The Journal of Biological Chemistry, 277(33), 29832–29839.PubMedCrossRef Vieyra, D., Loewith, R., Scott, M., Bonnefin, P., Boisvert, F. M., Cheema, P., et al. (2002). Human ING1 proteins differentially regulate histone acetylation. The Journal of Biological Chemistry, 277(33), 29832–29839.PubMedCrossRef
102.
Zurück zum Zitat Feng, X., Hara, Y., & Riabowol, K. (2002). Different HATS of the ING1 gene family. Trends in Cell Biology, 12(11), 532–538.PubMedCrossRef Feng, X., Hara, Y., & Riabowol, K. (2002). Different HATS of the ING1 gene family. Trends in Cell Biology, 12(11), 532–538.PubMedCrossRef
103.
Zurück zum Zitat Kuzmichev, A., Zhang, Y., Erdjument-Bromage, H., Tempst, P., & Reinberg, D. (2002). Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1). Molecular and Cellular Biology, 22(3), 835–848.PubMedCrossRef Kuzmichev, A., Zhang, Y., Erdjument-Bromage, H., Tempst, P., & Reinberg, D. (2002). Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1). Molecular and Cellular Biology, 22(3), 835–848.PubMedCrossRef
104.
Zurück zum Zitat Doyon, Y., Cayrou, C., Ullah, M., Landry, A. J., Cote, V., Selleck, W., et al. (2006). ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Molecular Cell, 21(1), 51–64.PubMedCrossRef Doyon, Y., Cayrou, C., Ullah, M., Landry, A. J., Cote, V., Selleck, W., et al. (2006). ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Molecular Cell, 21(1), 51–64.PubMedCrossRef
105.
Zurück zum Zitat Allard, S., Masson, J. Y., & Cote, J. (2004). Chromatin remodeling and the maintenance of genome integrity. Biochimica et Biophysica Acta, 1677(1–3), 158–164.PubMed Allard, S., Masson, J. Y., & Cote, J. (2004). Chromatin remodeling and the maintenance of genome integrity. Biochimica et Biophysica Acta, 1677(1–3), 158–164.PubMed
106.
Zurück zum Zitat Wang, J., Chin, M. Y., & Li, G. (2006). The novel tumor suppressor p33ING2 enhances nucleotide excision repair via inducement of histone H4 acetylation and chromatin relaxation. Cancer Research, 66(4), 1906–1911.PubMedCrossRef Wang, J., Chin, M. Y., & Li, G. (2006). The novel tumor suppressor p33ING2 enhances nucleotide excision repair via inducement of histone H4 acetylation and chromatin relaxation. Cancer Research, 66(4), 1906–1911.PubMedCrossRef
107.
Zurück zum Zitat Kuo, W. H., Wang, Y., Wong, R. P., Campos, E. I., & Li, G. (2007). The ING1b tumor suppressor facilitates nucleotide excision repair by promoting chromatin accessibility to XPA. Experimental Cell Research, 313(8), 1628–1638.PubMedCrossRef Kuo, W. H., Wang, Y., Wong, R. P., Campos, E. I., & Li, G. (2007). The ING1b tumor suppressor facilitates nucleotide excision repair by promoting chromatin accessibility to XPA. Experimental Cell Research, 313(8), 1628–1638.PubMedCrossRef
108.
Zurück zum Zitat Wong, R. P., Lin, H., Khosravi, S., Piche, B., Jafarnejad, S. M., Chen, D. W., et al. (2011). Tumour suppressor ING1b maintains genomic stability upon replication stress. Nucleic Acids Res (in press) Wong, R. P., Lin, H., Khosravi, S., Piche, B., Jafarnejad, S. M., Chen, D. W., et al. (2011). Tumour suppressor ING1b maintains genomic stability upon replication stress. Nucleic Acids Res (in press)
109.
Zurück zum Zitat Toyama, T., Iwase, H., Watson, P., Muzik, H., Saettler, E., Magliocco, A., et al. (1999). Suppression of ING1 expression in sporadic breast cancer. Oncogene, 18(37), 5187–5193.PubMedCrossRef Toyama, T., Iwase, H., Watson, P., Muzik, H., Saettler, E., Magliocco, A., et al. (1999). Suppression of ING1 expression in sporadic breast cancer. Oncogene, 18(37), 5187–5193.PubMedCrossRef
110.
Zurück zum Zitat Ahmed, I. A., Kelly, S. B., Anderson, J. J., Angus, B., Challen, C., & Lunec, J. (2008). The predictive value of p53 and p33(ING1b) in patients with Dukes' C colorectal cancer. Colorectal Disease, 10(4), 344–351.PubMedCrossRef Ahmed, I. A., Kelly, S. B., Anderson, J. J., Angus, B., Challen, C., & Lunec, J. (2008). The predictive value of p53 and p33(ING1b) in patients with Dukes' C colorectal cancer. Colorectal Disease, 10(4), 344–351.PubMedCrossRef
111.
Zurück zum Zitat Nouman, G. S., Anderson, J. J., Mathers, M. E., Leonard, N., Crosier, S., Lunec, J., et al. (2002). Nuclear to cytoplasmic compartment shift of the p33ING1b tumour suppressor protein is associated with malignancy in melanocytic lesions. Histopathology, 40(4), 360–366.PubMedCrossRef Nouman, G. S., Anderson, J. J., Mathers, M. E., Leonard, N., Crosier, S., Lunec, J., et al. (2002). Nuclear to cytoplasmic compartment shift of the p33ING1b tumour suppressor protein is associated with malignancy in melanocytic lesions. Histopathology, 40(4), 360–366.PubMedCrossRef
112.
Zurück zum Zitat Zhang, J. T., Wang, D. W., Li, Q. X., Zhu, Z. L., Wang, M. W., Cui, D. S., et al. (2008). Nuclear to cytoplasmic shift of p33(ING1b) protein from normal oral mucosa to oral squamous cell carcinoma in relation to clinicopathological variables. Journal of Cancer Research and Clinical Oncology, 134(3), 421–426.PubMedCrossRef Zhang, J. T., Wang, D. W., Li, Q. X., Zhu, Z. L., Wang, M. W., Cui, D. S., et al. (2008). Nuclear to cytoplasmic shift of p33(ING1b) protein from normal oral mucosa to oral squamous cell carcinoma in relation to clinicopathological variables. Journal of Cancer Research and Clinical Oncology, 134(3), 421–426.PubMedCrossRef
113.
Zurück zum Zitat Tallen, G., Farhangi, S., Tamannai, M., Holtkamp, N., Mangoldt, D., Shah, S., et al. (2009). The inhibitor of growth 1 (ING1) proteins suppress angiogenesis and differentially regulate angiopoietin expression in glioblastoma cells. Oncology Research, 18(2–3), 95–105.PubMedCrossRef Tallen, G., Farhangi, S., Tamannai, M., Holtkamp, N., Mangoldt, D., Shah, S., et al. (2009). The inhibitor of growth 1 (ING1) proteins suppress angiogenesis and differentially regulate angiopoietin expression in glioblastoma cells. Oncology Research, 18(2–3), 95–105.PubMedCrossRef
114.
Zurück zum Zitat Coles, A. H., Liang, H., Zhu, Z., Marfella, C. G., Kang, J., Imbalzano, A. N., et al. (2007). Deletion of p37Ing1 in mice reveals a p53-independent role for Ing1 in the suppression of cell proliferation, apoptosis, and tumorigenesis. Cancer Research, 67(5), 2054–2061.PubMedCrossRef Coles, A. H., Liang, H., Zhu, Z., Marfella, C. G., Kang, J., Imbalzano, A. N., et al. (2007). Deletion of p37Ing1 in mice reveals a p53-independent role for Ing1 in the suppression of cell proliferation, apoptosis, and tumorigenesis. Cancer Research, 67(5), 2054–2061.PubMedCrossRef
115.
Zurück zum Zitat Cheung, K. J., Jr., & Li, G. (2002). The tumour suppressor p33ING1 does not enhance camptothecin-induced cell death in melanoma cells. International Journal of Oncology, 20(6), 1319–1322.PubMed Cheung, K. J., Jr., & Li, G. (2002). The tumour suppressor p33ING1 does not enhance camptothecin-induced cell death in melanoma cells. International Journal of Oncology, 20(6), 1319–1322.PubMed
116.
Zurück zum Zitat Abad, M., Menendez, C., Fuchtbauer, A., Serrano, M., Fuchtbauer, E. M., & Palmero, I. (2007). Ing1 mediates p53 accumulation and chromatin modification in response to oncogenic stress. The Journal of Biological Chemistry, 282(42), 31060–31067.PubMedCrossRef Abad, M., Menendez, C., Fuchtbauer, A., Serrano, M., Fuchtbauer, E. M., & Palmero, I. (2007). Ing1 mediates p53 accumulation and chromatin modification in response to oncogenic stress. The Journal of Biological Chemistry, 282(42), 31060–31067.PubMedCrossRef
117.
Zurück zum Zitat Li, J., Martinka, M., & Li, G. (2008). Role of ING4 in human melanoma cell migration, invasion and patient survival. Carcinogenesis, 29(7), 1373–1379.PubMedCrossRef Li, J., Martinka, M., & Li, G. (2008). Role of ING4 in human melanoma cell migration, invasion and patient survival. Carcinogenesis, 29(7), 1373–1379.PubMedCrossRef
118.
Zurück zum Zitat Li, M., Jin, Y., Sun, W. J., Yu, Y., Bai, J., Tong, D. D., et al. (2009). Reduced expression and novel splice variants of ING4 in human gastric adenocarcinoma. The Journal of Pathology, 219(1), 87–95.PubMedCrossRef Li, M., Jin, Y., Sun, W. J., Yu, Y., Bai, J., Tong, D. D., et al. (2009). Reduced expression and novel splice variants of ING4 in human gastric adenocarcinoma. The Journal of Pathology, 219(1), 87–95.PubMedCrossRef
119.
Zurück zum Zitat Kim, S., Chin, K., Gray, J. W., & Bishop, J. M. (2004). A screen for genes that suppress loss of contact inhibition: identification of ING4 as a candidate tumor suppressor gene in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 101(46), 16251–16256.PubMedCrossRef Kim, S., Chin, K., Gray, J. W., & Bishop, J. M. (2004). A screen for genes that suppress loss of contact inhibition: identification of ING4 as a candidate tumor suppressor gene in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 101(46), 16251–16256.PubMedCrossRef
120.
Zurück zum Zitat Moreno, A., Palacios, A., Orgaz, J. L., Jimenez, B., Blanco, F. J., & Palmero, I. (2010). Functional impact of cancer-associated mutations in the tumor suppressor protein ING4. Carcinogenesis, 31(11), 1932–1938.PubMedCrossRef Moreno, A., Palacios, A., Orgaz, J. L., Jimenez, B., Blanco, F. J., & Palmero, I. (2010). Functional impact of cancer-associated mutations in the tumor suppressor protein ING4. Carcinogenesis, 31(11), 1932–1938.PubMedCrossRef
121.
Zurück zum Zitat Hung, T., Binda, O., Champagne, K. S., Kuo, A. J., Johnson, K., Chang, H. Y., et al. (2009). ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Molecular Cell, 33(2), 248–256.PubMedCrossRef Hung, T., Binda, O., Champagne, K. S., Kuo, A. J., Johnson, K., Chang, H. Y., et al. (2009). ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Molecular Cell, 33(2), 248–256.PubMedCrossRef
122.
Zurück zum Zitat Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3(10), 721–732.PubMedCrossRef Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3(10), 721–732.PubMedCrossRef
123.
Zurück zum Zitat Li, J., & Li, G. (2010). Cell cycle regulator ING4 is a suppressor of melanoma angiogenesis that is regulated by the metastasis suppressor BRMS1. Cancer Research, 70(24), 10445–10453.PubMedCrossRef Li, J., & Li, G. (2010). Cell cycle regulator ING4 is a suppressor of melanoma angiogenesis that is regulated by the metastasis suppressor BRMS1. Cancer Research, 70(24), 10445–10453.PubMedCrossRef
124.
Zurück zum Zitat Harris, C. C., Kumamoto, K., Fujita, K., Kurotani, R., Saito, M., Unoki, M., et al. (2009). ING2 is upregulated in colon cancer and increases invasion by enhanced MMP13 expression. International Journal of Cancer, 125(6), 1306–1315.CrossRef Harris, C. C., Kumamoto, K., Fujita, K., Kurotani, R., Saito, M., Unoki, M., et al. (2009). ING2 is upregulated in colon cancer and increases invasion by enhanced MMP13 expression. International Journal of Cancer, 125(6), 1306–1315.CrossRef
125.
Zurück zum Zitat Garkavtsev, I., Grigorian, I. A., Ossovskaya, V. S., Chernov, M. V., Chumakov, P. M., & Gudkov, A. V. (1998). The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature, 391(6664), 295–298.PubMedCrossRef Garkavtsev, I., Grigorian, I. A., Ossovskaya, V. S., Chernov, M. V., Chumakov, P. M., & Gudkov, A. V. (1998). The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature, 391(6664), 295–298.PubMedCrossRef
126.
Zurück zum Zitat Shinoura, N., Muramatsu, Y., Nishimura, M., Yoshida, Y., Saito, A., Yokoyama, T., et al. (1999). Adenovirus-mediated transfer of p33ING1 with p53 drastically augments apoptosis in gliomas. Cancer Research, 59(21), 5521–5528.PubMed Shinoura, N., Muramatsu, Y., Nishimura, M., Yoshida, Y., Saito, A., Yokoyama, T., et al. (1999). Adenovirus-mediated transfer of p33ING1 with p53 drastically augments apoptosis in gliomas. Cancer Research, 59(21), 5521–5528.PubMed
127.
Zurück zum Zitat Luo, Z. G., Tang, H., Li, B., Zhu, Z., Ni, C. R., & Zhu, M. H. (2011). Genetic alterations of tumor suppressor ING1 in human non-small cell lung cancer. Oncology Reports, 25(4), 1073–1081.PubMed Luo, Z. G., Tang, H., Li, B., Zhu, Z., Ni, C. R., & Zhu, M. H. (2011). Genetic alterations of tumor suppressor ING1 in human non-small cell lung cancer. Oncology Reports, 25(4), 1073–1081.PubMed
128.
Zurück zum Zitat Shimada, H., Liu, T. L., Ochiai, T., Shimizu, T., Haupt, Y., Hamada, H., et al. (2002). Facilitation of adenoviral wild-type p53-induced apoptotic cell death by overexpression of p33(ING1) in T.Tn human esophageal carcinoma cells. Oncogene, 21(8), 1208–1216.PubMedCrossRef Shimada, H., Liu, T. L., Ochiai, T., Shimizu, T., Haupt, Y., Hamada, H., et al. (2002). Facilitation of adenoviral wild-type p53-induced apoptotic cell death by overexpression of p33(ING1) in T.Tn human esophageal carcinoma cells. Oncogene, 21(8), 1208–1216.PubMedCrossRef
129.
Zurück zum Zitat Leung, K. M., Po, L. S., Tsang, F. C., Sin, W. Y., Lau, A., Ho, H. T. B., et al. (2002). The candidate tumor suppressor ING1b can stabilize p53 by disrupting the regulation of p53 by MDM2. Cancer Research, 62(17), 4890–4893.PubMed Leung, K. M., Po, L. S., Tsang, F. C., Sin, W. Y., Lau, A., Ho, H. T. B., et al. (2002). The candidate tumor suppressor ING1b can stabilize p53 by disrupting the regulation of p53 by MDM2. Cancer Research, 62(17), 4890–4893.PubMed
130.
Zurück zum Zitat Tsang, F. C., Po, L. S., Leung, K. M., Lau, A., Siu, W. Y., & Poon, R. Y. C. (2003). ING1b decreases cell proliferation through p53-dependent and -independent mechanisms. FEBS Letters, 553(3), 277–285.PubMedCrossRef Tsang, F. C., Po, L. S., Leung, K. M., Lau, A., Siu, W. Y., & Poon, R. Y. C. (2003). ING1b decreases cell proliferation through p53-dependent and -independent mechanisms. FEBS Letters, 553(3), 277–285.PubMedCrossRef
131.
Zurück zum Zitat Lin, Y. L., Sengupta, S., Gurdziel, K., Bell, G. W., Jacks, T., & Flores, E. R. (2009). p63 and p73 transcriptionally regulate genes involved in DNA repair. Plos Genetics, 5(10), e1000680. Lin, Y. L., Sengupta, S., Gurdziel, K., Bell, G. W., Jacks, T., & Flores, E. R. (2009). p63 and p73 transcriptionally regulate genes involved in DNA repair. Plos Genetics, 5(10), e1000680.
132.
Zurück zum Zitat Yao, J. Y., & Chen, J. K. (2010). TAp63 plays compensatory roles in p53-deficient cancer cells under genotoxic stress. Biochemical and Biophysical Research Communications, 403(3–4), 310–315.PubMedCrossRef Yao, J. Y., & Chen, J. K. (2010). TAp63 plays compensatory roles in p53-deficient cancer cells under genotoxic stress. Biochemical and Biophysical Research Communications, 403(3–4), 310–315.PubMedCrossRef
133.
Zurück zum Zitat Vayssade, M., Haddada, H., Faridoni-Laurens, L., Tourpin, S., Valent, A., Benard, J., et al. (2005). p73 functionally replaces 1353 in adriamycin-treated, p53-deficient breast cancer cells. International Journal of Cancer, 116(6), 860–869.CrossRef Vayssade, M., Haddada, H., Faridoni-Laurens, L., Tourpin, S., Valent, A., Benard, J., et al. (2005). p73 functionally replaces 1353 in adriamycin-treated, p53-deficient breast cancer cells. International Journal of Cancer, 116(6), 860–869.CrossRef
134.
Zurück zum Zitat Cheung, K. J., Jr., Mitchell, D., Lin, P., & Li, G. (2001). The tumor suppressor candidate p33(ING1) mediates repair of UV-damaged DNA. Cancer Research, 61(13), 4974–4977.PubMed Cheung, K. J., Jr., Mitchell, D., Lin, P., & Li, G. (2001). The tumor suppressor candidate p33(ING1) mediates repair of UV-damaged DNA. Cancer Research, 61(13), 4974–4977.PubMed
135.
Zurück zum Zitat Wong, R. P., Lin, H., Khosravi, S., Piche, B., Jafarnejad, S. M., Chen, D. W., et al. (2011). Tumour suppressor ING1b maintains genomic stability upon replication stress. Nucleic Acids Research, 39(9), 3632–3642.PubMedCrossRef Wong, R. P., Lin, H., Khosravi, S., Piche, B., Jafarnejad, S. M., Chen, D. W., et al. (2011). Tumour suppressor ING1b maintains genomic stability upon replication stress. Nucleic Acids Research, 39(9), 3632–3642.PubMedCrossRef
136.
Zurück zum Zitat Avkin, S., Sevilya, Z., Toube, L., Geacintov, N., Chaney, S. G., Oren, M., et al. (2006). p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. Molecular Cell, 22(3), 407–413.PubMedCrossRef Avkin, S., Sevilya, Z., Toube, L., Geacintov, N., Chaney, S. G., Oren, M., et al. (2006). p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. Molecular Cell, 22(3), 407–413.PubMedCrossRef
137.
Zurück zum Zitat Yang, X. H., Shiotani, B., Classon, M., & Zou, L. (2008). Chk1 and Claspin potentiate PCNA ubiquitination. Genes & Development, 22(9), 1147–1152.CrossRef Yang, X. H., Shiotani, B., Classon, M., & Zou, L. (2008). Chk1 and Claspin potentiate PCNA ubiquitination. Genes & Development, 22(9), 1147–1152.CrossRef
138.
Zurück zum Zitat Ou, Y. H., Chung, P. H., Sun, T. P., & Shieh, S. Y. (2005). p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA-damage-induced C-terminal acetylation. Molecular Biology of the Cell, 16(4), 1684–1695.PubMedCrossRef Ou, Y. H., Chung, P. H., Sun, T. P., & Shieh, S. Y. (2005). p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA-damage-induced C-terminal acetylation. Molecular Biology of the Cell, 16(4), 1684–1695.PubMedCrossRef
139.
Zurück zum Zitat Zhu, Z., Lin, J., Qu, J. H., Feitelson, M. A., Ni, C. R., Li, F. M., et al. (2005). Inhibitory effect of tumor suppressor p33(ING1b) and its synergy with p53 gene in hepatocellular carcinoma. World Journal of Gastroenterology, 11(13), 1903–1909.PubMed Zhu, Z., Lin, J., Qu, J. H., Feitelson, M. A., Ni, C. R., Li, F. M., et al. (2005). Inhibitory effect of tumor suppressor p33(ING1b) and its synergy with p53 gene in hepatocellular carcinoma. World Journal of Gastroenterology, 11(13), 1903–1909.PubMed
140.
Zurück zum Zitat Sherr, C. J., & Weber, J. D. (2000). The ARF/p53 pathway. Current Opinion in Genetics and Development, 10(1), 94–99.PubMedCrossRef Sherr, C. J., & Weber, J. D. (2000). The ARF/p53 pathway. Current Opinion in Genetics and Development, 10(1), 94–99.PubMedCrossRef
141.
Zurück zum Zitat Gonzalez, L., Freije, J. M. P., Cal, S., Lopez-Otin, C., Serrano, M., & Palmero, I. (2006). A functional link between the tumour suppressors ARF and p33ING1. Oncogene, 25(37), 5173–5179.PubMed Gonzalez, L., Freije, J. M. P., Cal, S., Lopez-Otin, C., Serrano, M., & Palmero, I. (2006). A functional link between the tumour suppressors ARF and p33ING1. Oncogene, 25(37), 5173–5179.PubMed
142.
Zurück zum Zitat Zhu, J. J., Li, F. B., Zhu, X. F., & Liao, W. M. (2006). The p33ING1b tumor suppressor cooperates with p53 to induce apoptosis in response to etoposide in human osteosarcoma cells. Life Sciences, 78(13), 1469–1477.PubMedCrossRef Zhu, J. J., Li, F. B., Zhu, X. F., & Liao, W. M. (2006). The p33ING1b tumor suppressor cooperates with p53 to induce apoptosis in response to etoposide in human osteosarcoma cells. Life Sciences, 78(13), 1469–1477.PubMedCrossRef
143.
Zurück zum Zitat Zhu, J. J., Li, F. B., Zhou, J. M., Liu, Z. C., Zhu, X. F., & Liao, W. M. (2005). The tumor suppressor p33ING1b enhances taxol-induced apoptosis by p53-dependent pathway in human osteosarcoma U2OS cells. Cancer Biology & Therapy, 4(1), 39–47.CrossRef Zhu, J. J., Li, F. B., Zhou, J. M., Liu, Z. C., Zhu, X. F., & Liao, W. M. (2005). The tumor suppressor p33ING1b enhances taxol-induced apoptosis by p53-dependent pathway in human osteosarcoma U2OS cells. Cancer Biology & Therapy, 4(1), 39–47.CrossRef
144.
Zurück zum Zitat Kataoka, H., Bonnefin, P., Vieyra, D., Feng, X. L., Hara, Y., Miura, Y., et al. (2003). ING1 represses transcription by direct DNA binding and through effects on p53. Cancer Research, 63(18), 5785–5792.PubMed Kataoka, H., Bonnefin, P., Vieyra, D., Feng, X. L., Hara, Y., Miura, Y., et al. (2003). ING1 represses transcription by direct DNA binding and through effects on p53. Cancer Research, 63(18), 5785–5792.PubMed
145.
Zurück zum Zitat Zhu, Z., Luo, Z., Li, Y., Ni, C., Li, H., & Zhu, M. (2009). Human inhibitor of growth 1 inhibits hepatoma cell growth and influences p53 stability in a variant-dependent manner. Hepatology, 49(2), 504–512.PubMedCrossRef Zhu, Z., Luo, Z., Li, Y., Ni, C., Li, H., & Zhu, M. (2009). Human inhibitor of growth 1 inhibits hepatoma cell growth and influences p53 stability in a variant-dependent manner. Hepatology, 49(2), 504–512.PubMedCrossRef
146.
Zurück zum Zitat Tamannai, M., Farhangi, S., Truss, M., Sinn, B., Wurm, R., Bose, P., et al. (2010). The inhibitor of growth 1 (ING1) is involved in trichostatin A-induced apoptosis and caspase 3 signaling in p53-deficient glioblastoma cells. Oncology Research, 18(10), 469–480.PubMedCrossRef Tamannai, M., Farhangi, S., Truss, M., Sinn, B., Wurm, R., Bose, P., et al. (2010). The inhibitor of growth 1 (ING1) is involved in trichostatin A-induced apoptosis and caspase 3 signaling in p53-deficient glioblastoma cells. Oncology Research, 18(10), 469–480.PubMedCrossRef
147.
Zurück zum Zitat Tallen, U. G., Truss, M., Kunitz, F., Wellmann, S., Unryn, B., Sinn, B., et al. (2008). Down-regulation of the inhibitor of growth 1 (ING1) tumor suppressor sensitizes p53-deficient glioblastoma cells to cisplatin-induced cell death. Journal of Neuro-Oncology, 86(1), 23–30.PubMedCrossRef Tallen, U. G., Truss, M., Kunitz, F., Wellmann, S., Unryn, B., Sinn, B., et al. (2008). Down-regulation of the inhibitor of growth 1 (ING1) tumor suppressor sensitizes p53-deficient glioblastoma cells to cisplatin-induced cell death. Journal of Neuro-Oncology, 86(1), 23–30.PubMedCrossRef
148.
Zurück zum Zitat Goeman, F., Thormeyer, D., Abad, M., Serrano, M., Schmidt, O., Palmero, I., et al. (2005). Growth inhibition by the tumor suppressor p33ING1 in immortalized and primary cells: involvement of two silencing domains and effect of Ras. Molecular and Cellular Biology, 25(1), 422–431.PubMedCrossRef Goeman, F., Thormeyer, D., Abad, M., Serrano, M., Schmidt, O., Palmero, I., et al. (2005). Growth inhibition by the tumor suppressor p33ING1 in immortalized and primary cells: involvement of two silencing domains and effect of Ras. Molecular and Cellular Biology, 25(1), 422–431.PubMedCrossRef
149.
Zurück zum Zitat Gozani, O., Karuman, P., Jones, D. R., Ivanov, D., Cha, J., Lugovskoy, A. A., et al. (2003). The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell, 114(1), 99–111.PubMedCrossRef Gozani, O., Karuman, P., Jones, D. R., Ivanov, D., Cha, J., Lugovskoy, A. A., et al. (2003). The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell, 114(1), 99–111.PubMedCrossRef
150.
Zurück zum Zitat Wang, Y. M., Wang, J., & Li, G. (2006). Leucine zipper-like domain is required for tumor suppressor ING2-mediated nucleotide excision repair and apoptosis. FEBS Letters, 580(16), 3787–3793.PubMedCrossRef Wang, Y. M., Wang, J., & Li, G. (2006). Leucine zipper-like domain is required for tumor suppressor ING2-mediated nucleotide excision repair and apoptosis. FEBS Letters, 580(16), 3787–3793.PubMedCrossRef
151.
Zurück zum Zitat Sun, G., Jin, S., & Baskaran, R. (2009). MMR/c-Abl-dependent activation of ING2/p73alpha signaling regulates the cell death response to N-methyl-N′-nitro-N-nitrosoguanidine. Experimental Cell Research, 315(18), 3163–3175.PubMedCrossRef Sun, G., Jin, S., & Baskaran, R. (2009). MMR/c-Abl-dependent activation of ING2/p73alpha signaling regulates the cell death response to N-methyl-N′-nitro-N-nitrosoguanidine. Experimental Cell Research, 315(18), 3163–3175.PubMedCrossRef
152.
Zurück zum Zitat Smith, K. T., Martin-Brown, S. A., Florens, L., Washburn, M. P., & Workman, J. L. (2010). Deacetylase inhibitors dissociate the histone-targeting ING2 subunit from the Sin3 complex. Chemistry and Biology, 17(1), 65–74.PubMedCrossRef Smith, K. T., Martin-Brown, S. A., Florens, L., Washburn, M. P., & Workman, J. L. (2010). Deacetylase inhibitors dissociate the histone-targeting ING2 subunit from the Sin3 complex. Chemistry and Biology, 17(1), 65–74.PubMedCrossRef
153.
Zurück zum Zitat Kumamoto, K., Spillare, E. A., Fujita, K., Horikawa, I., Yamashita, T., Appella, E., et al. (2008). Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Research, 68(9), 3193–3203.PubMedCrossRef Kumamoto, K., Spillare, E. A., Fujita, K., Horikawa, I., Yamashita, T., Appella, E., et al. (2008). Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Research, 68(9), 3193–3203.PubMedCrossRef
154.
Zurück zum Zitat Harris, S. L., & Levine, A. J. (2005). The p53 pathway: positive and negative feedback loops. Oncogene, 24(17), 2899–2908.PubMedCrossRef Harris, S. L., & Levine, A. J. (2005). The p53 pathway: positive and negative feedback loops. Oncogene, 24(17), 2899–2908.PubMedCrossRef
155.
Zurück zum Zitat Larrieu, D., Ythier, D., Binet, R., Brambilla, C., Brambilla, E., Sengupta, S., et al. (2009). ING2 controls the progression of DNA replication forks to maintain genome stability. EMBO Reports, 10(10), 1168–1174.PubMedCrossRef Larrieu, D., Ythier, D., Binet, R., Brambilla, C., Brambilla, E., Sengupta, S., et al. (2009). ING2 controls the progression of DNA replication forks to maintain genome stability. EMBO Reports, 10(10), 1168–1174.PubMedCrossRef
156.
Zurück zum Zitat Stark, G. R., Hastak, K., Paul, R. K., Agarwal, M. K., Thakur, V. S., Amin, A. R. M. R., et al. (2008). DNA synthesis from unbalanced nucleotide pools causes limited DNA damage that triggers ATR-CHK1-dependent p53 activation. Proceedings of the National Academy of Sciences of the United States of America, 105(17), 6314–6319.PubMedCrossRef Stark, G. R., Hastak, K., Paul, R. K., Agarwal, M. K., Thakur, V. S., Amin, A. R. M. R., et al. (2008). DNA synthesis from unbalanced nucleotide pools causes limited DNA damage that triggers ATR-CHK1-dependent p53 activation. Proceedings of the National Academy of Sciences of the United States of America, 105(17), 6314–6319.PubMedCrossRef
157.
Zurück zum Zitat Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y., & Prives, C. (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes & Development, 14(3), 289–300. Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y., & Prives, C. (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes & Development, 14(3), 289–300.
158.
Zurück zum Zitat Sarker, K. P., Kataoka, H., Chan, A., Netherton, S. J., Pot, I., Huynh, M. A., et al. (2008). ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells. The Journal of Biological Chemistry, 283(19), 13269–13279.PubMedCrossRef Sarker, K. P., Kataoka, H., Chan, A., Netherton, S. J., Pot, I., Huynh, M. A., et al. (2008). ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells. The Journal of Biological Chemistry, 283(19), 13269–13279.PubMedCrossRef
159.
Zurück zum Zitat Datto, M. B., Li, Y., Panus, J. F., Howe, D. J., Xiong, Y., & Wang, X. F. (1995). Transforming growth-factor-beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 5545–5549.PubMedCrossRef Datto, M. B., Li, Y., Panus, J. F., Howe, D. J., Xiong, Y., & Wang, X. F. (1995). Transforming growth-factor-beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 5545–5549.PubMedCrossRef
160.
Zurück zum Zitat Luo, J., Shah, S., Riabowol, K., & Mains, P. E. (2009). The Caenorhabditis elegans ing-3 gene regulates ionizing radiation-induced germ-cell apoptosis in a p53-associated pathway. Genetics, 181(2), 473–482.PubMedCrossRef Luo, J., Shah, S., Riabowol, K., & Mains, P. E. (2009). The Caenorhabditis elegans ing-3 gene regulates ionizing radiation-induced germ-cell apoptosis in a p53-associated pathway. Genetics, 181(2), 473–482.PubMedCrossRef
161.
Zurück zum Zitat Wang, Y. H., Tsay, Y. G., Tan, B. C., Lo, W. Y., & Lee, S. C. (2003). Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305. The Journal of Biological Chemistry, 278(28), 25568–25576.PubMedCrossRef Wang, Y. H., Tsay, Y. G., Tan, B. C., Lo, W. Y., & Lee, S. C. (2003). Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305. The Journal of Biological Chemistry, 278(28), 25568–25576.PubMedCrossRef
162.
Zurück zum Zitat Zhang, X., Xu, L. S., Wang, Z. Q., Wang, K. S., Li, N., Cheng, Z. H., et al. (2004). ING4 induces G2/M cell cycle arrest and enhances the chemosensitivity to DNA-damage agents in HepG2 cells. FEBS Letters, 570(1–3), 7–12.PubMedCrossRef Zhang, X., Xu, L. S., Wang, Z. Q., Wang, K. S., Li, N., Cheng, Z. H., et al. (2004). ING4 induces G2/M cell cycle arrest and enhances the chemosensitivity to DNA-damage agents in HepG2 cells. FEBS Letters, 570(1–3), 7–12.PubMedCrossRef
163.
Zurück zum Zitat Iizuka, M., Sarmento, O. F., Sekiya, T., Scrable, H., Allis, C. D., & Smith, M. M. (2008). Hbo1 links p53-dependent stress signaling to DNA replication licensing. Molecular and Cellular Biology, 28(1), 140–153.PubMedCrossRef Iizuka, M., Sarmento, O. F., Sekiya, T., Scrable, H., Allis, C. D., & Smith, M. M. (2008). Hbo1 links p53-dependent stress signaling to DNA replication licensing. Molecular and Cellular Biology, 28(1), 140–153.PubMedCrossRef
164.
Zurück zum Zitat Saha, A., Bamidele, A., Murakami, M., & Robertson, E. S. (2011). EBNA3C attenuates the function of p53 through interaction with inhibitor of growth family proteins 4 and 5. Journal of Virology, 85(5), 2079–2088.PubMedCrossRef Saha, A., Bamidele, A., Murakami, M., & Robertson, E. S. (2011). EBNA3C attenuates the function of p53 through interaction with inhibitor of growth family proteins 4 and 5. Journal of Virology, 85(5), 2079–2088.PubMedCrossRef
165.
Zurück zum Zitat Zhang, X., Wang, K. S., Wang, Z. Q., Xu, L. S., Wang, Q. W., Chen, F., et al. (2005). Nuclear localization signal of ING4 plays a key role in its binding to p53. Biochemical and Biophysical Research Communications, 331(4), 1032–1038.PubMedCrossRef Zhang, X., Wang, K. S., Wang, Z. Q., Xu, L. S., Wang, Q. W., Chen, F., et al. (2005). Nuclear localization signal of ING4 plays a key role in its binding to p53. Biochemical and Biophysical Research Communications, 331(4), 1032–1038.PubMedCrossRef
166.
Zurück zum Zitat Unoki, M., Shen, J. C., Zheng, Z. M., & Harris, C. C. (2006). Novel splice variants of ING4 and their possible roles in the regulation of cell growth and motility. The Journal of Biological Chemistry, 281(45), 34677–34686.PubMedCrossRef Unoki, M., Shen, J. C., Zheng, Z. M., & Harris, C. C. (2006). Novel splice variants of ING4 and their possible roles in the regulation of cell growth and motility. The Journal of Biological Chemistry, 281(45), 34677–34686.PubMedCrossRef
167.
Zurück zum Zitat Guo, Q., & Fast, W. (2011). Citrullination of inhibitor of growth 4 (ING4) by peptidylarginine deminase 4 (PAD4) disrupts the interaction between ING4 and p53. The Journal of Biological Chemistry, 286(19), 17069–17078.PubMedCrossRef Guo, Q., & Fast, W. (2011). Citrullination of inhibitor of growth 4 (ING4) by peptidylarginine deminase 4 (PAD4) disrupts the interaction between ING4 and p53. The Journal of Biological Chemistry, 286(19), 17069–17078.PubMedCrossRef
168.
Zurück zum Zitat Chang, X. T., Han, J. X., Pang, L., Zhao, Y., Yang, Y., & Shen, Z. L. (2009). Increased PADI4 expression in blood and tissues of patients with malignant tumors. Bmc Cancer, 9(40). Chang, X. T., Han, J. X., Pang, L., Zhao, Y., Yang, Y., & Shen, Z. L. (2009). Increased PADI4 expression in blood and tissues of patients with malignant tumors. Bmc Cancer, 9(40).
169.
Zurück zum Zitat Slack, J. L., Causey, C. P., & Thompson, P. R. (2011). Protein arginine deiminase 4: a target for an epigenetic cancer therapy. Cellular and Molecular Life Sciences, 68(4), 709–720.PubMedCrossRef Slack, J. L., Causey, C. P., & Thompson, P. R. (2011). Protein arginine deiminase 4: a target for an epigenetic cancer therapy. Cellular and Molecular Life Sciences, 68(4), 709–720.PubMedCrossRef
170.
Zurück zum Zitat Raho, G., Miranda, C., Tamborini, E., Pierotti, M. A., & Greco, A. (2007). Detection of novel mRNA splice variants of human ING4 tumor suppressor gene. Oncogene, 26(36), 5247–5257.PubMedCrossRef Raho, G., Miranda, C., Tamborini, E., Pierotti, M. A., & Greco, A. (2007). Detection of novel mRNA splice variants of human ING4 tumor suppressor gene. Oncogene, 26(36), 5247–5257.PubMedCrossRef
171.
Zurück zum Zitat Garkavtsev, I., Kozin, S. V., Chernova, O., Xu, L., Winkler, F., Brown, E., et al. (2004). The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature, 428(6980), 328–332.PubMedCrossRef Garkavtsev, I., Kozin, S. V., Chernova, O., Xu, L., Winkler, F., Brown, E., et al. (2004). The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature, 428(6980), 328–332.PubMedCrossRef
172.
Zurück zum Zitat Nozell, S., Laver, T., Moseley, D., Nowoslawski, L., DeVos, M., Atkinson, G. P., et al. (2008). The ING4 tumor suppressor attenuates NF-kappa B activity at the promoters of target genes. Molecular and Cellular Biology, 28(21), 6632–6645.PubMedCrossRef Nozell, S., Laver, T., Moseley, D., Nowoslawski, L., DeVos, M., Atkinson, G. P., et al. (2008). The ING4 tumor suppressor attenuates NF-kappa B activity at the promoters of target genes. Molecular and Cellular Biology, 28(21), 6632–6645.PubMedCrossRef
173.
Zurück zum Zitat Meylan, E., Dooley, A. L., Feldser, D. M., Shen, L., Turk, E., Ouyang, C., et al. (2009). Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature, 462(7269), 104–107.PubMedCrossRef Meylan, E., Dooley, A. L., Feldser, D. M., Shen, L., Turk, E., Ouyang, C., et al. (2009). Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature, 462(7269), 104–107.PubMedCrossRef
174.
Zurück zum Zitat Ozer, A., Wu, L. C., & Bruick, R. K. (2005). The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7481–7486.PubMedCrossRef Ozer, A., Wu, L. C., & Bruick, R. K. (2005). The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7481–7486.PubMedCrossRef
175.
Zurück zum Zitat Li, X. M., Cai, L. M., Liang, M. H., Wang, Y. D., Yang, J., & Zhao, Y. L. (2008). ING4 induces cell growth inhibition in human lung adenocarcinoma A549 cells by means of Wnt-1/beta-catenin signaling pathway. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 291(5), 593–600.CrossRef Li, X. M., Cai, L. M., Liang, M. H., Wang, Y. D., Yang, J., & Zhao, Y. L. (2008). ING4 induces cell growth inhibition in human lung adenocarcinoma A549 cells by means of Wnt-1/beta-catenin signaling pathway. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 291(5), 593–600.CrossRef
Metadaten
Titel
Regulation of p53 by ING family members in suppression of tumor initiation and progression
verfasst von
Seyed Mehdi Jafarnejad
Gang Li
Publikationsdatum
01.06.2012
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1-2/2012
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9329-5

Weitere Artikel der Ausgabe 1-2/2012

Cancer and Metastasis Reviews 1-2/2012 Zur Ausgabe

Nodal-negativ nach neoadjuvanter Chemo: Axilladissektion verzichtbar?

03.05.2024 Mammakarzinom Nachrichten

Wenn bei Mammakarzinomen durch eine neoadjuvante Chemotherapie ein Downstaging von nodal-positiv zu nodal-negativ gelingt, scheint es auch ohne Axilladissektion nur selten zu axillären Rezidiven zu kommen.

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Bestrahlung nach Prostatektomie: mehr Schaden als Nutzen?

02.05.2024 Prostatakarzinom Nachrichten

Eine adjuvante Radiotherapie nach radikaler Prostata-Op. bringt den Betroffenen wahrscheinlich keinen Vorteil. Im Gegenteil: Durch die Bestrahlung steigt offenbar das Risiko für Harn- und Stuhlinkontinenz.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärzte und Psychotherapeuten.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.